• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of Current Densities on the Electrochemical Behavior of a Flat Plate Pb-Ag Anode for Zinc Electrowinning

    2012-11-06 07:01:06JIANGLiangXingZHONGShuiPingLAIYanQingXiaoJunHONGBoPENGHongJianZHOUXiangYangLIJieLIUYeXiang
    物理化學(xué)學(xué)報(bào) 2012年7期
    關(guān)鍵詞:電積陽(yáng)極泥電流效率

    JIANG Liang-Xing ZHONG Shui-Ping LAI Yan-Qing,* Lü Xiao-Jun HONG BoPENG Hong-Jian ZHOU Xiang-Yang LI Jie LIU Ye-Xiang

    (1School of Metallurgical Science and Engineering,Central South University,Changsha 410083,P.R.China;2Zijin Mining Group Co.,Ltd.,Shanghang 364200,Fujian Province,P.R.China)

    Effect of Current Densities on the Electrochemical Behavior of a Flat Plate Pb-Ag Anode for Zinc Electrowinning

    JIANG Liang-Xing1ZHONG Shui-Ping2LAI Yan-Qing1,*Lü Xiao-Jun1HONG Bo1PENG Hong-Jian1ZHOU Xiang-Yang1LI Jie1LIU Ye-Xiang1

    (1School of Metallurgical Science and Engineering,Central South University,Changsha 410083,P.R.China;2Zijin Mining Group Co.,Ltd.,Shanghang 364200,Fujian Province,P.R.China)

    We studied the anodic potential,corrosion rate,and anodic passive layer of a flat plate Pb-Ag(0.8%(mass fraction,w)anode over a long period of polarization under different current densities.Additionally,the cathode current efficiency and quality of the zinc product in the ZnSO4-MnSO4-H2SO4electrolyte were also studied.The morphology of the anodic passive layer was characterized by scanning electron microscopy(SEM).The results show that the current density greatly affects the electrochemical behavior of the anode and the cathode during zinc electrowinning irrespective of Mn2+.With an increase in the current density,the anodic potential,corrosion rate,cathode current efficiency,and quantity of anode slime increased while the Pb content in the zinc product decreased.When the current density decreased from 500 to 200 A·m-2in the ZnSO4-MnSO4-H2SO4electrolyte,the stable anodic potential and the corrosion rate decreased by 64 mV and 40%,respectively.Under a lower current density,the anodic potential stabilizes more easily and the passive layer that forms on the surface of the anode is denser and it adheres better to the base body,which is advantageous for the reduction of the corrosion rate.Therefore,to reduce the anodic potential,corrosion rate,and the quantity of anode slime,increase the cathode current efficiency and quality of zinc product,we suggested that the ideal working condition for zinc electrowinning is a higher cathodic current density and lower anodic current density.

    Zinc electrowinning;Current density;Pb-Ag anode;Anodic potential;Corrosion rate

    As an important nonferrous metal,zinc is mainly produced by hydrometallurgical process.Zinc hydrometallurgy is typically divided into four processes as roasting,leaching,purifying,and electrowinning.In zinc electrowinning process,it involves the electrodeposition of zinc at the cathode and oxygen evolution at the anode.And the insoluble anode,mainly made of Pb-Ag (0.5%-1%(w))alloys,determines the energy consumed in the process as for the high oxygen evolution over-potential(about 860 mV)[1].Other problems of anode are the high corrosion rate of lead and subsequent incorporation of lead corrosion products in the cathode,which decrease the purity of zinc product.

    In order to reduce the energy consumption,enhance the corrosion resistance,improve the product quality,and reduce the quantity of Ag required or even dispense with it,people have done much research work,which is mainly focused on lead-based alloy anode[2-9]and Ti-based coating anode(named DSA?)[10-15]. As for lead-based alloy anode,although many alloy anodes which can effectively reduce the quantity of Ag have been reported,only Pb-Co and Pb-Ag-Sn-Co anodes performed well in the perspective of reducing anodic potential.Regretfully,their complicated manufacturing conditions restricted their further commercial use.For Ti-based coating anodes,they are costly and can not avoid the passivation of Ti-base when anodized in H2SO4solution,so their further application is confined.Therefore,lead-based anode is still the anode that can be used industrially now and in the future[16].

