• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    金屬氧化物(Fe2O3,CuO,NiO)改性對(duì)TiO2納米管陣列光電催化活性的增強(qiáng)效應(yīng)

    2012-12-11 09:11:42叢燕青伏芳霞
    物理化學(xué)學(xué)報(bào) 2012年6期
    關(guān)鍵詞:工商大學(xué)納米管苯酚

    叢燕青 李 哲 王 齊 張 軼 徐 謙 伏芳霞

    (浙江工商大學(xué)環(huán)境科學(xué)與工程學(xué)院,杭州310012)

    金屬氧化物(Fe2O3,CuO,NiO)改性對(duì)TiO2納米管陣列光電催化活性的增強(qiáng)效應(yīng)

    叢燕青*李 哲 王 齊 張 軼 徐 謙 伏芳霞

    (浙江工商大學(xué)環(huán)境科學(xué)與工程學(xué)院,杭州310012)

    采用陽極氧化法和陰極電沉積法制備了Fe2O3,CuO和NiO納米粒子改性的高度有序的TiO2納米管(TiO2-NT)陣列.運(yùn)用場(chǎng)發(fā)射掃描電子顯微鏡(FE-SEM),透射電子顯微鏡(TEM),X射線衍射(XRD)和紫外-可見漫反射光譜等手段對(duì)Fe2O3/TiO2-NT、CuO/TiO2-NT和NiO/TiO2-NT復(fù)合電極進(jìn)行表征.以苯酚為模擬污染物,考察復(fù)合電極的光電性能.結(jié)果表明,金屬氧化物(Fe2O3,CuO,NiO)納米粒子成功沉積在TiO2-NTs的管口、內(nèi)壁和管底.金屬氧化物改性復(fù)合電極的光電催化活性比未改性的TiO2-NTs提高了2倍以上.Fe2O3/TiO2-NTs在可見光區(qū)顯示出最高的吸收強(qiáng)度.以Fe2O3/TiO2-NTs為陽極處理苯酚廢水,光照120 min后苯酚去除率達(dá)到96%,而未改性的TiO2-NTs的苯酚去除率只有41%.此外,Fe2O3/TiO2-NTs在生成低毒中間產(chǎn)物方面表現(xiàn)出良好的性能.較高的復(fù)合電極光電催化活性主要是由于TiO2納米管和過渡金屬氧化物納米粒子間構(gòu)筑的高界面面積異質(zhì)納米結(jié)構(gòu),有效地促進(jìn)了電子轉(zhuǎn)移,抑制了光生電子-空穴對(duì)的復(fù)合.

    TiO2納米管;Fe2O3;CuO;NiO;光電催化;可見光

    1 Introduction

    Abatement of environmental pollutants by green technologies is significantly attractive research topic.It is particularly interest in the treatment processes using the solar energy since sunlight is a renewable natural energy.Photoelectrochemical (PEC)process is recognized to be one of the most promising ways to clean our environment.1Semiconductor electrodes employed in PEC process can be excited by solar light to generate the electron-hole pairs to remove the pollutants.Assisted electrochemical process promotes the separation of electron-hole pairs and further improves the efficiency of pollutants degradation.An efficient photocatalyst should maximize the utilization of solar energy and minimize the recombination of photoexcited electron-hole pairs.Therefore,the properties of semiconductor materials are crucial for achieving high efficiency in PEC process.2

    Various semiconductors have been extensively investigated since Fujishima and Honda3firstly suggested the water splitting with TiO2under UV illumination in 1972.TiO2is one of the most studied semiconductors because of its high photocatalytic activity,chemical stability,low cost,and nontoxicity.4-7However,the widespread usage of TiO2is limited by its large band gap energy(3.0-3.2 eV),which can only utilize the ultraviolet region of the solar spectrum.To enhance the photocatalytic activity of TiO2under visible light,considerable efforts have been attempted to improve the absorption in the visible spectrum,including dye sensitization,8-10anion or cation doping,11-13noble metal deposition,14-16and incorporation with transition metal oxides.17,18Another main drawback of TiO2is the high recombination rate of photo-generated holes and electrons.19Faster recombination largely decreases the quantum efficiency of PEC processes.Therefore,it is essential to suppress the recombination of electron-hole pairs.Among various strategies aimed at improving the absorption in the visible region and separating the electron-hole pairs,the incorporation of transition metal oxides with TiO2has been approved to be an effective method.20-23Zhang and co-workers23have synthesized TiO2/ Cu2O composite film and obtained high degradation efficiency of methylene blue.Although some studies have reported the incorporation of transition metal oxides with TiO2,there was little information about the molecular-scale architecture control and systematical study on various metal oxides.

    In this work,highly ordered vertically oriented TiO2nanotube(TiO2-NT)arrays were fabricated by electrochemical anodization of Ti foil.The self-organized oriented NT structure could provide large surface areas and facilitate vectorial charge transfer from the solution to the substrate,which were expected to accelerate the separation of electron-hole pairs and harvest sunlight more efficiently.Simple transition metal oxides (Fe2O3,CuO,NiO)nanoparticles were uniformly incorporated with TiO2-NTs by a novel electrochemical deposition method. The photocatalytic activity of the NT electrodes under visible light irradiation could be enhanced by modifying the surface structure and composition with the special metal oxides.Field emission scanning electron microscopy(FE-SEM),transmission electron microscope(TEM),X-ray diffraction(XRD),and UV-visible diffuse reflectance spectroscopy were used to characterize the structure and optical properties of composite electrodes.The PEC activities of composite electrodes were evaluated by phenol removal.

    2 Experimental

    2.1 Preparation of TiO2-NT electrodes modified by metal oxides

    TiO2-NT electrodes were prepared by the electrochemical anodization method on a Ti foil(0.25 mm thick,99.7%purity). Prior to anodization,the Ti foil was polished with sandpaper, and then ultrasonically cleaned with acetone,ethanol,and distilled water.Anodization was performed in a two-electrode system with the pretreated Ti foil as the working electrode and Pt sheet as the counter electrode under constant voltage at room temperature.The anodizing voltage varied from 0 to 20 V with an increasing certain rate and was kept at 20 V for 120 min. The electrolyte was a mixed solution of 0.5%(w)NaF and 0.5 mol·L-1Na2SO4.All reagents were analytical grade.After anodic oxidation,the samples were rinsed with deionized water and dried in air.The as-formed TiO2-NTs were annealed in a muffle furnace with 2°C·min-1heating rate and kept at 773 K for 2 h to convert the amorphous phase to the crystalline one.

