• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    光還原催化劑Pt/TiO2富氫條件下CO優(yōu)先氧化反應(yīng)

    2012-12-05 02:26:56王彩紅劉國霞
    物理化學(xué)學(xué)報(bào) 2012年2期
    關(guān)鍵詞:富氫濱州優(yōu)先

    王 芳 王彩紅 劉國霞

    (濱州學(xué)院化學(xué)與化工系,山東濱州256603)

    光還原催化劑Pt/TiO2富氫條件下CO優(yōu)先氧化反應(yīng)

    王 芳*王彩紅 劉國霞

    (濱州學(xué)院化學(xué)與化工系,山東濱州256603)

    用光還原法來提高富氫條件下CO優(yōu)先氧化(PROX)催化活性和CO2選擇性,分別對有無氫氣時(shí)CO氧化反應(yīng)參數(shù)進(jìn)行了詳盡研究.X射線光電子能譜(XPS)表征結(jié)果顯示,在光還原催化劑表面產(chǎn)生了部分氧空穴,可為化學(xué)吸附H提供活性中心.針對光還原Pt/TiO2催化劑上CO優(yōu)先氧化反應(yīng)提出了一種可能的雙功能反應(yīng)機(jī)理.

    CO優(yōu)先氧化;Pt催化劑;光還原;浸漬

    1 Introduction

    Currently,the CO oxidation in the absence and presence of H2has attracted extensive attention because of its potential application in indoor or cabin air cleanup and in the purification of hydrogen streams used in proton exchange membrane (PEM)fuel cells.1,2Considerable efforts have been devoted to design the suitable catalysts for the competitive oxidation of CO in the presence of hydrogen.Supported noble metals,such as Au,3,4Pt,5-10Pd,11-13and Rh,14were found applicable for the PROX reaction.Platinum catalysts are by far the most extensively studied catalysts owing to their superior performance in photocatalytic and thermal CO oxidation.Nevertheless,the most commonly used Pt/TiO2catalysts prepared by impregnation method are unsuitable for the reaction of CO preferential oxidation since they require high operation temperature in the range of 150-200°C.In the meantime,significant H2consumption can be observed in the temperature range to work effectively.Furthermore,the impregnated Pt/TiO2catalyst used to be pretreated by oxidation or reduction under an appropriate temperature prior to the catalytic activity tests.15-18This gives an incentive for the development of a highly active and selective catalyst for CO preferential oxidation.

    By comparison,the photoreduction method exhibits many advantages,such as simple operation and environment-friendly etc.In this study,we mainly focus on the preparation of Pt/ TiO2catalysts by a photoreduction method.The optimum reaction parameters for CO oxidation in the presence and absence of H2have been investigated in detail.Based on the data of catalytic activity tests and the characterization of catalysts,a possible reaction mechanism for the PROX reaction over the photoreduced Pt/TiO2catalyst has been proposed.

    2 Experimental

    2.1 Catalyst preparation

    Degussa P25 TiO2powder(Degussa,70%-30%anatase) was used as a support.Before deposition,raw TiO2was pretreated at 773 K for 4 h in air to stabilize its surface area and the anatase crystal form.Platinum was directly photodeposited on TiO2in an aqueous solution of chloroplatinic acid(1 mmol· L-1)and methanol(0.1 mol·L-1)under UV illumination(250 W medium-pressure mercury lamp).The samples were dried in air at 120°C for 12 h and had no thermal treatment anymore. The theoretical mass loading amount was 1.5%(w).In order to compare with the photoreduced Pt/TiO2catalysts,the impregnated catalyst was reduced in H2stream at 300°C for 1 h prior to the catalytic activity tests.We denoted the Pt/TiO2catalysts photoreduced for 12,24,and 36 h as Pt/TiO2(PR12),Pt/TiO2(PR24)and Pt/TiO2(PR36),respectively.And the impregnated one was denoted as Pt/TiO2(IM).

    2.2 Characterization of catalysts

    X-ray diffraction(XRD)patterns of the samples were recorded on a Rigaku D/MAX-RB X-ray diffractometer with a Cu Kαtarget operated at 50 kV and 40 mA with a scanning speed of 0.5(°)·min-1and a scanning angle(2θ)range of 10°-90°. Chemical states of the Pt species on the catalyst surface were investigated by X-ray photoelectron spectroscopy(XPS)on a VG ESCALAB 210 Electron Spectrometer(Mg Kαradiation; hν=1253.6 eV).

