孫長軍
(連云港職業(yè)技術(shù)學院數(shù)學教研室, 江蘇 連云港 222006)
1981年,前蘇聯(lián)數(shù)學家Mironenko,在研究微分系統(tǒng)
(1)
(X(t+2ω,x)=X(t,x),其中ω>0)的周期解與穩(wěn)定性時,就首次引入了反射函數(shù)F(t,x)=φ(-t;t,x)[1],并在1986年出版了世界上第一部反射函數(shù)理論專著,其思想是在通解未知的情況下,通過研究微分系統(tǒng)的反射函數(shù),尋找其Poincaré 映射T(x)=F(-ω,x)=φ(ω;-ω,x),從而解決它的周期解及穩(wěn)定性[2].后來,Musafirov, Alisevich, Veresovich和周正新等又繼續(xù)努力并研究出了新的成果[3-8].
筆者已將反射函數(shù)推廣為廣義反射函數(shù)[9]
F(t,x)=φ(α(t);t,x)
(2)
其中α(t)連續(xù)可微并滿足α(α(t))=t,α(0)=0,把反射函數(shù)的研究成果進行拓展,為的是更好地研究微分系統(tǒng)(1)解的存在性和穩(wěn)定性,并且已取得了一些成果[9-13].筆者用廣義反射函數(shù)理論研究其周期解及穩(wěn)定性,為了敘述方便,回顧一下已有的相關(guān)概念和結(jié)論.
(3)
其中P(t)是n×n連續(xù)可微,該微分系統(tǒng)的矩陣函數(shù)的廣義反射函數(shù)為
F(t,x)=φ(α(t);t,x)=X(α(t))X-1(t)x=F(t)x
(4)
其廣義反射矩陣為F(t)=X(α(t))X-1(t).
性質(zhì)1[10,13]F(t)為系統(tǒng)(3)的廣義反射矩陣的充要條件為
(5)
定義1線性微分系統(tǒng)(3)的廣義反射函數(shù)矩陣F(t),若滿足F(t)P(t)=P(t)F(t)
(6)
則稱(3)為可交換的線性微分系統(tǒng).
引理1(基本引理) 已知X(t+2ω,x)=X(t,x),如?τ∈R,滿足α(τ)=2ω+τ,則微分系統(tǒng)(1)的Poincaré 映射T(x)可以定義為T(x)=F(τ,x)=φ(α(τ);τ,x),且微分系統(tǒng)(1)在區(qū)間[τ,τ+2ω]上有定義的解φ(t;τ,x)都為2ω-周期解.
考慮線性微分系統(tǒng)
(7)
何時具有形如
(8)
的廣義反射矩陣,這里M(t),A(t)為n1×n1階矩陣,D(t),N(t)為n2×n2階矩陣,B(t)為n1×n2階矩陣,C(t)為n2×n1階矩陣,n1+n2=n.
定理1的證明由廣義反射矩陣性質(zhì)(5)式有
F′(t)+F(t)P(t)=α′(t)P(α(t))F(t) ?
M′(t)+M(t)A(t)=α′(t)A(α(t))M(t)
(9)
M(t)B(t)=α′(t)B(α(t))N(t),N′(t)+N(t)D(t)=α′(t)D(α(t))N(t),N(t)C(t)=α′(t)C(α(t))M(t)
(10)
定理2對線性微分系統(tǒng)(7),如A(t),B(t),C(t),D(t)滿足
(11)
(12)
則矩陣(8)為線性微分系統(tǒng)(7)的廣義反射矩陣,此時
且
(13)
(14)
-A(t)M(t)+α′(t)A(α(t))M(t),
又M(t)A(t)=A(t)M(t),從而
M′(t)+M(t)A(t)-α′(t)A(α(t))M(t)=M′(t)+A(t)M(t)-α′(t)Α(α(t))M(t)=
-A(t)M(t)+α′(t)A(α(t))M(t)+A(t)M(t)-α′(t)A(α(t))M(t)=0.
由定理1得矩陣(8)為線性系統(tǒng)(7)的廣義反射矩陣,且(13),(14)式成立.
(1)當|T1-E1|=0或|T2-E2|=0時,線性微分系統(tǒng)(7)有無窮多個2ω-周期解;
(2)當|T1-E1|≠0且|T2-E2|≠0時,線性微分系統(tǒng)(7)有唯一2ω-周期解.
1)當|T1-E1|=0或|T2-E2|=0時,此時W=0,有無窮多個2ω-周期解;
2)當|T1-E1|≠0且|T2-E2|≠0時,|T1-E1|·|T2-E2|≠0時,即W≠0,此時線性系統(tǒng)(7)有唯一2ω-周期解.
由穩(wěn)定性理論知結(jié)論成立.
推論1線性微分系統(tǒng)
(15)
若滿足
則線性微分系統(tǒng)(15)的廣義反射函數(shù)為
若P(t+2ω)=P(t) 則
[1] Mironenko V I. On the method that allows one to determine the initial data of periodic solution of differential systems and to compare the mappings for a period[J].Differential Equations, 1980,14 (11):1985-1994.
[2] Mironenko V I. Reflecting function and periodic solution of the differential equations[M].Minsk:University Press,1986:12-26.
[3] Alisevich L A.On linear system with triangular reflective function[J].Differ Eq,1983,19(8):1446-1449.
[4] Veresovich P P.Nonautonomous second order quadratic system equivalent to linear system[J].Differ Eq,1998,14(12):2257-2259.
[5] Musafirov E V.Differential systems,the mapping over period for which is represented by a product of three exponential matrixes[J].Journal of Mathematical Analysis and Applications,2007,229(1):647-654.
[6] Mironenko V V. Time symmetry preserving perturbations of differential systems[J].Differential Equations,2004,40(10):1395-1403.
[7] Zhou Zhengxin. On the Poincaré mapping and periodic solutions of nonautonomous differential systems[J].Communications on Pure and Applied Analysis,2007,60(2):541-547.
[8] 周正新.微分系統(tǒng)的反射函數(shù)與周期解[J].數(shù)學進展,2003,32(4):396-405.
[9] 孫長軍.廣義反射函數(shù)的性態(tài)與應用[J].數(shù)學的實踐與認識,2010,40(10):222-228.
[10] 孫長軍,周正新.具有相同廣義反射函數(shù)的微分系統(tǒng)的等價性[J].數(shù)學的實踐與認識,2010,40(13):182-186.
[11] 孫長軍.基于一階線性廣義反射函數(shù)的非線性微分方程及周期解[J].華中師范大學學報:自然科學版,2010,44(2):207-209.
[12] 孫長軍.基于廣義反射函數(shù)與自治系統(tǒng)等價的非自治系統(tǒng)[J].數(shù)學的實踐與認識,2010,40(19):231-235.
[13] 孫長軍,周正新.線性微分系統(tǒng)的廣義反射函數(shù)[J].大學數(shù)學,2010,26(6):93-97.