    Fe2O3nanoparticles were deposited into the crystallized TiO2-NTs using an electrodeposition method.A two-electrode system was used with TiO2-NTs as the cathode and a Pt sheet as the anode.First,the TiO2-NT electrodes were soaked in a 0.1 mol·L-1Fe(NO3)3aqueous solution for 10 min,always subjected to ultrasound sonication before soaking.Then the TiO2-NT electrodes were transferred into a new medium that only contained an inert supporting electrolyte(0.1 mol·L-1Na2SO4).The potentiostatic DC electrodeposition was carried out at a constant voltage of 8 V for 20 min and the temperature of the electrolyte was maintained at 85°C.After the electrodeposition in this medium,Fe nanoparticles were deposited into the interior tubes of TiO2-NT electrodes(denoted as Fe/ TiO2-NTs).About 1.0%(w)deposition amount of Fe in the NTs was obtained after several repetitions.Then the Fe/ TiO2-NT electrodes were connected as the anode and the Pt sheet as the cathode.The material was electrochemically oxi-dized in 1 mol·L-1KOH aqueous solution at a voltage of 8 V for 2 min at room temperature.After this electrochemical oxidization,Fe/TiO2-NTs were converted into the corresponding oxides Fe2O3/TiO2-NTs.The resulting Fe2O3/TiO2-NT samples were rinsed with distilled water and dried at a low temperature.

    The preparation processes of CuO/TiO2-NTs and NiO/TiO2-NTs were the same as that of Fe2O3/TiO2-NTs,except that the deposition solution was 0.1 mol·L-1Cu(NO3)2and 0.1 mol·L-1Ni(NO3)2aqueous solutions,respectively.

    2.2 Characterization

    The morphologies and the cross-section views of TiO2-NT electrodes modified by metal oxides were characterized using a field emission scanning electron microscope(FE-SEM;Hitachi S-4700 II)and a transmission electron microscope(TEM; Philips-FEI Tecnai G2 F30 S-Twin),equipped with energy-dispersive X-ray spectroscopy(EDX;EDAX Analyzer DPP-II). The crystal properties of the prepared samples were determined from X-ray diffraction(XRD)using a diffractometer with Cu Kαradiation(Netherlands PNAlytical X?Pert PRO). The accelerating voltage and applied current were 40 kV and 40 mA,respectively.Light absorption properties were measured using UV-Vis diffuse reflectance spectra(Shimadzu, UV-3150)with a wavelength range of 220-600 nm.Electrochemical impedance spectroscopy(EIS)was performed using a CHI 660D instrument(Chenhua,Shanghai)in a three-electrode system,with a saturated Ag/AgCl electrode and a Pt sheet as reference and counter electrodes,respectively.

    2.3 Photoelectrochemical activity test

    The PEC activity of the composite electrodes was evaluated using phenol as a model pollutant.All the experiments were carried out in a two-electrode glass cell(100 mL)with constant magnetic stirring,using 0.2 mol·L-1Na2SO4as the electrolyte.The initial concentration of the phenol aqueous solution was 10 mg·L-1.The composite electrode was used as anode and Cu sheet was cathode.Applied voltage was provided by the DC Constant Current Power(WYL603 type,Hangzhou Yuhang Siling Electronic Equipment Co.,Ltd.).The anode was irradiated using a tungsten-halogen lamp(500 W),which generates a continuous light distribution across the visible spectrum and relatively weak emission in the ultraviolet portion of the spectrum.A UV cut-off filter(λ>420 nm)was used for visible light irradiation.The light intensity on the photoanode was~80 mW·cm-2.All experiments were carried out under ambient conditions.The determination of phenol and its degradation intermediates were carried out using high performance liquid chromatography(HPLC,Agilent 1200)by comparing the retention time of the standard compounds.The separation was performed using a Diamonsil C18 reversed phase column(150 mm×4.6 mm×5 mm)at the flow rate of 1.0 mL·min-1and the column temperature of 25°C.The eluent consisted of methanol/purified water(30:70(volume ratio)).The analyses were performed with a UV detector at a wavelength of 254 nm.

    3 Results and discussion

    3.1 Characterization of photocatalysts

    Fig.1 shows the SEM morphologies of the as-synthesized TiO2-NTs,Fe2O3/TiO2-NTs,CuO/TiO2-NTs,and NiO/TiO2-NTs. The hollow TiO2-NTs are almost uniform and have a highly ordered tubularstructure.The averageinnerdiameterof TiO2-NTs is~80 nm,and their average outer diameter is~110 nm(Fig.1(a)).Fe2O3/TiO2-NTs,CuO/TiO2-NTs,and NiO/TiO2-NTs have the similar tubular structure.The corresponding metal oxide nanoparticles were distinctly deposited on TiO2tubular substrates.The surface of TiO2-NT substrates was not blocked by nanoparticles.To identify the distribution of nanoparticles in TiO2-NTs,the cross-section views of the composite electrodes were analyzed by TEM images.According to Fig.2,the length of TiO2-NTs is around 1.2 μm.Fe2O3nanoparticles are deposited on the mouth,the tube wall,and the base of TiO2-NTs.The average diameter of Fe2O3nanoparticles is about 35 nm.Note that the deposition process has not destroyed the structure of the ordered TiO2-NT arrays,and Fe2O3nanoparticles can be fabricated into the bottom of TiO2-NTs. The EDX spectrum in Fig.2 confirms the existence of Fe,Ti, and O,whereas the Cu signal originates from the Cu substrate used in the imaging process.The measured atomic ratio of Fe/ Ti was 1.21%.The existence of NiO in NiO/TiO2-NTs was also confirmed(figure not shown).The measured atomic ratio of Ni/ Ti was 1.35%.The atomic ratio of Cu/Ti could not be determined due to the interference of Cu substrate used in EDX measurement.Fig.3 shows the XRD patterns of different composite electrodes annealed at 773 K.TiO2is converted from amorphous state to anatase state with a fine preferential growth of the self-organized highly oriented TiO2-NT arrays in the(101)direction.The peak of the(101)crystal(2θ=26.2°) can be seen from all the patterns.The characteristic peaks cor-responding to CuO,NiO,and Fe2O3are also identified in Fig.3. It indicates that TiO2-NTs,Fe2O3/TiO2-NTs,CuO/TiO2-NTs, and NiO/TiO2-NTs have been successfully synthesized.