    In the zinc electrowinning industry,although the working current density is about 500 A·m-2,a pre-treatment of the anodes under low temperature and low current density is always performed before electrowinning.After that,a dense PbO2film is formed which can protect the anode from corrosion by H2SO4. Also,a novel porous Pb-Ag anode,which has a high specific surface area and then reduces the working current density,was reported[17-19].As the porous anode is always operated near pretreatment conditions,the anodic potential and corrosion rate are much lower than flat plate anode at the same apparent current densities.Therefore,current density may have great effect on the electrochemical behavior of anode.Although there have been some empirical analyses about the effect of current density on anodic potential,corrosion rate,the passive layer structure, current efficiency,and quality of Zn[3,20-23],no systematic study has been reported.

    In order to further understand the electrochemical properties of porous anode and provide theoretical data of the effect of current density on anodic electrochemical behavior,the anodic potential,corrosion rate,and structure of passive layer of flat plate Pb-Ag anode were studied systematically under different current densities in electrolyte of ZnSO4-H2SO4and ZnSO4-MnSO4-H2SO4,respectively.Furthermore,in ZnSO4-MnSO4-H2SO4electrolyte,the quantity of anode slime,cathode current efficiency,and quality of zinc product were studied.

    1 Experimental

    The Pb-Ag alloy was cut into cubic samples(10 mm×10 mm× 5 mm)and sealed by epoxy resin with 1 cm2surface exposed to the air.Before electrochemical and corrosion test,the electrodes havetobedegreasedby alkali and ethanol and washed by doubledistilled water.

    As shown in Table 1,the experiments were divided into two groups,in which group A was carried out in the electrolyte of ZnSO4-H2SO4,and group B was in the electrolyte of ZnSO4-MnSO4-H2SO4.All the reagents used were AR grade.

    1.1 Anodic potential

    The anodic potential was tested by chronopotentiometry(CP) under different current densities(raging from 50 to 700 A·m-2). All the tests were carried out in a glass three-electrode system. The anodic potential was measured against Hg/Hg2Cl2(SCE) reference electrode(If there is no particular demonstration,the potential is relative to the SCE.).All electrolytes were prepared with analytically pure grade chemicals and double-distilled water,and the volume of electrolytes is 1000 mL in every test to keep the ions variation comparable.The temperature was kept constant((37.0±0.5)℃)by means of an HH-1 thermostat.

    1.2 Corrosion rate

    The corrosion of the anode is caused by the dissolution of lead into electrolyte.Some of the dissolved lead co-deposits with zinc on the cathode,while some inter-mixes with anode slime.Two ways were used to test the corrosion rate of anodes. One is weight loss method.The other is Pb balance method which uses the Pb content change in the electrolyte and Zn to determine the corrosion rate.Atomic absorption spectrophotometer(Hitachi Japan,Z-5000)was used to test the Pb2+concentration change in the solution both before and after anodic polarization.Quartzspectrograph(ИСΠ-30)wasusedtotestPbcontent in Zn.The corrosion rate(vcorr)measured by Pb balance method was calculated by the following equation:

    where C is the concentration of Pb2+in electrolyte(g·L-1),V is the electrolyte volume(L),w is the mass percentage of Pb in zincproduct(%),m is the mass of zinc product(g),S is the apparent area of anode(m2),and t is the polarization time(h).

    Table 1 Experimental conditions

    1.3 Microstructure of passive layer

    After polarization for 72 h,the anode was removed from electrolyte,washed with double-distilled water and dried immediately.Then,the microstructure of the passive layer was observed by scanning electron microscopy(JEOL Japan,JSM-6360LV).

