• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    光還原催化劑Pt/TiO2富氫條件下CO優(yōu)先氧化反應(yīng)

    2012-12-05 02:26:56王彩紅劉國霞
    物理化學(xué)學(xué)報(bào) 2012年2期
    關(guān)鍵詞:富氫濱州優(yōu)先

    王 芳 王彩紅 劉國霞

    (濱州學(xué)院化學(xué)與化工系,山東濱州256603)

    光還原催化劑Pt/TiO2富氫條件下CO優(yōu)先氧化反應(yīng)

    王 芳*王彩紅 劉國霞

    (濱州學(xué)院化學(xué)與化工系,山東濱州256603)

    用光還原法來提高富氫條件下CO優(yōu)先氧化(PROX)催化活性和CO2選擇性,分別對有無氫氣時(shí)CO氧化反應(yīng)參數(shù)進(jìn)行了詳盡研究.X射線光電子能譜(XPS)表征結(jié)果顯示,在光還原催化劑表面產(chǎn)生了部分氧空穴,可為化學(xué)吸附H提供活性中心.針對光還原Pt/TiO2催化劑上CO優(yōu)先氧化反應(yīng)提出了一種可能的雙功能反應(yīng)機(jī)理.

    CO優(yōu)先氧化;Pt催化劑;光還原;浸漬

    1 Introduction

    Currently,the CO oxidation in the absence and presence of H2has attracted extensive attention because of its potential application in indoor or cabin air cleanup and in the purification of hydrogen streams used in proton exchange membrane (PEM)fuel cells.1,2Considerable efforts have been devoted to design the suitable catalysts for the competitive oxidation of CO in the presence of hydrogen.Supported noble metals,such as Au,3,4Pt,5-10Pd,11-13and Rh,14were found applicable for the PROX reaction.Platinum catalysts are by far the most extensively studied catalysts owing to their superior performance in photocatalytic and thermal CO oxidation.Nevertheless,the most commonly used Pt/TiO2catalysts prepared by impregnation method are unsuitable for the reaction of CO preferential oxidation since they require high operation temperature in the range of 150-200°C.In the meantime,significant H2consumption can be observed in the temperature range to work effectively.Furthermore,the impregnated Pt/TiO2catalyst used to be pretreated by oxidation or reduction under an appropriate temperature prior to the catalytic activity tests.15-18This gives an incentive for the development of a highly active and selective catalyst for CO preferential oxidation.

    By comparison,the photoreduction method exhibits many advantages,such as simple operation and environment-friendly etc.In this study,we mainly focus on the preparation of Pt/ TiO2catalysts by a photoreduction method.The optimum reaction parameters for CO oxidation in the presence and absence of H2have been investigated in detail.Based on the data of catalytic activity tests and the characterization of catalysts,a possible reaction mechanism for the PROX reaction over the photoreduced Pt/TiO2catalyst has been proposed.

    2 Experimental

    2.1 Catalyst preparation

    Degussa P25 TiO2powder(Degussa,70%-30%anatase) was used as a support.Before deposition,raw TiO2was pretreated at 773 K for 4 h in air to stabilize its surface area and the anatase crystal form.Platinum was directly photodeposited on TiO2in an aqueous solution of chloroplatinic acid(1 mmol· L-1)and methanol(0.1 mol·L-1)under UV illumination(250 W medium-pressure mercury lamp).The samples were dried in air at 120°C for 12 h and had no thermal treatment anymore. The theoretical mass loading amount was 1.5%(w).In order to compare with the photoreduced Pt/TiO2catalysts,the impregnated catalyst was reduced in H2stream at 300°C for 1 h prior to the catalytic activity tests.We denoted the Pt/TiO2catalysts photoreduced for 12,24,and 36 h as Pt/TiO2(PR12),Pt/TiO2(PR24)and Pt/TiO2(PR36),respectively.And the impregnated one was denoted as Pt/TiO2(IM).

    2.2 Characterization of catalysts

    X-ray diffraction(XRD)patterns of the samples were recorded on a Rigaku D/MAX-RB X-ray diffractometer with a Cu Kαtarget operated at 50 kV and 40 mA with a scanning speed of 0.5(°)·min-1and a scanning angle(2θ)range of 10°-90°. Chemical states of the Pt species on the catalyst surface were investigated by X-ray photoelectron spectroscopy(XPS)on a VG ESCALAB 210 Electron Spectrometer(Mg Kαradiation; hν=1253.6 eV).