    Fig.1 SEM images of TiO2-NTs and the metal oxide modified TiO2-NTs(a)TiO2-NTs,(b)CuO/TiO2-NTs,(c)NiO/TiO2-NTs,(d)Fe2O3/TiO2-NTs

    Fig.2 TEM images with different magnifications(a,b)and energy-dispersive X-ray(EDX)spectroscopy(c)of Fe2O3/TiO2-NT electrode

    Fig.3 XRD patterns of(a)TiO2-NTs,(b)NiO/TiO2-NTs, (c)Fe2O3/TiO2-NTs,and(d)CuO/TiO2-NTs

    Fig.4 UV-Vis diffuse reflectance spectra of the composite TiO2-NT electrodes modified by different metal oxides

    UV-Vis diffuse reflectance spectra of the composite TiO2-NT electrodes modified by different metal oxides are shown in Fig.4.In the wavelength range from 220 to 325 nm,Fe2O3/ TiO2-NTs,CuO/TiO2-NTs,and NiO/TiO2-NTs have lower absorbance intensity than the unmodified TiO2-NTs.When the wavelength is longer than 325 nm,however,the absorbance intensities of Fe2O3/TiO2-NTs,CuO/TiO2-NTs,and NiO/TiO2-NTs are higher than that of TiO2-NTs.Especially for Fe2O3/ TiO2-NTs,its absorbance intensity is significantly higher than other electrodes in the visible light region.Considering the large proportion(47%)of visible light in solar spectrum,the composite TiO2-NT electrodes modified by Fe2O3,CuO,and NiO are superior to the unmodified TiO2-NTs.

    3.2 Photoelectrocatalytic degradation of phenol

    To investigate the PEC activity of composite electrodes,phenol degradation experiments were carried out using the composite electrodes as the photoanodes.Fig.5 shows the comparison of phenol removal efficiency under irradiation.The removal rates of phenol using the three composite electrodes have been significantly improved relative to the unmodified TiO2-NT electrodes.After 120 min treatment,phenol removal efficiencies of Fe2O3/TiO2-NT,NiO/TiO2-NT,and CuO/TiO2-NT anodes were 96%,93%,and 90%,respectively,while it was only 41%for the unmodified TiO2-NT anode.The PEC activity of the composite NT electrodes was over twice that of the unmodified TiO2-NT electrode.The improved PEC performance was apparently attributed to the modification of metal oxides.

    3.3 Comparison of different processes

    Fig.5 Comparison of phenol removal efficiency under irradiation using different electrodes

    The electrocatalytic,photocatalytic,and photoelectrocatalytic processes were performed to investigate the role of different processes on phenol degradation using Fe2O3/TiO2-NTs as the anode since it has the best PEC activity.In electrocatalytic process,applied potential was performed and the experiments were carried out in the dark.In photocatalytic process,light irradiation was performed at open circuit(without applied potential).In photoelectrocatalytic process,applied potential and light irradiation were simultaneously used.All other operating conditions were the same.Fig.6 shows the comparison of different processes on phenol degradation.After 120 min treatment,phenol removal efficiency could reach 96%in the photoelectrocatalytic process,while it was only 15%for photocatalytic process and 4%for electrocatalytic process.It was evident that the photoelectrocatalytic process has synergetic effects in enhancing the removal efficiency of phenol in comparison with the individual photocatalytic or electrocatalytic process.

    Comparison of Fe2O3/TiO2-NTs and TiO2-NTs on phenol degradation under UV-Vis light and visible light irradiation is shown in Fig.7.Phenol removal efficiency of Fe2O3/TiO2-NTs is ca 2.3 times higher under UV-visible light irradiation and 8 times higher under visible light irradiation than that of TiO2-NTs.It is obvious that the modification of Fe2O3on TiO2-NTs significantly improves the PEC activity under visible light irradiation.

    Fig.6 Comparison of different processes on phenol degradation using Fe2O3/TiO2-NTs as the anode

    Fig.7 Comparison of Fe2O3/TiO2-NTs and TiO2-NTs on phenol degradation under UV-Vis light and visible light irradiation

    3.4 Determination of phenol degradation intermediates

    Fig.8 shows the HPLC chromatograms of phenol degradation at different treatment time.The main intermediates were identified to be benzoquinone,hydroquinone,and maleic acid by comparing the retention time of the standard compounds (Table 1).It can be seen that phenol was continuously degraded with time.Benzoquinone is an important intermediate of phenol degradation.Fig.9 shows that the yields of benzoquinone under irradiation using TiO2-NT,Fe2O3/TiO2-NT,CuO/ TiO2-NT,and NiO/TiO2-NT electrodes.Benzoquinone yields on the composite NT anodes first increased and then decreased with time.This was quite beneficial to the detoxification of wastewater because benzoquinone was regarded as one of the most toxic intermediates.24Benzoquinone yields of Fe2O3/ TiO2-NT,NiO/TiO2-NT,CuO/TiO2-NT,and TiO2-NT anodes were 1%,4%,7%,and 9%at 120 min,respectively.Fe2O3/ TiO2-NTs showed good performance to generate the low toxic intermediates.A possible reason was that some benzoquinone intermediate was simultaneously degraded when phenol was converted to benzoquinone.Fe2O3/TiO2-NTs had the highest PEC activity among these composite electrodes and could generate the most oxidizing reagents to degrade the pollutants(see Fig.5).Therefore,sufficient oxidants could further degrade the benzoquinone to achieve the lower yields of benzoquinone.

    Fig.8 HPLC chromatograms of phenol degradation at different treatment time under UV-Vis light irradiation

    Table 1 HPLC retention time of phenol and its intermediates

    Fig.9 Yields of benzoquinone under irradiation using different electrodes

    3.5 EIS analysis

    TiO2-NT electrodes modified by simple transition metal oxides were analyzed by electrochemical impedance spectroscopy(EIS).Experiments were carried out in 0.1 mol·L-1NaOH solution under dark condition.Fig.10 shows the Nynquist plots of TiO2-NT electrodes and TiO2-NTs modified by various metal oxides.For each electrode,only one arc could be observed in the complex plane,which was related to the porous nature of the electrodes.The radius of the arc reflects the charge transfer resistance at the surface of the electrode.25It is obvious that the arc radius on TiO2-NTs modified by various metal oxides is smaller than that on unmodified TiO2-NTs.This indicates that the modification of transition metal oxides improves the interfacial charge transfer of TiO2-NTs.

    3.6 Possible mechanism

    Fig.10 EIS Nynquist plots of TiO2-NT electrode and TiO2-NT electrodes modified by various metal oxides under dark condition

    Fig.11 Current density-potential curves of different electrodes under chopped visible light irradiation(a)TiO2-NTs,(b)Fe2O3/TiO2-NTs,(c)CuO/TiO2-NTs,(d)NiO/TiO2-NTs

    Current density-potential curves of various electrodes were tested in 0.1 mol·L-1NaOH solution using a three-electrode system(Fig.11).The photocurrent density of various electrodes increased as the applied voltage rose.Composite electrodes showed a better photoresponse under visible light irradiation than TiO2-NT electrode.The photocurrent of Fe2O3/TiO2-NTs (or NiO/TiO2-NTs)was ca 3 times higher than that of TiO2-NTs at 0.4 V(vs Ag/AgCl).CuO/TiO2-NTs had a lower photocurrent relative to Fe2O3/TiO2-NTs(or NiO/TiO2-NTs),but its photocurrent was still over 2 times higher than that of TiO2-NTs. The recombination peaks of photogenerated electron-hole pairs were found at lower applied voltage,however,they could decrease as the applied voltage bias increased.In addition,Fe2O3/ TiO2-NT and CuO/TiO2-NT electrodes showed higher dark current density than TiO2-NTs and NiO/TiO2-NTs,which indicated that Fe2O3and CuO nanoparticles had higher conductivity and reduced the charge transfer resistance of the Fe2O3/TiO2-NT and CuO/TiO2-NT electrodes.These results were consistent with EIS analysis in Fig.10.We tentatively put forward that Fe2O3and CuO nanoparticles may perform as the channel for electron migration and improve the separation of photogenerated electron-hole pairs since they have higher conductivity than TiO2.