    2 Results and discussion

    2.1 Anodic potential

    Fig.1 shows the Galvanostatic polarization of flat Pb-Ag (0.8%)anode in the electrolyte of pure ZnSO4-H2SO4at different current densities.It can be seen from Fig.1 that the anodic potential of flat plate anode is obviously different under different current densities and it increases with the increase of current density.When the current density increases from 100 to 500 A· m-2,the stable anodic potential increases about 100 mV,which is from 1.742 to 1.835 V.But the increasing speed is not the same,when the current density is above 300 A·m-2,the effect of current density on anodic potential is less.It can also be found that the anodic potential decreases rapidly at the beginning and then stabilizes gradually.This is because a nonconductive PbSO4layer is firstly generated on the fresh anode surface,and then the current density and potential of the uncovered surface will increase.Due to high oxygen evolution potential on the surface of Pb,the generated PbSO4and the uncovered Pb will transform into PbO2covering the anode surface and then the reaction of oxygen evolution will take place on the surface[24].When the reaction reaches balance,the anode potential will stabilize.But we can also find that the time needed to reach stable is different. The time is about 10 h when the current density is less than 200 A·m-2.While the current density is greater than 200 A·m-2,the time needed is about 15 h.Although the anode potential is difficult to achieve stabilization,we can conclude that the anode surface is easier to stabilize under lower current density.

    Fig.1 Galvanostatic polarization of flat Pb-Ag(0.8%)anode in the electrolyte of pure ZnSO4-H2SO4at different current densitiesi/(A·m-2):(A1)50,(A2)100,(A3)200,(A4)300,(A5)400,(A6)500, (A7)600,(A8)700

    Fig.2 Galvanostatic polarization of Pb-Ag(0.8%)anode in the electrolyte of ZnSO4-MnSO4-H2SO4at different current densitiesi/(A·m-2):(B1)50,(B2)100,(B3)200,(B4)300,(B5)400,(B6)500, (B7)600,(B8)700

    In the electrolyte of ZnSO4-MnSO4-H2SO4,we have the similar results(Fig.2)that further confirm the conclusion above.The only difference is that the anodic potential firstly increases and then stabilizes under a specific current density.

    According to the data in Fig.1 and Fig.2,we obtained the Tafel curves of flat plate anode as shown in Fig.3.We can see that the Tafel curves are parallel straight lines(Tafel slopes are 0.13 V/decade),which indicates that the oxygen evolution mechanism is the same both in the electrolyte of ZnSO4-H2SO4and ZnSO4-MnSO4-H2SO4.The existence of Mn2+in electrolyte has no effect on it.Meanwhile,the difference between the parameter a in different electrolytes is 52 mV,the depolarization effect of Mn2+is obvious.Under the current density of 500 A·m-2,the anodic potential with and without Mn2+in electrolyte is 1.792 and 1.835 V,respectively.

    2.2 Corrosion rate

    The corrosion rates of the traditional flat plate anode under different current densities were measured by both the anode weight loss method and the Pb balance method,and the results are shown in Table 2.

    Fig.3 Tafel curves of flat plate anode

    Table 2 Corrosion rate of Pb-Ag(0.8%)anode in different electrolytes

    It can be found that the corrosion rate measured by anode weight loss method is a little bigger than that by Pb balance method.For example,when the current density is 500 A·m-2, the corrosion rates measured by the anode weight loss method and the Pb balance method are 1.620 and 1.065 g·m-2·h-1,respectively.However,the variation tendency of corrosion rate measured by the two methods is the same,that is,the corrosion rate increases with the increase of current density.

    From Table 2 we can also find that Mn2+does not change the variation tendency of corrosion rate,that is,the corrosion rate increases with the increase of current density.For example, when the current density decreases from 500 to 100 A·m-2,the anodic corrosion rate decreases from 0.957 to 0.350 g·m-2·h-1. Under the same current density,the existence of Mn2+can reduce the corrosion rate of anode remarkably,which is in line with the literature search and industrial practice[20,25].This is because Mn2+was oxidized to permanganic acid on the anode through the following equation:

    4MnSO4+6H2O+5O2=4HMnO4+4H2SO4(2) Then,the permanganic acid in the solution reacts with Mn2+to form MnO2according to the following equation:

    2HMnO4+3MnSO4+2H2O=5MnO2+3H2SO4(3) A part of MnO2deposits to the bottom of electrolytic tank which is usually recycled and used in the leaching system.The rest of MnO2adheres to the anode and forms a composite protective layer on the anode surface with PbO2and then the corrosion rate is reduced.At the same time,MnO2is well known as oxygen evolution catalyst,the Pb/PbO2-MnO2composite anode formed in ZnSO4-MnSO4-H2SO4electrolyte can reduce the anodic potential.This phenomenon is called the depolarization effect and Fig.3 is the evidence.