    2.3 Activity measurement

    Catalytic test was carried out at atmospheric pressure in a fixed bed continuous flow quartz reactor(inside diameter is 8mm),consisting of a flow controller unit,a reactor unit,and an analysis unit.A schematic diagram of the experimental system is shown in Fig.1.Typically,the temperature increased from 80 to 300°C at a 5°C increment,and a sample was taken for analysis after stabilizing for 30 min at each investigated temperature.Then 0.1 g catalyst diluted with equal amount of quartz was used in each run.Prior to the experiment,the impregnated catalyst was reduced in situ at 300°C(heating rate: 10°C·min-1)for 3 h with a 50%(volume fraction)H2/N2mixture(flow rate:60 mL·min-1).The feed gas consisted of 2.5% CO and 20%O2in N2balance.In the process of PROX,a gas mixture containing 50%H2,1%CO,and 2%O2in N2was fed at the flow rate of 30 mL·min-1.The gas phase effluents were analyzed on-line chromatographs equipped with thermal conductivity detector(TCD).At the end of the catalytic tests,the catalyst was cooled under an N2stream and stored for characterizations.The catalytic activities were defined in terms of conversion of CO(η),conversion of O2,and selectivity to CO2(S),which were denoted as ηCO,ηO2and SCO2,respectively,and were calculated according to the following equations:

    3 Results and discussion

    3.1 XRD analysis

    Fig.1 Diagram of apparatus for the test of catalytic activity

    XRD patterns of various Pt/TiO2catalysts were shown in Fig.2.No obvious crystallite formation of the Pt species could be found in the XRD patterns of Pt/TiO2(PR12)and Pt/TiO2(PR24)catalysts,which indicated that the low metal content might lead to a high dispersion of Pt and,therefore,that the Pt particles were too small to be detected by XRD analysis.However,only a broader diffraction peak of Pt appeared at 39.68ofor Pt/TiO2(PR36)and Pt/TiO2(IM)catalysts,which could be attributed to Pt(111).10Therefore,the average crystallite sizes of Pt particles could be calculated by applying the Scherrer equation on the Pt(111)diffraction peaks.The calculated average crystallite sizes of Pt particles in Pt/TiO2(PR36)and Pt/ TiO2(IM)samples were 16 and 10 nm,respectively.According to previous report,10the concentrations of chlorine ions could be decreased by photoreduction,resulted in a highly dispersion of active component.These results suggested that the distribution of Pt species on the support surface could be improved by adjusting photoreducation time and the longer time will be detrimental to the enhancement of CO oxidation activity.

    Fig.2 XRD patterns of various catalysts(a)Pt/TiO2(PR12),(b)Pt/TiO2(PR24),(c)Pt/TiO2(PR36),(d)Pt/TiO2

    3.2 XPS analysis

    XPS analyses were carried out to determine the surface concentration and valence state of Pt in Pt/TiO2catalysts.The binding energies of Pt 4f and the derived atomic contents in the different catalysts were summarized in Fig.3 and Table 1.From Fig.3 we found that the line shape and the width of Pt(4f7/2,4f5/2) over the impregnated catalyst matched well with that of the metallic Pt.By comparison,the Pt 4f features obtained from the photoreduced catalysts were quite broad,both zerovalence and cationic Pt could be found.According to previous reports,19,20the Pt 4f bands at 70.9 eV could be related to metallic Pt,while those at 73.2 eV could be assigned to Pt2+,respectively.Therefore,the relative atomic ratios of[Pt]/[Pt2+]decreased with the increase of photoreduction time.These results indicated that the valence state of Pt particles on the catalysts surface could be changed by adjusting photoreduction time.In addition,the atomic content on the support surface in the impregnated catalyst was much higher than those in the photoreduced catalysts, indicating that just partial Pt species could be deposited by photoreduction.

    Fig.3 XPS spectra of Pt in various catalysts(A)Pt/TiO2(PR12),(B)Pt/TiO2(PR24),(C)Pt/TiO2(PR36),(D)Pt/TiO2(IM)

    Table 1 XPS data of the catalysts Pt/TiO2(PR12),Pt/TiO2(PR24), Pt/TiO2(PR36),and Pt/TiO2(IM)

    The XPS spectra of TiO2were also detected in order to investigate the strong metal-support interaction(SMSI)for precious metal on reducible support.It is widely accepted that such effects may be crucial in many aspects of heterogeneous catalysis.The binding energies of TiO22p in various Pt/TiO2catalysts were shown in Fig.4.From Fig.4(a)we can find that the line shape and the width of TiO2(2p3/2,2p1/2)over the impregnated catalyst matched well with those of the Ti4+,which indicated that TiO2could not be reduced by H2pretreatment.This result also suggested that there was a weak interaction between active center Pt and reducible support TiO2.However,the binding energies of TiO2in photoreducted Pt/TiO2catalysts moved towards higher binding energy,maybe due to the production of part of Ti3+.According to previous report,21the stoichiometric surface exists,in principle,as an oxygen vacancy and two Ti3+.

    3.3 Activity tests

    CO oxidation in the absence of hydrogen was carried out in a temperature region of 100-260°C with a CO/O2molar ratio of 0.125.For comparison,CO conversions over different catalysts versus reaction temperature were summarized in Fig.5.It can be found that the catalytic activities for CO oxidation are very sensitive to preparation method.Performance of the impregnated catalyst is superior to those of photoreduced ones, which maybe due to the partial deposition of the Pt species resulted from photoreduction.Although both the nature of the active Pt phase and the elucidation of the mechanism for CO oxidation are still debated,herein,we consider that the Pt oxides are major active sites.Comparing the photoreduced catalysts, we found that their catalytic performance could be significantly promoted by adjusting the photoredution time.An optimum photoreduction time was 24 h and the longer time will be detrimental to the enhancement of CO oxidation activity.From Table 1 it can be found that the concentration of chlorine ions can be decreased from 1.5 to 0.4 when we increased photoreduction time from 12 to 36 h.Whereas the excessive photoreduction can result in the aggregation of the Pt species as shown in XRD results above.This result is consistent with previous report.22Therefore,the Pt/TiO2(PR24)catalyst exhibited the best activity for CO oxidation.