    The differences in PEC activity among these composite electrodes were probably associated with their band structure and surface chemical nature.Table 2 lists the valence band(VB) and conduction band(CB)positions of TiO2,Fe2O3,NiO,and CuO.26Fe2O3and CuO have the low band gap,which would favor the absorption of the solar energy in visible light region. Since the CB position of Fe2O3(or CuO)is more positive than that of TiO2,some photogenerated electrons in Fe2O3/TiO2-NTs (or CuO/TiO2-NTs)may transfer from TiO2to Fe2O3(or CuO), leaving more holes to carry out the oxidation reaction.However,it might also serve as a recombination center since the photogenerated holes may move from TiO2to Fe2O3(or CuO).Therefore,the deposition amount of Fe2O3(or CuO)should be appropriately controlled.A schematic diagram of the photogenerated charge separation and electron transport on Fe2O3/ TiO2-NT or CuO/TiO2-NT electrode is shown in Fig.12(a).The low band gap of Fe2O3(or CuO)played an important role in the enhanced PEC activity of Fe2O3/TiO2-NTs(or CuO/ TiO2-NTs).NiO/TiO2-NTs also showed a higher PEC activity compared to the TiO2-NTs,but the band gap of NiO was larger than that of TiO2.Therefore,the possible mechanism of enhanced PEC performance on NiO/TiO2-NTs was different from Fe2O3/TiO2-NTs(or CuO/TiO2-NTs).Since NiO is a p-type semiconductor and TiO2is an n-type semiconductor,a number of p-n junctions would be formed when NiO was deposited on TiO2.As shown in Fig.12(b),the inner electric field was formed at the equilibrium,which made p-type NiO region had the negative charge and n-type TiO2region had the positive charge.Thus,the photogenerated holes moved to the negative field,while the electrons transferred to the positive field under the inner electric field.As a result,electron-hole pairs were effectively separated and the PEC activity of NiO/TiO2-NTs was significantly improved compared with the unmodified TiO2-NTs.

    Table 2 Valence band(VB)and conduction band(CB)positions of TiO2,Fe2O3,NiO,and CuO

    Fig.12 Schematic diagrams of pollutants degradation on MO/TiO2-NT electrodes under irradiation(a)possible pathway of the photogenerated charge separation and electron transport on Fe2O3/TiO2-NT or CuO/TiO2-NT electrode; (b)p-n junction formation model on NiO/TiO2-NT electrode

    When the phenol molecules were adsorbed on the surface of electrodes,some photogenerated holes directly reacted with phenol molecules to produce phenol+?radicals.Further,the reactive phenol+?radicals were transformed into degradation intermediates.And other holes reacted with H2O to produce hydroxyl radicals(HO·),which further oxidized organic compounds into H2O and CO2.18The possible reactions on the heteronanostructures comprised of TiO2-NTs and transition metal oxide(MO)nanoparticles could be expressed as follows:

    Note that Fig.12 shows just a tentative mechanism and the differences in PEC activity among various composite electrodes have not been completely clarified.The PEC activity is also sensitive to the interface,which is more complicated.The crystal-face exposed to the electrolyte at the interface may cause a different structure of the electric double layer.Thus this study illustrates the enhanced PEC activity of TiO2-NTs modified by simple transition metal oxides,and more work will be done to further clarify the mechanism.

    4 Conclusions

    The present study has demonstrated that TiO2-NTs,Fe2O3/ TiO2-NTs,CuO/TiO2-NTs,and NiO/TiO2-NTs could be successfully synthesized by a simple electrochemical anodization and electrodeposition method.The obtained TiO2and composite NT electrodes had a uniform and highly oriented tubular structure.The characteristic peaks corresponding to Fe2O3,CuO, and NiO were identified by XRD and the main phase of TiO2-NTs was anatase.Nanostructured composite electrodes showed a PEC activity more than 2 times higher than the pure TiO2-NTs.After 120 min treatment,phenol removal efficiency using Fe2O3/TiO2-NT,NiO/TiO2-NT,and CuO/TiO2-NT electrodes could reach 96%,93%,and 90%,respectively,while it was only 41%for the unmodified TiO2-NT anode.Moreover, Fe2O3/TiO2-NTs showed good performance to generate the low toxic intermediates.The low band gap of Fe2O3(or CuO) played an important role in the enhanced PEC activity of Fe2O3/ TiO2-NTs(or CuO/TiO2-NTs).The enhanced performance of NiO/TiO2-NTs was attributed to the formation of p-n junctions. The results indicate that TiO2-NTs modified by simple transition metal oxides(Fe2O3,CuO,NiO)are promising candidates for environmental applications.

    (1) Shannon,M.A.;Bohn,P.W.;Elimelech,M.;Georgiadis,J.G.; Marinas,B.J.;Mayes,A.M.Nature 2008,452,301.

    (2) Batzill,M.Energy Environ.Sci.2011,4,3275.

    (3) Fujishima,A.;Honda,K.Nature 1972,238,37.

    (4) Khan,S.U.M.;Al-Shahry,M.;Ingler,W.B.Science 2002,297, 2243.

    (5) Yang,H.G.;Sun,C.H.;Qiao,S.Z.;Zou,J.;Liu,G.;Smith,S. C.;Cheng,H.M.;Lu,G.Q.Nature 2008,453,638.

    (6) Chen,X.B.;Liu,L.;Yu,P.Y.;Mao,S.S.Science 2011,331, 746.

    (7) Park,J.H.;Kim,S.;Bard,A.J.Nano Lett.2006,6,24.

    (8) Ozcan,O.;Yukruk,F.;Akkaya,E.U.;Uner,D.Appl.Catal.B: Environ.2007,71,291.

    (9)Zhao,W.;Sun,Y.L.;Castellano,F.N.J.Am.Chem.Soc.2008, 130,12566.

    (10) Shang,J.;Chai,M.;Zhu,Y.F.Environ.Sci.Technol.2003,37, 4494.

    (11)Asahi,R.;Morikawa,T.;Ohwaki,T.;Aoki,K.;Taga,Y.Science 2001,293,269.