    2.3 Activity measurement

    Catalytic test was carried out at atmospheric pressure in a fixed bed continuous flow quartz reactor(inside diameter is 8mm),consisting of a flow controller unit,a reactor unit,and an analysis unit.A schematic diagram of the experimental system is shown in Fig.1.Typically,the temperature increased from 80 to 300°C at a 5°C increment,and a sample was taken for analysis after stabilizing for 30 min at each investigated temperature.Then 0.1 g catalyst diluted with equal amount of quartz was used in each run.Prior to the experiment,the impregnated catalyst was reduced in situ at 300°C(heating rate: 10°C·min-1)for 3 h with a 50%(volume fraction)H2/N2mixture(flow rate:60 mL·min-1).The feed gas consisted of 2.5% CO and 20%O2in N2balance.In the process of PROX,a gas mixture containing 50%H2,1%CO,and 2%O2in N2was fed at the flow rate of 30 mL·min-1.The gas phase effluents were analyzed on-line chromatographs equipped with thermal conductivity detector(TCD).At the end of the catalytic tests,the catalyst was cooled under an N2stream and stored for characterizations.The catalytic activities were defined in terms of conversion of CO(η),conversion of O2,and selectivity to CO2(S),which were denoted as ηCO,ηO2and SCO2,respectively,and were calculated according to the following equations:

    3 Results and discussion

    3.1 XRD analysis

    Fig.1 Diagram of apparatus for the test of catalytic activity

    XRD patterns of various Pt/TiO2catalysts were shown in Fig.2.No obvious crystallite formation of the Pt species could be found in the XRD patterns of Pt/TiO2(PR12)and Pt/TiO2(PR24)catalysts,which indicated that the low metal content might lead to a high dispersion of Pt and,therefore,that the Pt particles were too small to be detected by XRD analysis.However,only a broader diffraction peak of Pt appeared at 39.68ofor Pt/TiO2(PR36)and Pt/TiO2(IM)catalysts,which could be attributed to Pt(111).10Therefore,the average crystallite sizes of Pt particles could be calculated by applying the Scherrer equation on the Pt(111)diffraction peaks.The calculated average crystallite sizes of Pt particles in Pt/TiO2(PR36)and Pt/ TiO2(IM)samples were 16 and 10 nm,respectively.According to previous report,10the concentrations of chlorine ions could be decreased by photoreduction,resulted in a highly dispersion of active component.These results suggested that the distribution of Pt species on the support surface could be improved by adjusting photoreducation time and the longer time will be detrimental to the enhancement of CO oxidation activity.

    Fig.2 XRD patterns of various catalysts(a)Pt/TiO2(PR12),(b)Pt/TiO2(PR24),(c)Pt/TiO2(PR36),(d)Pt/TiO2

    3.2 XPS analysis

    XPS analyses were carried out to determine the surface concentration and valence state of Pt in Pt/TiO2catalysts.The binding energies of Pt 4f and the derived atomic contents in the different catalysts were summarized in Fig.3 and Table 1.From Fig.3 we found that the line shape and the width of Pt(4f7/2,4f5/2) over the impregnated catalyst matched well with that of the metallic Pt.By comparison,the Pt 4f features obtained from the photoreduced catalysts were quite broad,both zerovalence and cationic Pt could be found.According to previous reports,19,20the Pt 4f bands at 70.9 eV could be related to metallic Pt,while those at 73.2 eV could be assigned to Pt2+,respectively.Therefore,the relative atomic ratios of[Pt]/[Pt2+]decreased with the increase of photoreduction time.These results indicated that the valence state of Pt particles on the catalysts surface could be changed by adjusting photoreduction time.In addition,the atomic content on the support surface in the impregnated catalyst was much higher than those in the photoreduced catalysts, indicating that just partial Pt species could be deposited by photoreduction.

    Fig.3 XPS spectra of Pt in various catalysts(A)Pt/TiO2(PR12),(B)Pt/TiO2(PR24),(C)Pt/TiO2(PR36),(D)Pt/TiO2(IM)

    Table 1 XPS data of the catalysts Pt/TiO2(PR12),Pt/TiO2(PR24), Pt/TiO2(PR36),and Pt/TiO2(IM)

    The XPS spectra of TiO2were also detected in order to investigate the strong metal-support interaction(SMSI)for precious metal on reducible support.It is widely accepted that such effects may be crucial in many aspects of heterogeneous catalysis.The binding energies of TiO22p in various Pt/TiO2catalysts were shown in Fig.4.From Fig.4(a)we can find that the line shape and the width of TiO2(2p3/2,2p1/2)over the impregnated catalyst matched well with those of the Ti4+,which indicated that TiO2could not be reduced by H2pretreatment.This result also suggested that there was a weak interaction between active center Pt and reducible support TiO2.However,the binding energies of TiO2in photoreducted Pt/TiO2catalysts moved towards higher binding energy,maybe due to the production of part of Ti3+.According to previous report,21the stoichiometric surface exists,in principle,as an oxygen vacancy and two Ti3+.

    3.3 Activity tests

    CO oxidation in the absence of hydrogen was carried out in a temperature region of 100-260°C with a CO/O2molar ratio of 0.125.For comparison,CO conversions over different catalysts versus reaction temperature were summarized in Fig.5.It can be found that the catalytic activities for CO oxidation are very sensitive to preparation method.Performance of the impregnated catalyst is superior to those of photoreduced ones, which maybe due to the partial deposition of the Pt species resulted from photoreduction.Although both the nature of the active Pt phase and the elucidation of the mechanism for CO oxidation are still debated,herein,we consider that the Pt oxides are major active sites.Comparing the photoreduced catalysts, we found that their catalytic performance could be significantly promoted by adjusting the photoredution time.An optimum photoreduction time was 24 h and the longer time will be detrimental to the enhancement of CO oxidation activity.From Table 1 it can be found that the concentration of chlorine ions can be decreased from 1.5 to 0.4 when we increased photoreduction time from 12 to 36 h.Whereas the excessive photoreduction can result in the aggregation of the Pt species as shown in XRD results above.This result is consistent with previous report.22Therefore,the Pt/TiO2(PR24)catalyst exhibited the best activity for CO oxidation.