    Fig.4 XPS spectra of TiO2for various catalysts(a)Pt/TiO2(IM),(b)Pt/TiO2(PR12),(c)Pt/TiO2(PR24),(d)Pt/TiO2(PR36)

    Fig.6 Activity comparison of the CO selective oxidation between Pt/TiO2(PR24)(1)and Pt/TiO2(IM)(2)catalysts

    Fig.5 CO conversion vs reaction temperature over various catalysts(a)Pt/TiO2(IM),(b)Pt/TiO2(PR12),(c)Pt/TiO2(PR24),(d)Pt/TiO2(PR36)

    Furthermore,in order to investigate the effects of H2,a comparison of the catalytic activities for CO preferential oxidation in the presence of H2between Pt/TiO2(IM)and Pt/TiO2(PR24) was made.The maximum CO conversions,the corresponding O2conversions and selectivities of CO2were shown in Fig.6. Our results showed that the maximum CO conversion of 61.4%on Pt/TiO2(PR24)was achieved at 180°C,the corresponding O2conversion and selectivity of CO2were 40.0%and 43.0%,respectively.However,the maximum CO conversion of 33.7%over the Pt/TiO2(IM)catalyst could not be obtained until the reaction temperature increased to 240°C.Furthermore,the higher O2conversion of 91.4%resulted in a lower selectivity of CO2of 11.2%.

    It has been reported that the electron transfer occurs between oxide support and Au nanoparticles or adsorbates,and influences the CO thermocatalytic oxidation.23-25So,it can be proposed that the presence of H2may also play a similar effect on the CO oxidation via electron transfer.These results indicate that the dissociative chemisorption H at surface oxygen vacancy sites of TiO2deduced by photoreduction can act as both the electron-acceptors for the photogeneration electrons and the electron-donors for the chemisorbed O2at TiO2.26We consider that a bi-function reaction mechanism maybe involved in CO preferential oxidation over the photoreduced Pt/TiO2catalysts, where CO adsorbs on the Pt species and H2adsorbs at surface oxygen vacancy sites of TiO2.Therefore,the bi-function reaction mechanism weakens the competitive adsorption between CO and active oxygen on the Pt species,and subsequently enhances the activity for CO preferential oxidation in the presence of H2.

    4 Conclusions

    In summary,the photoreduction is an effective method to enhance the catalytic activity and selectivity of CO2for the reaction of PROX in H2-rich stream.In photoreduction process,the dissociative chemisorption H at surface oxygen vacancy sites of TiO2can act as the electron-donors for the chemisorbed O2at TiO2,resulted in a bi-function reaction mechanism for CO preferential oxidation in H2-rich stream.In addition,a further research is in progress owing to the numerous influence factors on the photoreduction,such as the irradiate intensity,the pH value,and concentration of solution,etc.

    (1)Du,W.P.;Li,Z.;Leng,W.H.;Xu,Y.M.Acta Phys.-Chim.Sin. 2009,25,1530.[杜衛(wèi)平,李 臻,冷文華,許宜銘.物理化學(xué)學(xué)報(bào),2009,25,1530.]

    (2) Liu,D.;Xu,Y.M.Acta Phys.-Chim.Sin.2008,24,1584. [劉 鼎,許宜銘.物理化學(xué)學(xué)報(bào),2008,24,1584.]

    (3)Wang,F.;Lu,G.X.Catal.Lett.2007,115,46

    (4)Wang,F.;Lu,G.X.Catal.Lett.2010,134,72.

    (5) Oh,S.H.;Sinkevitch,R.M.J.Catal.1993,142,254.

    (6) Kahlich,M.J.;Gasteiger,H.A.;Behm,R.J.J.Catal.1997, 171,93.

    (7) Zkara,S.?.;Aksoylu,A.E.Appl.Catal.A-Gen.2003,251,75.

    (8) Geng,D.S.;Chen,L.;Lu,G.X.J.Mol.Catal.A 2007,265,42.

    (9)Tang,Z.C.;Geng,D.S.;Lu,G.X.Thin Solid Films 2006,497, 309.

    (10) Wang,F.;Lu,G.X.J.Power Sources 2008,181,120.

    (11) Wang,F.;Lu,G.X.Int.J.Hydrog.Energy 2010,35,7253.

    (12)Wang,F.;Lu,G.X.J.Phys.Chem.C 2009,113,4161

    (13)Wang,F.;Lu,G.X.J.Phys.Chem.C 2009,113,17070.

    (14) Wang,F.;Lu,G.X.Chin.J.Catal.2007,28,27.[王 芳,呂功煊.催化學(xué)報(bào),2007,28,27.]

    (15) Zhang,M.;Jin,Z.S.;Zhang,Z.J.;Dang,H.X.Appl.Surf.Sci. 2005,250,29.