    (12) Chen,X.;Burda,C.J.Phys.Chem.B 2004,108,15446.

    (13) Parida,K.M.;Sahu,N.;Tripathi,A.K.;Kamble,V.S.Environ. Sci.Technol.2010,44,4155.

    (14) Sangpour,P.;Hashemi,F.;Moshfegh,A.Z.J.Phys.Chem.C 2010,114,13955.

    (15) Zielinska-Jurek,A.;Kowalska,E.;Sobczak,J.W.;Lisowski, W.;Ohtani,B.;Zaleska,A.Appl.Catal.B:Environ.2011,101, 504.

    (16) Mogyorosi,K.;Kmetyko,A.;Czirbus,N.;Vereb,G.;Sipos,P.; Dombi,A.React.Kinet.Catal.Lett.2009,98,215.

    (17) Martin,C.;Martin,I.;Rives,V.;Palmisano,L.;Schiavello,M. J.Catal.1992,134,434.

    (18) Hou,Y.;Li,X.Y.;Zou,X.J.;Quan,X.;Chen,G.H.Environ. Sci.Technol.2009,43,858.

    (19)Dlamini,L.N.;Krause,R.W.;Kulkarni,G.U.;Durbach,S.H. Mater.Chem.Phys.2011,129,406.

    (20)Wang,N.;Li,X.Y.;Wang,Y.X.;Hou,Y.;Zou,X.J.;Chen,G. H.Mater.Lett.2008,62,3691.

    (21) Yasomanee,J.P.;Bandara,J.Sol.Energy Mater.Sol.Cells 2008,92,348.

    (22)Chen,C.J.;Liao,C.H.;Hsu,K.C.;Wu,Y.T.;Wu,J.C.S. Catal.Commun.2011,12,1307.

    (23) Zhang,Y.G.;Ma,J.L.;Yu,Y.Environ.Sci.Technol.2007,41, 6264.

    (24) Tahar,N.B.;Savall,A.J.J.Electrochem.Soc.1998,145,3427.

    (25) Bard,A.J.;Faulker,L.R.Electrochemical Methods: Fundamentals and Applications,2nd ed.;John Wiley&Sons: New York,2001;p 386.

    (26)Xu,Y.;Schoonen,M.A.A.Am.Miner.2000,85,543.

    January 9,2012;Revised:March 21,2012;Published on Web:March 22,2012.

    Enhanced Photoeletrocatalytic Activity of TiO2Nanotube Arrays Modified with Simple Transition Metal Oxides(Fe2O3,CuO,NiO)

    CONG Yan-Qing*LI Zhe WANG Qi ZHANG Yi XU Qian FU Fang-Xia
    (College of Environmental Science and Engineering,Zhejiang Gongshang University,Hangzhou 310012,P.R.China)

    Composite electrodes consisting of highly ordered,vertically oriented TiO2nanotube(TiO2-NT) arrays modified with Fe2O3,CuO,and NiO nanoparticles were successfully fabricated by a simple electrochemical anodization and electrodeposition method.Field emission scanning electron microscopy (FE-SEM),transmission electron microscopy(TEM),X-ray diffraction(XRD),and UV-Vis diffuse reflectance spectroscopy were used to characterize the structure and optical properties of the resulting Fe2O3/TiO2-NT,CuO/TiO2-NT,and NiO/TiO2-NT composite electrodes.The photoelectrochemical(PEC) activities of the composite electrodes were evaluated using phenol as a model pollutant.Results indicated that transition metal oxide nanoparticles were deposited on the mouth,tube wall,and base of the TiO2-NTs. The PEC activity of the composite electrodes was over twice that of an unmodified TiO2-NT electrode.The Fe2O3/TiO2-NT electrode showed the highest absorption intensity in the visible light region.After treatment for 120 min,the phenol removal efficiency using the Fe2O3/TiO2-NT anode could reach 96%,while it was only 41%for the unmodified TiO2-NT anode.Moreover,the Fe2O3/TiO2-NT electrode tended to generate intermediates of low toxicity.The higher PEC activity of the composite electrodes was attributed to the presence of hetero-nanostructures with high interfacial area comprised of TiO2-NTs and transition metal oxide nanoparticles,which efficiently facilitated electron transfer and inhibited the recombination of photogenerated electron-hole pairs.

    TiO2nanotube;Fe2O3;CuO;NiO;Photoelectrocatalysis;Visible light

    10.3866/PKU.WHXB201203221

    ?Corresponding author.Email:yqcong@yahoo.cn;Tel:+86-571-88071024-7018.

    The project was supported by the National Natural Science Foundation of China(20976162,21103149,20906079),Natural Science Foundation of Zhejiang Province,China(R5100266),and Significant Science and Technology Project of Zhejiang Province,China(2010C13001).

    國家自然科學(xué)基金(20976162,21103149,20906079),浙江省自然科學(xué)基金(R5100266)及浙江省科技廳重大專項(xiàng)(2010C13001)資助項(xiàng)目