    2.3 Passive layer and anode slime

    In order to observe the effects of current density on the morphology of passive layer,the surface morphology of flat plate anode was observed by SEM after 72 h galvanostatic polarization in electrolytes of ZnSO4-H2SO4and ZnSO4-MnSO4-H2SO4under current densities of 50,100,and 500 A·m-2,respectively. The relevant pictures are shown in Fig.4 and Fig.5.

    As can be seen from Fig.4,the surface morphologies change a lot with the change of current density.When the current density is 50 A·m-2,dense surface morphology is observed and the passive layer is well combined with the base body after 72 h polarization.When the current density increases to 500 A·m-2,the anode surface morphology becomes loose as shown in Fig.4c. Combining with the corrosion rate,we can conclude that low current density can produce dense PbO2coating on the anode surface which is beneficial for protecting the anode from corrosion,while high current density will produce loose oxidized layer and then increase the corrosion rate.

    As shown in Fig.5,the surface morphologies also change a lot with the change of current density in ZnSO4-MnSO4-H2SO4electrolyte.Under the current density of 50 A·m-2,the particles on the anode surface are coarse and well combined with the base body.When the current density is 500 A·m-2,the particles are fine,loose,and not well combined with the base body.The surface morphology for the current density of 100 A·m-2is between them.Comparing Fig.4 and Fig.5,it can be found that Mn2+has significant influence on the microstructure of passive layer.

    Fig.4 SEM images of Pb-Ag(0.8%)anode after 72 h polarization in the electrolyte of pure ZnSO4-H2SO4at different current densitiesi/(A·m-2):(a)50,(b)100,(c)500

    Fig.5 SEM images of Pb-Ag(0.8%)anode after 72 h polarization in the electrolyte of ZnSO4-MnSO4-H2SO4at different current densitiesi/(A·m-2):(a)50,(b)100,(c)500

    Table 3 Change of Mn2+content in the electrolyte of ZnSO4-MnSO4-H2SO4with current density

    As current density has large influence on the anode morphology,it is predictable that current density will have some influence on the quantity of anode slime.Because of the small anode surface,limited polarization time and unable to collect the anode slime,the variation of Mn2+concentration before and after electrolysis was used to determine the formation of anode slime(the main component of the anode slime is manganese dioxide), and the results are shown in Table 3.

    From Table 3 it can be found that when the current density is low(such as 50 A·m-2),the Mn2+content is almost not changed after 24 h polarization(from 4.000 to 3.969 g·L-1).With the increase of current density,the Mn2+content after electrolysis is rapidly decreased.When the current density reaches to 500 A· m-2,the Mn2+content is only left to 3.570 g·L-1.In other words, with the increase of current density,the Mn2+diluting phenomenon becomes more severe,which means that the quantity of anode slime increases.

    2.4 Current efficiency and Zn product

    Table 4 lists the current efficiency and quality of Zn for the Pb-Ag(0.8%)anode after 24 h galvanostatic polarization in the electrolyte of ZnSO4-MnSO4-H2SO4.

    It can be seen from Table 4 that the current efficiency is gradually increased with the increase of current density.When current density is above 400 A·m-2,the current efficiency is all above 90%,and the maximum value is 93.80%.As we know that Zn lies considerably above H2in the electrochemical series, the evolution of H2should be easier than that of Zn.But the evolution overpotential of H2is high on zinc deposits and Al electrode used in zinc electrowinning,which causes the evolution potential of H2to shift negatively and become lower thanthe deposition potential of Zn.With the increase of current density,the H2evolution overpotential increases,which is propitious to the deposition of Zn and the increase of current efficiency.But when high current density is adopted,high concentration of Zn and low temperature electrolysis should be guaranteed.So the current density is usually controlled at around 500 A·m-2in industry.