    (16) Zhang,M.;Jin,Z.S.;Zhang,Z.J.;Dang,H.X.J.Mol.Catal. A-Chem.2005,225,59.

    (17) Zhang,M.;Feng,C.X.;Jin,Z.S.;Chen,G.;Du,Z.L.Chin.J. Catal.2005,26,508.[張 敏,馮彩霞,金振聲,程 剛,杜祖亮.催化學(xué)報(bào),2005,26,508.]

    (18) Nishiyama,N.;Ichioka,K.;Park,D.H.;Egashira,Y.;Ueyama, K.;Gora,L.;Zhu,W.D.;Kapteijn,F.;Moulijn,J.Ind.Eng. Chem.Res.2004,43,1211.

    (19)Kim,K.S.;Winorgrad,N.;Davis,R.E.J.Am.Chem.Soc. 1971,93,6296.

    (20) Bornsten,L.In Zahlenwerte und Funktionen aus Naturwissenschaft und Technik;Springer:Berlin,1982.

    (21) Robert,G.;Peter,M.;Michael,B.Catal.Lett.2004,98,129.

    (22)Yang,J.C.;Kim,Y.C.;Shul,Y.G.;Shin,C.H.;Lee,T.K.Appl. Surf.Sci.1997,121,525.

    (23) Lopez,N.;Janssens,T.V.W.;Clausen,B.S.;Xu,Y.; Mavrikakis,M.;Bligaard,T.;N?skov,J.K.J.Catal.2004,223, 232.

    (24) Giordano,L.;Goniakowski,J.;Pacchioni,G.Phys.Rev.B 2001, 64,075417.

    (25) Molina,L.M.;Hammer,B.Phys.Rev.Lett.2003,90,206102.

    (26) Dai,W.X.;Chen,X.;Wang,X.X.;Liu,P.;Li,D.Z.;Li,G.S.; Fu,X.Z.Phys.Chem.Chem.Phys.2008,10,3256.

    August 11,2011;Revised:November 2,2011;Published on Web:November 24,2011.

    Preferential Oxidation of CO over Photoreduced Pt/TiO2Catalysts in H2-Rich Stream

    WANG Fang*WANG Cai-Hong LIU Guo-Xia
    (Department of Chemistry&Chemical Engineering,BinzhouUniversity,Binzhou 256603,Shandong Province,P.R.China)

    The optimum reaction parameters for CO oxidation in the presence and absence of H2have been investigated by photoreduction method to enhance the catalytic activity and selectivity of CO2for CO preferential oxidation(PROX)in H2-rich stream in detail.X-ray photoelectron spectroscoopy(XPS)results showed that part oxygen vacancies produced on the surface of photoreduced catalysts,which maybe the activity site for the chemisorbed H.Therefore,a possible bi-function reaction mechanism for CO preferential oxidation over the photoreduced Pt/TiO2catalyst has been proposed.

    CO preferential oxidation;Pt catalyst;Photoreduction;Impregnation

    10.3866/PKU.WHXB201111244www.whxb.pku.edu.cn

    *Corresponding author.Email:wangfangosso@yahoo.cn;Tel:+86-18763029669.

    The project was supported by the Research Fund of Binzhou University,China(2010Y06).