    O643

    猜你喜歡
    工商大學(xué)納米管苯酚
    重慶工商大學(xué)作品欣賞
    大眾文藝(2024年2期)2024-02-18 11:41:00
    重慶工商大學(xué)學(xué)科簡(jiǎn)介
    重慶工商大學(xué)
    最近鄰弱交換相互作用對(duì)spin-1納米管磁化強(qiáng)度的影響
    毛細(xì)管氣相色譜法測(cè)定3-氟-4-溴苯酚
    云南化工(2020年11期)2021-01-14 00:50:54
    重慶工商大學(xué)
    負(fù)載型催化劑(CuO/TUD-1,CuO/MCM-41)的制備及其在一步法氧化苯合成苯酚中的應(yīng)用
    二氧化鈦納米管的制備及其應(yīng)用進(jìn)展
    TiO2納米管負(fù)載Pd-Ag催化1,2-二氯乙烷的選擇性加氫脫氯
    4-(2,4-二氟苯基)苯酚的合成新工藝
    精品福利观看| 99国产极品粉嫩在线观看| 免费在线观看成人毛片| 一个人免费在线观看电影| 中文字幕熟女人妻在线| 国产黄a三级三级三级人| www日本黄色视频网| 国产一区在线观看成人免费| 亚洲成人精品中文字幕电影| 成人国产一区最新在线观看| 久久精品国产综合久久久| 中文资源天堂在线| 亚洲一区二区三区不卡视频| 国产色婷婷99| 国产伦精品一区二区三区四那| 真人做人爱边吃奶动态| 看免费av毛片| 国产欧美日韩精品一区二区| 中文字幕人妻熟人妻熟丝袜美 | 搡老熟女国产l中国老女人| 亚洲成av人片在线播放无| 国产伦精品一区二区三区四那| 99精品在免费线老司机午夜| 国产综合懂色| 夜夜躁狠狠躁天天躁| 好看av亚洲va欧美ⅴa在| 国产激情偷乱视频一区二区| 免费一级毛片在线播放高清视频| 国产色婷婷99| 亚洲在线观看片| 成人精品一区二区免费| 真人一进一出gif抽搐免费| 国产精品1区2区在线观看.| 免费看光身美女| 亚洲午夜理论影院| 日日夜夜操网爽| 美女被艹到高潮喷水动态| 99久久综合精品五月天人人| 欧美中文综合在线视频| xxx96com| 色尼玛亚洲综合影院| 黄色丝袜av网址大全| 欧美另类亚洲清纯唯美| 色综合欧美亚洲国产小说| 日韩亚洲欧美综合| 国产欧美日韩一区二区精品| 免费人成视频x8x8入口观看| 亚洲美女视频黄频| 999久久久精品免费观看国产| 小蜜桃在线观看免费完整版高清| 亚洲国产日韩欧美精品在线观看 | 亚洲第一欧美日韩一区二区三区| 久久香蕉国产精品| 国内毛片毛片毛片毛片毛片| 亚洲国产精品成人综合色| 国产成人影院久久av| 精品一区二区三区视频在线 | 免费看a级黄色片| 亚洲精品日韩av片在线观看 | 久久精品综合一区二区三区| 免费电影在线观看免费观看| 一进一出好大好爽视频| 欧美黄色片欧美黄色片| 19禁男女啪啪无遮挡网站| 哪里可以看免费的av片| 亚洲欧美日韩卡通动漫| 69av精品久久久久久| 欧美zozozo另类| 俺也久久电影网| 国产麻豆成人av免费视频| 桃色一区二区三区在线观看| 亚洲久久久久久中文字幕| 黄色丝袜av网址大全| 精品国内亚洲2022精品成人| 一本精品99久久精品77| 国产欧美日韩精品一区二区| 国产亚洲精品一区二区www| 亚洲欧美日韩东京热| 夜夜看夜夜爽夜夜摸| 亚洲一区二区三区色噜噜| 夜夜看夜夜爽夜夜摸| 一进一出抽搐gif免费好疼| 在线视频色国产色| 亚洲美女视频黄频| 久久精品综合一区二区三区| 精品久久久久久久毛片微露脸| 国产精品三级大全| 亚洲熟妇中文字幕五十中出| 俄罗斯特黄特色一大片| 听说在线观看完整版免费高清| 18禁在线播放成人免费| 最近最新免费中文字幕在线| 好男人在线观看高清免费视频| 女警被强在线播放| 久久久国产成人免费| 精品午夜福利视频在线观看一区| e午夜精品久久久久久久| 久久精品国产99精品国产亚洲性色| 国产精品女同一区二区软件 | 神马国产精品三级电影在线观看| 亚洲精品成人久久久久久| 亚洲自拍偷在线| 精品人妻偷拍中文字幕| 一级毛片高清免费大全| 亚洲国产欧美网| 波多野结衣巨乳人妻| 亚洲国产精品久久男人天堂| 国产成人av激情在线播放| 国产精品野战在线观看| 人人妻人人看人人澡| 人妻久久中文字幕网| 女人被狂操c到高潮| 国产欧美日韩一区二区精品| 十八禁人妻一区二区| 91久久精品国产一区二区成人 | 欧美日韩亚洲国产一区二区在线观看| 别揉我奶头~嗯~啊~动态视频| 亚洲av免费高清在线观看| 99国产综合亚洲精品| 99在线人妻在线中文字幕| 日本精品一区二区三区蜜桃| 制服丝袜大香蕉在线| 国产精品爽爽va在线观看网站| 老司机在亚洲福利影院| 国产激情偷乱视频一区二区| 中文字幕久久专区| 欧美最黄视频在线播放免费| 脱女人内裤的视频| 午夜精品一区二区三区免费看| 一级毛片高清免费大全| 成人永久免费在线观看视频| 天堂av国产一区二区熟女人妻| 窝窝影院91人妻| 精品午夜福利视频在线观看一区| 怎么达到女性高潮| 久久国产精品人妻蜜桃| 日韩大尺度精品在线看网址| 99精品在免费线老司机午夜| 欧美国产日韩亚洲一区| 久久性视频一级片| 男人的好看免费观看在线视频| 俺也久久电影网| 亚洲aⅴ乱码一区二区在线播放| 日韩欧美免费精品| 偷拍熟女少妇极品色| or卡值多少钱| 欧美午夜高清在线| 国产黄片美女视频| 成年版毛片免费区| 在线观看66精品国产| 在线a可以看的网站| 亚洲电影在线观看av| 欧美不卡视频在线免费观看| 欧美日韩瑟瑟在线播放| 欧美高清成人免费视频www| 亚洲av中文字字幕乱码综合| 看片在线看免费视频| 在线观看日韩欧美| 免费观看的影片在线观看| 国产不卡一卡二| 色在线成人网| 啦啦啦免费观看视频1| 国产精品久久久久久精品电影| 国产91精品成人一区二区三区| 午夜福利欧美成人| 99久久精品热视频| 丰满的人妻完整版| 99热只有精品国产| 免费av毛片视频| 神马国产精品三级电影在线观看| 日本成人三级电影网站| 国产精品一区二区三区四区免费观看 | 亚洲男人的天堂狠狠| 色av中文字幕| 亚洲人成网站在线播| 男女那种视频在线观看| 99热这里只有是精品50| 国产色婷婷99| 少妇的逼水好多| 可以在线观看毛片的网站| 欧美高清成人免费视频www| 