    Fig.4 XPS spectra of TiO2for various catalysts(a)Pt/TiO2(IM),(b)Pt/TiO2(PR12),(c)Pt/TiO2(PR24),(d)Pt/TiO2(PR36)

    Fig.6 Activity comparison of the CO selective oxidation between Pt/TiO2(PR24)(1)and Pt/TiO2(IM)(2)catalysts

    Fig.5 CO conversion vs reaction temperature over various catalysts(a)Pt/TiO2(IM),(b)Pt/TiO2(PR12),(c)Pt/TiO2(PR24),(d)Pt/TiO2(PR36)

    Furthermore,in order to investigate the effects of H2,a comparison of the catalytic activities for CO preferential oxidation in the presence of H2between Pt/TiO2(IM)and Pt/TiO2(PR24) was made.The maximum CO conversions,the corresponding O2conversions and selectivities of CO2were shown in Fig.6. Our results showed that the maximum CO conversion of 61.4%on Pt/TiO2(PR24)was achieved at 180°C,the corresponding O2conversion and selectivity of CO2were 40.0%and 43.0%,respectively.However,the maximum CO conversion of 33.7%over the Pt/TiO2(IM)catalyst could not be obtained until the reaction temperature increased to 240°C.Furthermore,the higher O2conversion of 91.4%resulted in a lower selectivity of CO2of 11.2%.

    It has been reported that the electron transfer occurs between oxide support and Au nanoparticles or adsorbates,and influences the CO thermocatalytic oxidation.23-25So,it can be proposed that the presence of H2may also play a similar effect on the CO oxidation via electron transfer.These results indicate that the dissociative chemisorption H at surface oxygen vacancy sites of TiO2deduced by photoreduction can act as both the electron-acceptors for the photogeneration electrons and the electron-donors for the chemisorbed O2at TiO2.26We consider that a bi-function reaction mechanism maybe involved in CO preferential oxidation over the photoreduced Pt/TiO2catalysts, where CO adsorbs on the Pt species and H2adsorbs at surface oxygen vacancy sites of TiO2.Therefore,the bi-function reaction mechanism weakens the competitive adsorption between CO and active oxygen on the Pt species,and subsequently enhances the activity for CO preferential oxidation in the presence of H2.

    4 Conclusions

    In summary,the photoreduction is an effective method to enhance the catalytic activity and selectivity of CO2for the reaction of PROX in H2-rich stream.In photoreduction process,the dissociative chemisorption H at surface oxygen vacancy sites of TiO2can act as the electron-donors for the chemisorbed O2at TiO2,resulted in a bi-function reaction mechanism for CO preferential oxidation in H2-rich stream.In addition,a further research is in progress owing to the numerous influence factors on the photoreduction,such as the irradiate intensity,the pH value,and concentration of solution,etc.

    (1)Du,W.P.;Li,Z.;Leng,W.H.;Xu,Y.M.Acta Phys.-Chim.Sin. 2009,25,1530.[杜衛(wèi)平,李 臻,冷文華,許宜銘.物理化學(xué)學(xué)報(bào),2009,25,1530.]

    (2) Liu,D.;Xu,Y.M.Acta Phys.-Chim.Sin.2008,24,1584. [劉 鼎,許宜銘.物理化學(xué)學(xué)報(bào),2008,24,1584.]

    (3)Wang,F.;Lu,G.X.Catal.Lett.2007,115,46

    (4)Wang,F.;Lu,G.X.Catal.Lett.2010,134,72.

    (5) Oh,S.H.;Sinkevitch,R.M.J.Catal.1993,142,254.

    (6) Kahlich,M.J.;Gasteiger,H.A.;Behm,R.J.J.Catal.1997, 171,93.

    (7) Zkara,S.?.;Aksoylu,A.E.Appl.Catal.A-Gen.2003,251,75.

    (8) Geng,D.S.;Chen,L.;Lu,G.X.J.Mol.Catal.A 2007,265,42.

    (9)Tang,Z.C.;Geng,D.S.;Lu,G.X.Thin Solid Films 2006,497, 309.

    (10) Wang,F.;Lu,G.X.J.Power Sources 2008,181,120.

    (11) Wang,F.;Lu,G.X.Int.J.Hydrog.Energy 2010,35,7253.

    (12)Wang,F.;Lu,G.X.J.Phys.Chem.C 2009,113,4161

    (13)Wang,F.;Lu,G.X.J.Phys.Chem.C 2009,113,17070.