    濱州學(xué)院科研基金(2010Y06)資助項(xiàng)目

    O643

    猜你喜歡
    富氫濱州優(yōu)先
    燒結(jié)工序降低固體燃耗節(jié)能減碳的措施
    生物質(zhì)化學(xué)工程(2023年5期)2023-10-09 09:41:22
    山東濱州沃華生物工程有限公司
    飛閱濱州
    金橋(2020年11期)2020-12-14 07:52:50
    40年,教育優(yōu)先
    商周刊(2018年25期)2019-01-08 03:31:08
    多端傳播,何者優(yōu)先?
    傳媒評論(2018年5期)2018-07-09 06:05:26
    站在“健康優(yōu)先”的風(fēng)口上
    生物質(zhì)化學(xué)工程(2016年2期)2016-06-23 08:35:17
    因戶制宜 一戶一策 濱州結(jié)對幫扶注重“造血”
    濱州淺海海域浮游植物豐度及其多樣性
    色综合色国产| 午夜福利欧美成人| 免费看美女性在线毛片视频| 国产成人影院久久av| 成人鲁丝片一二三区免费| 国产色爽女视频免费观看| 日韩国内少妇激情av| 悠悠久久av| 日韩精品有码人妻一区| 在线观看美女被高潮喷水网站| 精品一区二区三区视频在线| 国产伦精品一区二区三区四那| 一区二区三区激情视频| 亚洲熟妇中文字幕五十中出| 国产淫片久久久久久久久| 乱码一卡2卡4卡精品| 色综合色国产| 国产精品一及| 久久天躁狠狠躁夜夜2o2o| 成熟少妇高潮喷水视频| .国产精品久久| 婷婷色综合大香蕉| 久久天躁狠狠躁夜夜2o2o| 亚洲久久久久久中文字幕| 老司机深夜福利视频在线观看| 自拍偷自拍亚洲精品老妇| 我的女老师完整版在线观看| 久久精品久久久久久噜噜老黄 | 亚洲人成网站在线播放欧美日韩| 午夜免费男女啪啪视频观看 | 国产免费男女视频| 国内精品一区二区在线观看| 国产精品98久久久久久宅男小说| 国产精品久久久久久久电影| 欧美一区二区精品小视频在线| 自拍偷自拍亚洲精品老妇| avwww免费| 久久中文看片网| 国产一区二区在线av高清观看| 日本免费a在线| 日韩高清综合在线| 亚洲在线自拍视频| 中文字幕av成人在线电影| 天堂√8在线中文| 亚洲欧美日韩高清专用| 人人妻人人看人人澡| 在线观看av片永久免费下载| 亚洲无线在线观看| 桃色一区二区三区在线观看| 不卡视频在线观看欧美| 午夜福利欧美成人| 中亚洲国语对白在线视频| 国产精品久久电影中文字幕| 变态另类成人亚洲欧美熟女| 88av欧美| 午夜激情欧美在线| 搞女人的毛片| 亚洲美女视频黄频| 国产成人影院久久av| 国产综合懂色| 老熟妇仑乱视频hdxx| 精品久久国产蜜桃| 欧美丝袜亚洲另类 | 狠狠狠狠99中文字幕| 国产单亲对白刺激| 国产精品1区2区在线观看.| 久久婷婷人人爽人人干人人爱| 欧美黑人巨大hd| 日韩欧美在线二视频| 国语自产精品视频在线第100页| 国内揄拍国产精品人妻在线| 禁无遮挡网站| 窝窝影院91人妻| 欧美精品啪啪一区二区三区| 久久香蕉精品热| 日韩人妻高清精品专区| 国产一区二区三区av在线 | 九九爱精品视频在线观看| 亚洲精品乱码久久久v下载方式| 亚洲欧美日韩高清在线视频| 国产精品亚洲美女久久久| 在线a可以看的网站| 色哟哟哟哟哟哟| 亚洲欧美日韩无卡精品| 在线免费观看的www视频| 国产精品精品国产色婷婷| 久久亚洲真实| 无人区码免费观看不卡| 亚洲精品乱码久久久v下载方式| 亚洲最大成人手机在线| 人妻丰满熟妇av一区二区三区| 亚洲一区二区三区色噜噜| 国产一区二区在线av高清观看| 51国产日韩欧美| 亚洲精华国产精华液的使用体验 | 91久久精品电影网| 超碰av人人做人人爽久久| 国产v大片淫在线免费观看| 亚洲va日本ⅴa欧美va伊人久久| 一a级毛片在线观看| 性插视频无遮挡在线免费观看| 日本在线视频免费播放| 悠悠久久av| 国产精品爽爽va在线观看网站| xxxwww97欧美| av福利片在线观看| 国产av不卡久久| 三级毛片av免费| 亚洲,欧美,日韩| 亚洲成人中文字幕在线播放| www.www免费av| 亚洲在线观看片| 欧美+亚洲+日韩+国产| 国产精品自产拍在线观看55亚洲| 亚洲久久久久久中文字幕| 熟女电影av网| 亚洲18禁久久av| 欧美xxxx性猛交bbbb| 国产在线男女| 婷婷色综合大香蕉| 欧美色视频一区免费| 亚洲中文日韩欧美视频| 色噜噜av男人的天堂激情| 久久午夜福利片| 亚洲欧美日韩高清在线视频| 午夜福利18| 