中文字幕高清在线视频| 免费观看精品视频网站| 久久人妻av系列| 日韩大尺度精品在线看网址| 日韩欧美在线乱码| 欧美日韩精品网址| 黄色成人免费大全| 欧美高清成人免费视频www| 中文亚洲av片在线观看爽| 日本黄色视频三级网站网址| 精品一区二区三区人妻视频| 岛国在线观看网站| 国产视频一区二区在线看| 亚洲va日本ⅴa欧美va伊人久久| 在线a可以看的网站| 熟女电影av网| 一个人看的www免费观看视频| www日本在线高清视频| 亚洲色图av天堂| 久久欧美精品欧美久久欧美| 国产真实伦视频高清在线观看 | 免费高清视频大片| 日本 av在线| 久久久久国内视频| 欧美黑人巨大hd| 欧美成人一区二区免费高清观看| 夜夜爽天天搞| 国产成人aa在线观看| 亚洲男人的天堂狠狠| 制服人妻中文乱码| 亚洲无线观看免费| 色老头精品视频在线观看| 欧美日韩国产亚洲二区| 午夜免费男女啪啪视频观看 | 亚洲国产精品合色在线| 国产黄片美女视频| 日韩中文字幕欧美一区二区| 12—13女人毛片做爰片一| 女同久久另类99精品国产91| 亚洲最大成人中文| 无遮挡黄片免费观看| 亚洲欧美日韩高清专用| 免费观看人在逋| 人人妻人人澡欧美一区二区| 搡老岳熟女国产| 精品乱码久久久久久99久播| 18禁国产床啪视频网站| 国产精品精品国产色婷婷| 欧美性猛交黑人性爽| 一级黄片播放器| 日韩有码中文字幕| 亚洲av不卡在线观看| 中文字幕久久专区| 国产探花极品一区二区| 日韩高清综合在线| 国产成人av教育| 久久人妻av系列| 亚洲欧美精品综合久久99| 99国产精品一区二区三区| 国内精品一区二区在线观看| 在线观看66精品国产| 日韩免费av在线播放| 亚洲自拍偷在线| 亚洲18禁久久av| 露出奶头的视频| 欧美一区二区国产精品久久精品| 九九热线精品视视频播放| а√天堂www在线а√下载| 夜夜爽天天搞| 亚洲av免费高清在线观看| 中出人妻视频一区二区| 国产高清三级在线| 国内精品久久久久精免费| 亚洲色图av天堂| 亚洲乱码一区二区免费版| 国产成人系列免费观看| 神马国产精品三级电影在线观看| 免费高清视频大片| 亚洲av第一区精品v没综合| 欧美成狂野欧美在线观看| xxxwww97欧美| 日本一本二区三区精品| 国产成+人综合+亚洲专区| 中文亚洲av片在线观看爽| 免费看a级黄色片| 在线观看一区二区三区| 99精品欧美一区二区三区四区| 国内毛片毛片毛片毛片毛片| 欧美日韩一级在线毛片| 久久草成人影院| 日韩欧美在线二视频| 99久久99久久久精品蜜桃| 亚洲va日本ⅴa欧美va伊人久久| 91久久精品电影网| www日本黄色视频网| 久久这里只有精品中国| 18禁国产床啪视频网站| 性色avwww在线观看| 亚洲国产欧美人成| 性色av乱码一区二区三区2| 国产成人影院久久av| 亚洲欧美激情综合另类| 成年女人毛片免费观看观看9| 国产高清三级在线| 成人精品一区二区免费| 亚洲国产精品合色在线| 12—13女人毛片做爰片一| 搡女人真爽免费视频火全软件 | 成人性生交大片免费视频hd| 国产成人av教育| x7x7x7水蜜桃| 最近在线观看免费完整版| 91在线精品国自产拍蜜月 | 国产97色在线日韩免费| 女警被强在线播放| 国产真实乱freesex| 一区二区三区免费毛片| 国产精品爽爽va在线观看网站| 嫩草影院入口| 非洲黑人性xxxx精品又粗又长| 久久人妻av系列| 怎么达到女性高潮| 国产亚洲精品综合一区在线观看| 亚洲av成人不卡在线观看播放网| 亚洲乱码一区二区免费版| 亚洲熟妇熟女久久| av在线天堂中文字幕| 国产亚洲精品久久久com| 少妇的丰满在线观看| 国产69精品久久久久777片| 法律面前人人平等表现在哪些方面| 黄色成人免费大全| 又粗又爽又猛毛片免费看| 国产主播在线观看一区二区| 久久中文看片网| 国产一区二区在线av高清观看| 嫩草影院精品99| 日韩欧美精品免费久久 | 中文字幕人妻熟人妻熟丝袜美 | 亚洲欧美一区二区三区黑人| 成人18禁在线播放| 动漫黄色视频在线观看| 亚洲熟妇熟女久久| 亚洲欧美激情综合另类| 国产激情欧美一区二区| 日本与韩国留学比较| 日本 欧美在线| 男插女下体视频免费在线播放| 成人一区二区视频在线观看| 国产精品98久久久久久宅男小说| 一级a爱片免费观看的视频| 波多野结衣高清作品| 免费观看的影片在线观看| 级片在线观看| 日韩精品中文字幕看吧| 日本与韩国留学比较| 国产黄a三级三级三级人| 长腿黑丝高跟| 男女视频在线观看网站免费| 在线免费观看不下载黄p国产 | 别揉我奶头~嗯~啊~动态视频| 久99久视频精品免费| 午夜免费男女啪啪视频观看 | 午夜福利在线观看免费完整高清在 | 亚洲aⅴ乱码一区二区在线播放| 亚洲国产中文字幕在线视频| 免费无遮挡裸体视频| 在线免费观看的www视频| 熟女人妻精品中文字幕| 日本在线视频免费播放| 亚洲精品在线美女| 一级a爱片免费观看的视频| 日本五十路高清| 久久精品国产亚洲av香蕉五月| 欧美成人性av电影在线观看| 日韩亚洲欧美综合| 色尼玛亚洲综合影院| 免费看光身美女| 美女大奶头视频| 久久亚洲精品不卡| 亚洲内射少妇av| 高清日韩中文字幕在线| 国产国拍精品亚洲av在线观看 | 国产精品免费一区二区三区在线| 午夜福利在线观看免费完整高清在 | 国产精品精品国产色婷婷| 欧美成人性av电影在线观看| 嫁个100分男人电影在线观看| 色在线成人网| 天天添夜夜摸| 女生性感内裤真人,穿戴方法视频| 成人无遮挡网站| 欧美丝袜亚洲另类 | 搡女人真爽免费视频火全软件 | 亚洲最大成人手机在线| 蜜桃久久精品国产亚洲av| 一本综合久久免费| 99久久精品国产亚洲精品| 狂野欧美激情性xxxx| 久久国产精品人妻蜜桃| 国内精品久久久久精免费| 欧美日本视频| 网址你懂的国产日韩在线| 大型黄色视频在线免费观看| 高清日韩中文字幕在线| 亚洲成人久久爱视频| 波多野结衣巨乳人妻| 九九久久精品国产亚洲av麻豆| 亚洲成人久久爱视频| 在线播放无遮挡| 久久久久久久久大av| 国产成人欧美在线观看| 亚洲 欧美 日韩 在线 免费| 欧美一区二区国产精品久久精品| 亚洲欧美精品综合久久99| 国内精品美女久久久久久| 制服丝袜大香蕉在线| 国内久久婷婷六月综合欲色啪| 小说图片视频综合网站| 精品久久久久久久毛片微露脸| 精品日产1卡2卡| 三级国产精品欧美在线观看| 欧美性猛交╳xxx乱大交人| 欧美成人免费av一区二区三区| 精品国产亚洲在线| 欧美在线一区亚洲| 久久九九热精品免费| 在线播放无遮挡| 亚洲自拍偷在线| 亚洲精品国产精品久久久不卡| 日韩欧美在线二视频| 精品福利观看| 12—13女人毛片做爰片一| 99久久无色码亚洲精品果冻| 少妇人妻精品综合一区二区 | 亚洲熟妇中文字幕五十中出| 亚洲美女视频黄频| av视频在线观看入口| 老司机福利观看| 天天一区二区日本电影三级| 日韩成人在线观看一区二区三区| or卡值多少钱| aaaaa片日本免费| 老司机在亚洲福利影院| 一区福利在线观看| 香蕉丝袜av| 亚洲国产中文字幕在线视频| 国产精品1区2区在线观看.