    (14) Wang,F.;Lu,G.X.Chin.J.Catal.2007,28,27.[王 芳,呂功煊.催化學(xué)報(bào),2007,28,27.]

    (15) Zhang,M.;Jin,Z.S.;Zhang,Z.J.;Dang,H.X.Appl.Surf.Sci. 2005,250,29.

    (16) Zhang,M.;Jin,Z.S.;Zhang,Z.J.;Dang,H.X.J.Mol.Catal. A-Chem.2005,225,59.

    (17) Zhang,M.;Feng,C.X.;Jin,Z.S.;Chen,G.;Du,Z.L.Chin.J. Catal.2005,26,508.[張 敏,馮彩霞,金振聲,程 剛,杜祖亮.催化學(xué)報(bào),2005,26,508.]

    (18) Nishiyama,N.;Ichioka,K.;Park,D.H.;Egashira,Y.;Ueyama, K.;Gora,L.;Zhu,W.D.;Kapteijn,F.;Moulijn,J.Ind.Eng. Chem.Res.2004,43,1211.

    (19)Kim,K.S.;Winorgrad,N.;Davis,R.E.J.Am.Chem.Soc. 1971,93,6296.

    (20) Bornsten,L.In Zahlenwerte und Funktionen aus Naturwissenschaft und Technik;Springer:Berlin,1982.

    (21) Robert,G.;Peter,M.;Michael,B.Catal.Lett.2004,98,129.

    (22)Yang,J.C.;Kim,Y.C.;Shul,Y.G.;Shin,C.H.;Lee,T.K.Appl. Surf.Sci.1997,121,525.

    (23) Lopez,N.;Janssens,T.V.W.;Clausen,B.S.;Xu,Y.; Mavrikakis,M.;Bligaard,T.;N?skov,J.K.J.Catal.2004,223, 232.

    (24) Giordano,L.;Goniakowski,J.;Pacchioni,G.Phys.Rev.B 2001, 64,075417.

    (25) Molina,L.M.;Hammer,B.Phys.Rev.Lett.2003,90,206102.

    (26) Dai,W.X.;Chen,X.;Wang,X.X.;Liu,P.;Li,D.Z.;Li,G.S.; Fu,X.Z.Phys.Chem.Chem.Phys.2008,10,3256.

    August 11,2011;Revised:November 2,2011;Published on Web:November 24,2011.

    Preferential Oxidation of CO over Photoreduced Pt/TiO2Catalysts in H2-Rich Stream

    WANG Fang*WANG Cai-Hong LIU Guo-Xia
    (Department of Chemistry&Chemical Engineering,BinzhouUniversity,Binzhou 256603,Shandong Province,P.R.China)

    The optimum reaction parameters for CO oxidation in the presence and absence of H2have been investigated by photoreduction method to enhance the catalytic activity and selectivity of CO2for CO preferential oxidation(PROX)in H2-rich stream in detail.X-ray photoelectron spectroscoopy(XPS)results showed that part oxygen vacancies produced on the surface of photoreduced catalysts,which maybe the activity site for the chemisorbed H.Therefore,a possible bi-function reaction mechanism for CO preferential oxidation over the photoreduced Pt/TiO2catalyst has been proposed.

    CO preferential oxidation;Pt catalyst;Photoreduction;Impregnation

    10.3866/PKU.WHXB201111244www.whxb.pku.edu.cn

    *Corresponding author.Email:wangfangosso@yahoo.cn;Tel:+86-18763029669.

    The project was supported by the Research Fund of Binzhou University,China(2010Y06).