欧美成人性av电影在线观看| 国产成人a区在线观看| 日本免费一区二区三区高清不卡| 丝袜美腿在线中文| 亚洲在线观看片| 91久久精品电影网| 久久中文看片网| 国产精品自产拍在线观看55亚洲| av在线天堂中文字幕| 啪啪无遮挡十八禁网站| 日韩av在线大香蕉| 久9热在线精品视频| 老司机午夜福利在线观看视频| 久久久精品大字幕| 69av精品久久久久久| 丝袜美腿在线中文| 午夜激情福利司机影院| 午夜久久久久精精品| 欧美高清成人免费视频www| 在线观看免费视频日本深夜| 国产免费一级a男人的天堂| 欧美日韩综合久久久久久 | 国产一级毛片七仙女欲春2| eeuss影院久久| 在线观看美女被高潮喷水网站| 51国产日韩欧美| 免费人成在线观看视频色| 少妇高潮的动态图| 亚洲专区中文字幕在线| 深夜精品福利| 免费搜索国产男女视频| xxxwww97欧美| 九色国产91popny在线| 国产精品一区二区三区四区免费观看 | 婷婷色综合www| 成年av动漫网址| 人人妻人人爽人人添夜夜欢视频 | .国产精品久久| 亚洲国产欧美在线一区| 国产老妇伦熟女老妇高清| 国产黄色视频一区二区在线观看| 亚洲精品视频女| 制服丝袜香蕉在线| 久久精品国产自在天天线| 国产亚洲91精品色在线| 王馨瑶露胸无遮挡在线观看| 国产精品蜜桃在线观看| 精品少妇黑人巨大在线播放| 日产精品乱码卡一卡2卡三| 久久人人爽人人爽人人片va| 2021少妇久久久久久久久久久| 亚洲人成网站高清观看| 成人亚洲精品一区在线观看 | 高清av免费在线| 婷婷色综合www| 亚洲精品乱码久久久v下载方式| 人人妻人人爽人人添夜夜欢视频 | 亚洲精品乱久久久久久| 久久99热这里只频精品6学生| 精品99又大又爽又粗少妇毛片| 国产在线视频一区二区| 免费人妻精品一区二区三区视频| 丰满迷人的少妇在线观看| 亚洲成人一二三区av| 五月开心婷婷网| 视频区图区小说| 国语对白做爰xxxⅹ性视频网站| av黄色大香蕉| 国产精品一区二区性色av| 九色成人免费人妻av| 欧美xxxx性猛交bbbb| 日韩成人伦理影院| 亚洲熟女精品中文字幕| 日本爱情动作片www.在线观看| 欧美3d第一页| 国产白丝娇喘喷水9色精品| 日韩精品有码人妻一区| 一级毛片我不卡| 亚洲国产毛片av蜜桃av| 亚洲第一区二区三区不卡| 各种免费的搞黄视频| 国产老妇伦熟女老妇高清| 亚洲电影在线观看av| 菩萨蛮人人尽说江南好唐韦庄| 视频中文字幕在线观看| 一级av片app| 欧美日本视频| 2022亚洲国产成人精品| 免费av中文字幕在线| 熟女人妻精品中文字幕| 美女中出高潮动态图| 欧美xxⅹ黑人| 菩萨蛮人人尽说江南好唐韦庄| 国模一区二区三区四区视频| 亚洲图色成人| 国产白丝娇喘喷水9色精品| 日韩伦理黄色片| 在线观看国产h片| 久久精品夜色国产| 欧美97在线视频| 国产av精品麻豆| 爱豆传媒免费全集在线观看| 插阴视频在线观看视频| 精品人妻一区二区三区麻豆| 亚洲国产高清在线一区二区三| 色吧在线观看| 一区二区三区乱码不卡18| 国产色爽女视频免费观看| 人人妻人人看人人澡| 日韩一本色道免费dvd| 久久久精品94久久精品| 久久久久网色| 80岁老熟妇乱子伦牲交| 中文天堂在线官网| 亚洲国产欧美人成| 午夜激情福利司机影院| 国产伦理片在线播放av一区| 亚洲精品亚洲一区二区| 久久久久人妻精品一区果冻| 99热全是精品| 日日摸夜夜添夜夜添av毛片| 自拍偷自拍亚洲精品老妇| 啦啦啦中文免费视频观看日本| 日日啪夜夜爽| 三级国产精品欧美在线观看| 97在线视频观看| 久久人人爽人人片av| 国产精品一区二区三区四区免费观看| 五月玫瑰六月丁香| 蜜桃久久精品国产亚洲av| 亚洲精品亚洲一区二区| 国产亚洲精品久久久com| 日本黄色日本黄色录像| 天堂8中文在线网| 精品一品国产午夜福利视频| 成人国产av品久久久| 日本爱情动作片www.在线观看| av专区在线播放| 七月丁香在线播放| 国产爽快片一区二区三区| 免费高清在线观看视频在线观看| 国产人妻一区二区三区在| 久久女婷五月综合色啪小说| 国产综合精华液| 秋霞伦理黄片| 777米奇影视久久| 老熟女久久久| 少妇人妻 视频| 人妻系列 视频| 亚洲精品aⅴ在线观看| 丰满少妇做爰视频| 网址你懂的国产日韩在线| 美女xxoo啪啪120秒动态图| 黄色欧美视频在线观看| 十分钟在线观看高清视频www | 极品少妇高潮喷水抽搐| 男女下面进入的视频免费午夜| 亚洲精品第二区| 亚洲电影在线观看av| 国产成人免费无遮挡视频| 久久av网站| 多毛熟女@视频| 乱码一卡2卡4卡精品| 精品久久久久久久久亚洲| 