| 日韩成人在线观看一区二区三区| 欧美在线一区亚洲| 国产成人av教育| 中文字幕av在线有码专区| 九九在线视频观看精品| 在线观看一区二区三区| 国产伦人伦偷精品视频| 精品熟女少妇八av免费久了| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 久久香蕉国产精品| 在线免费观看不下载黄p国产 | 男女午夜视频在线观看| 桃红色精品国产亚洲av| 身体一侧抽搐| 在线免费观看的www视频| 久久久久国内视频| 欧洲精品卡2卡3卡4卡5卡区| 国产成人a区在线观看| 久久久久免费精品人妻一区二区| 欧美一区二区精品小视频在线| 长腿黑丝高跟| 嫁个100分男人电影在线观看| 黑人欧美特级aaaaaa片| 12—13女人毛片做爰片一| 久久久久久国产a免费观看| 国产成人av教育| 国产激情欧美一区二区| 日本与韩国留学比较| www.999成人在线观看| 中文字幕精品亚洲无线码一区| 韩国av一区二区三区四区| 一级a爱片免费观看的视频| 日本a在线网址| 国产又黄又爽又无遮挡在线| 国产精品久久久久久久电影 | 国产免费av片在线观看野外av| 99久久无色码亚洲精品果冻| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 搡老岳熟女国产| 欧美一区二区亚洲| 国产亚洲欧美98| 无限看片的www在线观看| www.色视频.com| 国产欧美日韩一区二区精品| 一级毛片高清免费大全| 美女大奶头视频| 我要搜黄色片| 丰满人妻熟妇乱又伦精品不卡| 欧美区成人在线视频| 女人十人毛片免费观看3o分钟| 色尼玛亚洲综合影院| 午夜两性在线视频| 色综合站精品国产| 成年免费大片在线观看| 天天一区二区日本电影三级| 少妇人妻一区二区三区视频| 美女黄网站色视频| 长腿黑丝高跟| 午夜亚洲福利在线播放| 午夜福利免费观看在线| 欧美bdsm另类| 日韩欧美 国产精品| 中文亚洲av片在线观看爽| 国产欧美日韩精品一区二区| 搞女人的毛片| 搡老岳熟女国产| 日韩欧美免费精品| 国产精品野战在线观看| 女人高潮潮喷娇喘18禁视频| 18禁在线播放成人免费| 99热这里只有精品一区| 黄色成人免费大全| 最近最新中文字幕大全免费视频| 特大巨黑吊av在线直播| 亚洲av二区三区四区| 女生性感内裤真人,穿戴方法视频| 欧美中文日本在线观看视频| 特级一级黄色大片| 午夜福利18| 桃红色精品国产亚洲av| 丁香六月欧美| 1000部很黄的大片| 最近视频中文字幕2019在线8| 亚洲久久久久久中文字幕| 网址你懂的国产日韩在线| 欧美性猛交黑人性爽| 校园春色视频在线观看| 精品国产亚洲在线| 90打野战视频偷拍视频| 国产成人aa在线观看| 免费一级毛片在线播放高清视频| 俄罗斯特黄特色一大片| 欧美日韩亚洲国产一区二区在线观看| 精品人妻1区二区| 国内精品久久久久久久电影| 伊人久久大香线蕉亚洲五| 久久久色成人| 在线天堂最新版资源| 亚洲黑人精品在线| 老司机深夜福利视频在线观看| 天天添夜夜摸| 国内精品久久久久精免费| 日本 av在线| 99精品久久久久人妻精品| 日本黄大片高清| 麻豆成人午夜福利视频| 亚洲精品在线美女| 色精品久久人妻99蜜桃| 亚洲av中文字字幕乱码综合| 九色成人免费人妻av| 日韩欧美国产在线观看| 精品国产美女av久久久久小说| 欧美大码av| 少妇的逼好多水| 免费观看精品视频网站| 十八禁网站免费在线| 最近最新中文字幕大全电影3| 久久久久久久久久黄片| 日本三级黄在线观看| 亚洲成人中文字幕在线播放| 婷婷丁香在线五月| 黄色日韩在线| 欧美在线一区亚洲| 日本在线视频免费播放| 国产99白浆流出| 毛片女人毛片| 欧美乱色亚洲激情| 日韩欧美免费精品| 中文在线观看免费www的网站| 麻豆成人av在线观看| 黄色视频,在线免费观看| 香蕉久久夜色| 欧美午夜高清在线| 日本一二三区视频观看| 天堂网av新在线| 麻豆国产97在线/欧美| 在线看三级毛片| 99久久99久久久精品蜜桃| 丰满的人妻完整版| 亚洲在线自拍视频| 亚洲内射少妇av| 欧美日本视频| 少妇裸体淫交视频免费看高清| www日本在线高清视频| 免费人成视频x8x8入口观看| 欧美不卡视频在线免费观看| 男人的好看免费观看在线视频| 午夜两性在线视频| 麻豆成人午夜福利视频| 欧美+亚洲+日韩+国产| 国产成人欧美在线观看| 99久久精品热视频| 淫妇啪啪啪对白视频| 午夜福利免费观看在线| 欧美日韩国产亚洲二区| 日本 欧美在线| 日日夜夜操网爽| 男人舔女人下体高潮全视频| 无人区码免费观看不卡| 成人永久免费在线观看视频| 国产精品久久久久久人妻精品电影| 一级毛片高清免费大全| 黄色视频,在线免费观看| 精品一区二区三区av网在线观看| 亚洲av免费在线观看| 国产精品野战在线观看| 日本 av在线| 中文字幕精品亚洲无线码一区| 日韩欧美精品v在线| 熟女人妻精品中文字幕| av天堂中文字幕网| 亚洲精品亚洲一区二区| 蜜桃亚洲精品一区二区三区| 欧美+亚洲+日韩+国产| 操出白浆在线播放| 欧美日韩精品网址| 搡老妇女老女人老熟妇| 性色avwww在线观看| 国产精品一区二区三区四区免费观看 | 国产真实伦视频高清在线观看 | 狂野欧美激情性xxxx| 欧美激情久久久久久爽电影| 99久久99久久久精品蜜桃| 在线观看日韩欧美| 熟妇人妻久久中文字幕3abv| www.色视频.com|