    濱州學(xué)院科研基金(2010Y06)資助項(xiàng)目

    O643

    猜你喜歡
    富氫濱州優(yōu)先
    燒結(jié)工序降低固體燃耗節(jié)能減碳的措施
    生物質(zhì)化學(xué)工程(2023年5期)2023-10-09 09:41:22
    山東濱州沃華生物工程有限公司
    飛閱濱州
    金橋(2020年11期)2020-12-14 07:52:50
    40年,教育優(yōu)先
    商周刊(2018年25期)2019-01-08 03:31:08
    多端傳播,何者優(yōu)先?
    傳媒評論(2018年5期)2018-07-09 06:05:26
    站在“健康優(yōu)先”的風(fēng)口上
    生物質(zhì)化學(xué)工程(2016年2期)2016-06-23 08:35:17
    因戶制宜 一戶一策 濱州結(jié)對幫扶注重“造血”
    濱州淺海海域浮游植物豐度及其多樣性
    久久av网站| 伊人亚洲综合成人网| 黄片无遮挡物在线观看| 日本vs欧美在线观看视频| 欧美日韩视频高清一区二区三区二| videossex国产| 国产成人aa在线观看| 国产在线一区二区三区精| 免费看光身美女| 国产精品偷伦视频观看了| 五月玫瑰六月丁香| 国产成人a∨麻豆精品| 一级黄片播放器| 欧美97在线视频| 五月开心婷婷网| 亚洲色图 男人天堂 中文字幕 | 我要看黄色一级片免费的| 久久久久久久精品精品| 亚洲一级一片aⅴ在线观看| 99香蕉大伊视频| 免费高清在线观看视频在线观看| 欧美精品av麻豆av| 国产乱来视频区| 成人综合一区亚洲| 天天操日日干夜夜撸| 七月丁香在线播放| av不卡在线播放| 精品亚洲乱码少妇综合久久| 人体艺术视频欧美日本| 国产精品国产三级国产av玫瑰| 精品少妇内射三级| 亚洲少妇的诱惑av| 中文字幕另类日韩欧美亚洲嫩草| 色吧在线观看| 国产精品熟女久久久久浪| videos熟女内射| 久久女婷五月综合色啪小说| 色吧在线观看| 欧美精品亚洲一区二区| av黄色大香蕉| 99国产精品免费福利视频| 80岁老熟妇乱子伦牲交| 亚洲中文av在线| 在线天堂最新版资源| 免费人妻精品一区二区三区视频| 精品一区二区免费观看| 国产亚洲午夜精品一区二区久久| 91精品国产国语对白视频| 久久午夜福利片| 国产精品国产三级国产专区5o| 免费人成在线观看视频色| 亚洲中文av在线| 汤姆久久久久久久影院中文字幕| av免费观看日本| 国产精品免费大片| 国产片内射在线| 久久久精品94久久精品| 免费大片18禁| 亚洲高清免费不卡视频| 久久久久网色| 久久精品久久久久久久性| 欧美日韩亚洲高清精品| a级毛片黄视频| 成人影院久久| 欧美性感艳星| 毛片一级片免费看久久久久| 亚洲欧美清纯卡通| 秋霞在线观看毛片| 少妇精品久久久久久久| 亚洲欧美一区二区三区黑人 | 18在线观看网站| 伊人亚洲综合成人网| a级毛片在线看网站| 亚洲一区二区三区欧美精品| 婷婷色麻豆天堂久久| 看非洲黑人一级黄片| 亚洲一级一片aⅴ在线观看| 男女高潮啪啪啪动态图| 97人妻天天添夜夜摸| 日韩欧美一区视频在线观看| 两性夫妻黄色片 | videos熟女内射| 日韩电影二区| 国产精品麻豆人妻色哟哟久久| 国产高清三级在线| 精品一区二区三卡| 亚洲国产精品999| 成人免费观看视频高清| 美女大奶头黄色视频| 欧美精品国产亚洲| 亚洲国产色片| 色5月婷婷丁香| 婷婷色综合大香蕉| 成人无遮挡网站| 一级爰片在线观看| 日本黄大片高清| 多毛熟女@视频| 国产乱来视频区| 精品少妇黑人巨大在线播放| 日本wwww免费看| 高清不卡的av网站| 婷婷色综合www| av国产久精品久网站免费入址| 国产精品久久久久成人av| 国产片特级美女逼逼视频| 久久久久国产精品人妻一区二区| 亚洲国产欧美日韩在线播放| 超碰97精品在线观看| tube8黄色片| 久久久久国产网址| 欧美bdsm另类| 中文字幕精品免费在线观看视频 | 亚洲欧洲日产国产| 欧美丝袜亚洲另类| 成人亚洲欧美一区二区av| 亚洲一级一片aⅴ在线观看| 久久久久网色| 亚洲在久久综合| 久久久精品免费免费高清| 国产精品 国内视频| 丰满迷人的少妇在线观看| 蜜桃国产av成人99| 香蕉丝袜av| 啦啦啦在线观看免费高清www| 黄色视频在线播放观看不卡| 亚洲久久久国产精品| 最黄视频免费看| 欧美日韩国产mv在线观看视频| 免费黄频网站在线观看国产| 久久久亚洲精品成人影院| 