在线免费观看不下载黄p国产| 全区人妻精品视频| 性色avwww在线观看| 免费大片黄手机在线观看| 国产精品精品国产色婷婷| 秋霞伦理黄片| 男女边吃奶边做爰视频| 美女中出高潮动态图| 亚洲av.av天堂| 女的被弄到高潮叫床怎么办| 深夜a级毛片| 欧美xxxx性猛交bbbb| 男女免费视频国产| 毛片女人毛片| 国产av精品麻豆| 亚洲aⅴ乱码一区二区在线播放| 在线播放无遮挡| 男女边吃奶边做爰视频| 久热这里只有精品99| 国产精品人妻久久久影院| 又爽又黄a免费视频| 亚洲成人中文字幕在线播放| 香蕉精品网在线| 国产精品福利在线免费观看| 久久精品久久久久久久性| 国内少妇人妻偷人精品xxx网站| 一本久久精品| 插逼视频在线观看| 能在线免费看毛片的网站| 国产伦在线观看视频一区| 亚洲精品国产色婷婷电影| 国产淫语在线视频| 国产精品三级大全| 日本欧美视频一区| 精品午夜福利在线看| 尤物成人国产欧美一区二区三区| 精品久久久久久电影网| av黄色大香蕉| 一本—道久久a久久精品蜜桃钙片| 直男gayav资源| 久久精品国产自在天天线| 国产精品久久久久久精品古装| 国产极品天堂在线| 国产精品一二三区在线看| 这个男人来自地球电影免费观看 | 国产老妇伦熟女老妇高清| 肉色欧美久久久久久久蜜桃| 国内精品宾馆在线| 在线看a的网站| 最近手机中文字幕大全| 国产精品久久久久久久电影| 国产精品熟女久久久久浪| 高清午夜精品一区二区三区| 我要看黄色一级片免费的| 一级毛片黄色毛片免费观看视频| 成人无遮挡网站| 看十八女毛片水多多多| 天天躁日日操中文字幕| 波野结衣二区三区在线| 亚洲aⅴ乱码一区二区在线播放| 亚洲最大成人中文| 午夜福利视频精品| 黑丝袜美女国产一区| 精品久久久久久久末码| 全区人妻精品视频| 亚洲精品日本国产第一区| 男女免费视频国产| 亚洲欧美一区二区三区国产| 免费高清在线观看视频在线观看| 国产无遮挡羞羞视频在线观看| 欧美精品一区二区免费开放| 亚洲av不卡在线观看| 亚洲真实伦在线观看| 国产精品国产三级国产专区5o| 亚洲精品自拍成人| 欧美老熟妇乱子伦牲交| 日韩成人av中文字幕在线观看| 久久久久久久久久成人| av国产精品久久久久影院| 黄色配什么色好看| 欧美xxxx黑人xx丫x性爽| 成人亚洲精品一区在线观看 | 99国产精品免费福利视频| 丰满迷人的少妇在线观看| 尾随美女入室| 国产av国产精品国产| 国产在线免费精品| 成人无遮挡网站| 九九在线视频观看精品| av不卡在线播放| 人妻夜夜爽99麻豆av| 久久久久精品性色| 久久精品人妻少妇| 欧美3d第一页| 国内揄拍国产精品人妻在线| 精品亚洲成国产av| 九色成人免费人妻av| 日韩一区二区视频免费看| 一级a做视频免费观看| 午夜视频国产福利| 激情 狠狠 欧美| 亚洲精品一二三| 我要看日韩黄色一级片| 欧美激情国产日韩精品一区| 美女xxoo啪啪120秒动态图| 欧美人与善性xxx| 综合色丁香网| 人人妻人人澡人人爽人人夜夜| 欧美xxxx黑人xx丫x性爽| 欧美区成人在线视频| 日本一二三区视频观看| 国产永久视频网站| 热re99久久精品国产66热6| 国产午夜精品久久久久久一区二区三区| 亚洲精品中文字幕在线视频 | 久久久国产一区二区| 久热这里只有精品99| 国产精品一区二区在线不卡| 在线精品无人区一区二区三 | 亚洲欧美精品自产自拍| 黄色视频在线播放观看不卡| av播播在线观看一区| 香蕉精品网在线| 亚洲美女视频黄频| 久久国产精品男人的天堂亚洲 | 五月开心婷婷网| 欧美xxxx黑人xx丫x性爽| 亚洲国产高清在线一区二区三| 国产精品嫩草影院av在线观看| 纵有疾风起免费观看全集完整版| 少妇人妻精品综合一区二区| 免费人妻精品一区二区三区视频| 中文字幕免费在线视频6| 少妇人妻 视频| 观看免费一级毛片| 欧美另类一区| 亚洲在久久综合| 亚洲欧美日韩卡通动漫| 国产精品久久久久久久电影| 国产黄色视频一区二区在线观看| 亚洲熟女精品中文字幕| 精品人妻一区二区三区麻豆| 国产男女内射视频| 国产精品99久久久久久久久| 18禁在线无遮挡免费观看视频| 久久人妻熟女aⅴ| av女优亚洲男人天堂| freevideosex欧美| 久久久久久久国产电影| 各种免费的搞黄视频| a级一级毛片免费在线观看| 搡老乐熟女国产| 欧美激情国产日韩精品一区| 国模一区二区三区四区视频| 成人毛片a级毛片在线播放| 麻豆精品久久久久久蜜桃| 日本午夜av视频| 伊人久久国产一区二区| 中文精品一卡2卡3卡4更新| 成人午夜精彩视频在线观看| 午夜免费鲁丝| 全区人妻精品视频| 少妇熟女欧美另类| 