久久人人爽av亚洲精品天堂| 丝瓜视频免费看黄片| 成年美女黄网站色视频大全免费| 久久99蜜桃精品久久| 有码 亚洲区| 久久韩国三级中文字幕| 侵犯人妻中文字幕一二三四区| 高清毛片免费看| 国产淫语在线视频| 欧美人与善性xxx| 久久久久久久久久人人人人人人| 久久免费观看电影| 中文字幕人妻熟女乱码| 色视频在线一区二区三区| 久久久久久久国产电影| 中文天堂在线官网| 亚洲精品av麻豆狂野| 韩国av在线不卡| 十八禁高潮呻吟视频| 赤兔流量卡办理| 天堂中文最新版在线下载| 国产黄频视频在线观看| 国产麻豆69| 综合色丁香网| 热99国产精品久久久久久7| 亚洲精品成人av观看孕妇| 91成人精品电影| 日韩,欧美,国产一区二区三区| 精品福利永久在线观看| 9色porny在线观看| 免费黄频网站在线观看国产| 国产精品无大码| 国产1区2区3区精品| 乱码一卡2卡4卡精品| 交换朋友夫妻互换小说| 在线观看免费高清a一片| 午夜福利视频在线观看免费| 久久99蜜桃精品久久| 亚洲精品av麻豆狂野| 亚洲欧美色中文字幕在线| 日韩av在线免费看完整版不卡| 国产成人av激情在线播放| 亚洲少妇的诱惑av| 如日韩欧美国产精品一区二区三区| 嫩草影院入口| kizo精华| 18禁裸乳无遮挡动漫免费视频| 亚洲五月色婷婷综合| 欧美日本中文国产一区发布| 2018国产大陆天天弄谢| 亚洲国产精品国产精品| 亚洲美女黄色视频免费看| 性色avwww在线观看| 日韩一区二区视频免费看| 国产一区二区三区av在线| 国产免费一区二区三区四区乱码| 国产成人一区二区在线| 亚洲av福利一区| 蜜桃国产av成人99| 国产永久视频网站| 最近手机中文字幕大全| 国产探花极品一区二区| 国产男女内射视频| 十八禁高潮呻吟视频| 午夜日本视频在线| 欧美日韩国产mv在线观看视频| 人妻 亚洲 视频| 99香蕉大伊视频| 久久久久网色| 波野结衣二区三区在线| 亚洲情色 制服丝袜| 十八禁高潮呻吟视频| 亚洲av中文av极速乱| 美女内射精品一级片tv| 国产成人一区二区在线| 国产亚洲午夜精品一区二区久久| 国产亚洲av片在线观看秒播厂| 亚洲av国产av综合av卡| 日韩欧美精品免费久久| 日韩,欧美,国产一区二区三区| 中文精品一卡2卡3卡4更新| 婷婷色av中文字幕| 精品福利永久在线观看| 午夜福利影视在线免费观看| 在线天堂中文资源库| 精品午夜福利在线看| 妹子高潮喷水视频| 精品福利永久在线观看| 亚洲综合精品二区| 亚洲精品美女久久av网站| 日韩中字成人| 青青草视频在线视频观看| 侵犯人妻中文字幕一二三四区| 80岁老熟妇乱子伦牲交| 久久久亚洲精品成人影院| 一区二区av电影网| 91在线精品国自产拍蜜月| 欧美成人午夜精品| 18+在线观看网站| 精品福利永久在线观看| 日日爽夜夜爽网站| 18禁国产床啪视频网站| 午夜激情久久久久久久| videos熟女内射| 亚洲美女黄色视频免费看| 亚洲四区av| 欧美+日韩+精品| 久久久久视频综合| 熟妇人妻不卡中文字幕| av播播在线观看一区| 亚洲欧美清纯卡通| 欧美最新免费一区二区三区| 黄色怎么调成土黄色| 巨乳人妻的诱惑在线观看| 久久精品国产自在天天线| 国产成人aa在线观看| 亚洲成人av在线免费| 亚洲av电影在线观看一区二区三区| 免费黄频网站在线观看国产| 成人国产麻豆网| 51国产日韩欧美| 免费高清在线观看日韩| 啦啦啦中文免费视频观看日本| 久热这里只有精品99| 国产精品秋霞免费鲁丝片| 99热这里只有是精品在线观看| 日本免费在线观看一区| 啦啦啦视频在线资源免费观看| h视频一区二区三区| 极品人妻少妇av视频| 人妻系列 视频| 狠狠婷婷综合久久久久久88av| 天美传媒精品一区二区| 亚洲精华国产精华液的使用体验| √禁漫天堂资源中文www| 亚洲av在线观看美女高潮| 欧美精品人与动牲交sv欧美| 下体分泌物呈黄色| 中文欧美无线码| 插逼视频在线观看| 26uuu在线亚洲综合色| 精品久久国产蜜桃| a级毛片黄视频| 久久精品aⅴ一区二区三区四区 | 久久人人爽人人爽人人片va| av卡一久久| 日韩制服丝袜自拍偷拍| 熟女av电影| 婷婷色综合大香蕉| 韩国av在线不卡| 熟女电影av网| 丰满迷人的少妇在线观看| 免费黄频网站在线观看国产| 欧美bdsm另类| 黄网站色视频无遮挡免费观看| 亚洲成人av在线免费| 欧美精品av麻豆av| 亚洲少妇的诱惑av| 全区人妻精品视频| 精品视频人人做人人爽| 午夜免费男女啪啪视频观看| 精品国产一区二区三区久久久樱花| 国产国语露脸激情在线看| 精品第一国产精品| 