男女啪啪激烈高潮av片| 成年人午夜在线观看视频| 九九在线视频观看精品| 91精品一卡2卡3卡4卡| 少妇人妻一区二区三区视频| 干丝袜人妻中文字幕| 国产成人精品福利久久| av免费在线看不卡| 蜜桃久久精品国产亚洲av| 国产真实伦视频高清在线观看| 亚洲欧美一区二区三区国产| 永久网站在线| 婷婷色综合www| 久久久久久久久久人人人人人人| 亚洲成人一二三区av| 亚洲精品亚洲一区二区| 午夜老司机福利剧场| 久久av网站| 精品一区二区免费观看| 精品亚洲成国产av| 亚州av有码| 久久久久久久久久久丰满| 看非洲黑人一级黄片| 国产深夜福利视频在线观看| 少妇人妻一区二区三区视频| 亚洲va在线va天堂va国产| 三级经典国产精品| 欧美zozozo另类| 亚洲国产精品999| 国产高清国产精品国产三级 | 久久国产乱子免费精品| 建设人人有责人人尽责人人享有的 | 黄色日韩在线| 美女福利国产在线 | 亚洲av.av天堂| 高清在线视频一区二区三区| 日韩制服骚丝袜av| 亚洲不卡免费看| 亚洲国产av新网站| 成年av动漫网址| 一区二区av电影网| 丝瓜视频免费看黄片| 亚洲美女视频黄频| 免费黄网站久久成人精品| 免费播放大片免费观看视频在线观看| 如何舔出高潮| 免费播放大片免费观看视频在线观看| 国产欧美日韩一区二区三区在线 | 在线精品无人区一区二区三 | freevideosex欧美| 伊人久久国产一区二区| 狂野欧美激情性xxxx在线观看| 性高湖久久久久久久久免费观看| 五月天丁香电影| 精品人妻视频免费看| 高清在线视频一区二区三区| 日韩强制内射视频| 亚洲成人av在线免费| 亚洲欧美日韩另类电影网站 | 如何舔出高潮| 久久人人爽人人爽人人片va| 日韩,欧美,国产一区二区三区| 婷婷色综合www| 国产精品福利在线免费观看| 丝袜喷水一区| 观看美女的网站| 99视频精品全部免费 在线| 狂野欧美白嫩少妇大欣赏| 少妇被粗大猛烈的视频| 精品久久久噜噜| 亚洲精品久久午夜乱码| 成年美女黄网站色视频大全免费 | 日韩av免费高清视频| 成人漫画全彩无遮挡| 国产精品不卡视频一区二区| 校园人妻丝袜中文字幕| 国产成人freesex在线| 亚洲欧美日韩卡通动漫| 99精国产麻豆久久婷婷| 国产片特级美女逼逼视频| 亚洲精品日韩在线中文字幕| 色婷婷久久久亚洲欧美| 一个人看的www免费观看视频| 王馨瑶露胸无遮挡在线观看| 久久人妻熟女aⅴ| 亚洲国产精品成人久久小说| 亚洲精品乱码久久久久久按摩| 国产亚洲一区二区精品| 久久国产乱子免费精品| 纯流量卡能插随身wifi吗| 精品国产三级普通话版| 在线亚洲精品国产二区图片欧美 | 99热这里只有精品一区| 菩萨蛮人人尽说江南好唐韦庄| 国产亚洲av片在线观看秒播厂| 啦啦啦在线观看免费高清www| 中文字幕久久专区| 有码 亚洲区| 中文资源天堂在线| 黄色怎么调成土黄色| 三级经典国产精品| 亚洲精品国产av成人精品| 三级国产精品欧美在线观看| 最近的中文字幕免费完整| 亚洲欧美精品专区久久| 亚洲精品国产av蜜桃| 精品久久久久久电影网| 一个人免费看片子| 久久人人爽人人爽人人片va| 久久久欧美国产精品| 视频中文字幕在线观看| 看十八女毛片水多多多| 国产精品久久久久成人av| 纵有疾风起免费观看全集完整版| 99热全是精品| 少妇被粗大猛烈的视频| 又黄又爽又刺激的免费视频.| 夫妻午夜视频| 国产毛片在线视频| 日韩亚洲欧美综合| 精品国产三级普通话版| 91精品一卡2卡3卡4卡| 2021少妇久久久久久久久久久| 3wmmmm亚洲av在线观看| av视频免费观看在线观看| 亚洲va在线va天堂va国产| 久久国产乱子免费精品| 99久久精品一区二区三区| 久久99热这里只频精品6学生| 男的添女的下面高潮视频| 亚洲国产精品国产精品| 一级二级三级毛片免费看| 亚洲av日韩在线播放| 内地一区二区视频在线| 成人漫画全彩无遮挡| 国产精品一区二区性色av| 亚洲不卡免费看| 偷拍熟女少妇极品色| 纵有疾风起免费观看全集完整版| 直男gayav资源| 欧美日韩视频高清一区二区三区二| 午夜福利网站1000一区二区三区| 99久久人妻综合| 天堂8中文在线网| 22中文网久久字幕| 日日啪夜夜爽| 嫩草影院新地址| 亚洲精品视频女| 国产日韩欧美在线精品| av卡一久久| 欧美日韩在线观看h| 日韩欧美一区视频在线观看 | 亚洲av成人精品一区久久| 国产免费视频播放在线视频| 亚洲真实伦在线观看| 美女中出高潮动态图| 成人无遮挡网站| 婷婷色综合大香蕉| kizo精华| av女优亚洲男人天堂| 七月丁香在线播放| 九草在线视频观看|