99九九在线精品视频| 日韩制服丝袜自拍偷拍| 欧美精品一区二区大全| 午夜老司机福利剧场| 色5月婷婷丁香| 亚洲国产欧美在线一区| 在线亚洲精品国产二区图片欧美| 亚洲一区二区三区欧美精品| a 毛片基地| 亚洲经典国产精华液单| 免费观看性生交大片5| 日韩视频在线欧美| 日韩大片免费观看网站| 韩国精品一区二区三区 | 国产1区2区3区精品| 亚洲人成网站在线观看播放| 精品午夜福利在线看| 天天躁夜夜躁狠狠躁躁| 成人手机av| 婷婷色综合www| 午夜福利,免费看| 2018国产大陆天天弄谢| 国产精品麻豆人妻色哟哟久久| 中文字幕人妻熟女乱码| 激情视频va一区二区三区| 狠狠婷婷综合久久久久久88av| 美女福利国产在线| 看免费成人av毛片| 精品第一国产精品| 18+在线观看网站| 精品午夜福利在线看| 亚洲精品456在线播放app| 欧美精品一区二区大全| 免费日韩欧美在线观看| 中文字幕另类日韩欧美亚洲嫩草| 亚洲婷婷狠狠爱综合网| 国产成人精品福利久久| 久久久久人妻精品一区果冻| 美女中出高潮动态图| 一区二区av电影网| 久久久久久人人人人人| av福利片在线| 久久人人97超碰香蕉20202| 亚洲熟女精品中文字幕| 中文字幕制服av| 如日韩欧美国产精品一区二区三区| 麻豆精品久久久久久蜜桃| 精品人妻偷拍中文字幕| 少妇熟女欧美另类| 黄片无遮挡物在线观看| 黄色 视频免费看| 一区二区三区精品91| 51国产日韩欧美| 一级片免费观看大全| 女性被躁到高潮视频| av.在线天堂| 高清欧美精品videossex| 国产有黄有色有爽视频| 国产精品熟女久久久久浪| 日本-黄色视频高清免费观看| 咕卡用的链子| 亚洲第一区二区三区不卡| 一本大道久久a久久精品| 在线天堂最新版资源| 性色avwww在线观看| 欧美日韩综合久久久久久| 国产免费一区二区三区四区乱码| 在线天堂最新版资源| 最近手机中文字幕大全| 国产福利在线免费观看视频| 曰老女人黄片| 男女边摸边吃奶| 欧美精品亚洲一区二区| 日产精品乱码卡一卡2卡三| 人妻少妇偷人精品九色| 最新的欧美精品一区二区| 亚洲人与动物交配视频| 在线观看免费日韩欧美大片| 激情视频va一区二区三区| 男的添女的下面高潮视频| 黄色视频在线播放观看不卡| 伊人亚洲综合成人网| 国内精品宾馆在线| 午夜福利网站1000一区二区三区| 97精品久久久久久久久久精品| 天天操日日干夜夜撸| 国产片特级美女逼逼视频| 精品福利永久在线观看| 99热全是精品| av播播在线观看一区| 欧美丝袜亚洲另类| 免费在线观看黄色视频的| 久久人人97超碰香蕉20202| 精品国产一区二区久久| av在线老鸭窝| 夫妻午夜视频| a级片在线免费高清观看视频| 两个人看的免费小视频| www.av在线官网国产| 在线观看免费高清a一片| 久久毛片免费看一区二区三区| 精品一区二区三区四区五区乱码 | 91国产中文字幕| 婷婷成人精品国产| 最新中文字幕久久久久| 国产在线一区二区三区精| 国产成人免费观看mmmm| 少妇精品久久久久久久| 国产精品三级大全| 伦精品一区二区三区| 亚洲色图综合在线观看| 99精国产麻豆久久婷婷| 女性被躁到高潮视频| 22中文网久久字幕| 人妻系列 视频| 欧美日韩视频精品一区| 乱人伦中国视频| av免费在线看不卡| 亚洲精品久久成人aⅴ小说| 精品久久国产蜜桃| 高清视频免费观看一区二区| 久久97久久精品| 免费av不卡在线播放| 欧美日韩国产mv在线观看视频| 狠狠婷婷综合久久久久久88av| www日本在线高清视频| 久久免费观看电影| 婷婷成人精品国产| 少妇人妻久久综合中文| 天天影视国产精品| av天堂久久9| 亚洲精华国产精华液的使用体验| 亚洲色图综合在线观看| 国产精品久久久久久久电影| 亚洲国产精品成人久久小说| 街头女战士在线观看网站| 美女视频免费永久观看网站| 国产精品秋霞免费鲁丝片| tube8黄色片| 日本猛色少妇xxxxx猛交久久| 少妇被粗大的猛进出69影院 | 国产淫语在线视频| 亚洲情色 制服丝袜| 国产成人精品福利久久| 欧美人与性动交α欧美软件 | 中文字幕制服av| 美女国产视频在线观看| 少妇猛男粗大的猛烈进出视频| 我要看黄色一级片免费的| 亚洲国产色片| 精品国产一区二区三区久久久樱花| 国产成人a∨麻豆精品| 九草在线视频观看| 青春草亚洲视频在线观看| 国产色婷婷99| 国产男人的电影天堂91| 91成人精品电影| 少妇人妻久久综合中文| av在线app专区| 亚洲欧洲国产日韩| 国产爽快片一区二区三区| 欧美日韩精品成人综合77777| 久久精品夜色国产| 狠狠婷婷综合久久久久久88av| 久久ye,这里只有精品| 午夜福利视频在线观看免费| 黑人猛操日本美女一级片| 亚洲,欧美,日韩| 久久国产亚洲av麻豆专区| 中文字幕人妻丝袜制服| 麻豆乱淫一区二区| 日本wwww免费看| 日韩视频在线欧美| 国产综合精华液| 国产精品一区二区在线观看99| 中文字幕精品免费在线观看视频 | 色婷婷久久久亚洲欧美| 街头女战士在线观看网站| 黑人巨大精品欧美一区二区蜜桃 | 91精品三级在线观看| 精品国产国语对白av| 欧美精品一区二区大全| 在线观看www视频免费| 精品一区二区三区四区五区乱码 | 色吧在线观看| 国产不卡av网站在线观看| 99热全是精品| 18在线观看网站| 午夜精品国产一区二区电影| 中文精品一卡2卡3卡4更新| 熟女av电影| 一二三四中文在线观看免费高清| 国产精品久久久久久久电影| 人妻系列 视频| 搡女人真爽免费视频火全软件| 欧美精品高潮呻吟av久久| 久久久久人妻精品一区果冻| 日韩熟女老妇一区二区性免费视频| 免费日韩欧美在线观看| 如日韩欧美国产精品一区二区三区| 97在线人人人人妻| 多毛熟女@视频| www.av在线官网国产| 最近手机中文字幕大全| 欧美亚洲 丝袜 人妻 在线| 亚洲精品国产av蜜桃| 少妇的丰满在线观看| 久久亚洲国产成人精品v| 亚洲色图综合在线观看| 久久99一区二区三区| 黄网站色视频无遮挡免费观看| 精品久久久久久电影网| 午夜免费男女啪啪视频观看| 亚洲高清免费不卡视频| 亚洲精品乱码久久久久久按摩| 国产爽快片一区二区三区| 精品久久蜜臀av无| 91精品三级在线观看| 人人澡人人妻人| 精品人妻在线不人妻| 一边亲一边摸免费视频| 精品亚洲成国产av| av片东京热男人的天堂| 99热这里只有是精品在线观看| 91午夜精品亚洲一区二区三区| 日韩 亚洲 欧美在线| 亚洲一区二区三区欧美精品| 国产精品99久久99久久久不卡 | 久久精品国产综合久久久 | 黄色毛片三级朝国网站| 色5月婷婷丁香| 精品少妇久久久久久888优播| 欧美激情 高清一区二区三区| 国产片内射在线| 国产xxxxx性猛交| 各种免费的搞黄视频| 日韩视频在线欧美| 国产国拍精品亚洲av在线观看| 久久久久精品人妻al黑| 女性被躁到高潮视频| 免费观看a级毛片全部| 男女午夜视频在线观看 | 女性生殖器流出的白浆| 在线 av 中文字幕| 久久精品国产自在天天线| 免费人成在线观看视频色| 日日摸夜夜添夜夜爱| 最近最新中文字幕大全免费视频 | 最新中文字幕久久久久| 久久久精品免费免费高清| 热re99久久国产66热| 国产福利在线免费观看视频| 午夜精品国产一区二区电影| 色哟哟·www| 少妇高潮的动态图| a 毛片基地| 搡女人真爽免费视频火全软件| av视频免费观看在线观看| 18禁在线无遮挡免费观看视频| 天天操日日干夜夜撸| 熟妇人妻不卡中文字幕| 亚洲精品国产色婷婷电影| 美女脱内裤让男人舔精品视频| 久久人人爽人人片av| 色吧在线观看| 久久精品国产亚洲av涩爱| 久久久久网色| 精品国产一区二区久久| 欧美变态另类bdsm刘玥| 久久 成人 亚洲| 欧美精品人与动牲交sv欧美| 国产深夜福利视频在线观看| 久久久精品94久久精品| 99国产综合亚洲精品| 另类精品久久| 少妇的逼好多水| 久久精品人人爽人人爽视色| 久久精品夜色国产| www.色视频.com| 国产成人一区二区在线| 大香蕉97超碰在线| av免费观看日本| 精品人妻在线不人妻| 男男h啪啪无遮挡| 男的添女的下面高潮视频| 乱人伦中国视频| 9色porny在线观看| 午夜福利网站1000一区二区三区| 日韩制服丝袜自拍偷拍| 久久影院123| 最近最新中文字幕大全免费视频 | 成人国语在线视频| 亚洲国产日韩一区二区| 97精品久久久久久久久久精品| 色吧在线观看| 国产欧美亚洲国产| 99热6这里只有精品| 少妇的丰满在线观看| 欧美激情极品国产一区二区三区 | 99热国产这里只有精品6| 国产又色又爽无遮挡免| 2021少妇久久久久久久久久久| 免费在线观看黄色视频的| 国产不卡av网站在线观看| 国产精品久久久久成人av| 国产欧美日韩综合在线一区二区| 97超碰精品成人国产| 在现免费观看毛片| 国产麻豆69| 欧美激情国产日韩精品一区| 97人妻天天添夜夜摸| 十分钟在线观看高清视频www| 欧美日本中文国产一区发布| 少妇人妻精品综合一区二区| 久久久久视频综合| 久久久久久久久久久免费av| 麻豆乱淫一区二区| 久久久国产一区二区| 亚洲av电影在线进入| 国产亚洲一区二区精品| 有码 亚洲区|