    Table 4 Current efficiency and quality of Zn in the electrolyte of ZnSO4-MnSO4-H2SO4under different current densities

    Table 4 also lists the change of Pb content in cathode zinc under different current densities.When the current density changes from 50 to 600 A·m-2,the Pb content decreases from 0.0350%to 0.0061%.It can be concluded that the increase of current density can be beneficial for improving Zn quality.The reason is that the precipitate speed of impurity is not only relative with precipitate potential but also relative with diffusion speed.When the impurity concentration reaches a certain low degree,the ionic extreme surface current will be in direct proportion of diffusion coefficient and the precipitation speed of a certain ion will be determined by its extreme current density. The impurity content in the cathode zinc is determined by the following equation:

    where idis the extreme current density(A·m-2),MPband MZnare the atomic weights of Pb and Zn(g·mol-1),respectively,η is the current efficiency(%),and i is the current density(A·m-2).It can be concluded that if the current density increases,the Pb content in the cathode Zn will decrease and the quality of output will be improved.

    3 Conclusions

    (1)The anodic potential increases with the increase of current density.When current density decreases from 500 to 100 A·m-2, the anodic potential(vs SCE)decreases from 1.835 to 1.742 V in the ZnSO4-H2SO4electrolyte.

    (2)The corrosion rate decreases with the decrease of current density.When current density decreases from 500 to 100 A·m-2, the corrosion rate decreases from 1.620 to 0.652 g·m-2·h-1in the pure ZnSO4-H2SO4electrolyte.

    (3)With the increase of current density,the Mn2+diluting phenomenon becomes more severe.When the current density is low,the Mn2+content is almost not changed after 24 h polarization.With the increase of current density,the Mn2+content decreases rapidly after polarization.

    (4)The anodic passive layer under different current densities presented the different microstructures.When the current density is 50 A·m-2,dense surface morphology is observed and the passive layer is well combined with the base body after 72 h polarization.When the current density is increased to 500 A·m-2, the anode surface morphology will become loose.

    In a word,the decrease of the anodic potential,corrosion rate, and quantity of anode slime can be realized by reducing the current density.However,that will decrease the cathodic current efficiency and the quality of zinc.If the anode can be made porous,the conductive area of anode would be increased a lot and the anodic current density would be reduced without changing the current,so energy would be saved.

    1 Petrova,M.;Stefanov,Y.;Noncheva,Z.;Dobrev,T.;Rashkov,S. British Corrosion Journal,1999,34(3):198

    2 Stefanov,Y.;Dobrev,T.Transactions of the Institute of Metal

    Finishing,2005,83(6):296

    3 Ivanov,I.;Stefanov,Y.;Noncheva,Z.;Petrova,M.;Dobrev,T.; Mirkova,L.;Vermeersch,R.;Demaerel,J.P.Hydrometallurgy, 2000,57:109

    4 Rashkov,S.;Dobrev,T.;Noncheva,Z.;Stefanov,Y.;Rashkova, B.;Petrova,M.Hydrometallurgy,1999,52:223

    5 Newnham,R.H.Journal of Applied Electrochemistry,1992,22: 116

    6 Zhong,S.P.;Lai,Y.Q.;Jiang,L.X.;Lü,X.J.;Chen,P.R.;Li,J.; Liu,Y.X.Journal of Central South University of Technology, 2009,16(2):236

    7 Lupi,C.;Pilone,D.Hydrometallurgy,1997,44:347

    8 Rashkov,S.;Stefanov,Y.;Noncheva,Z.;Petrova,M.;Dobrev,T.; Kunchev,N.;Petrov,D.;Vlaev,S.T.;Mihnev,V.;Zarev,S.; Georgieva,L.;Buttinelli,D.Hydrometallurgy,1996,40:319

    9 Camurri,C.P.;López,M.J.;Pagliero,A.N.;Vergara,F.G. Materials Characterization,2001,47:105

    10 Li,B.S.;Lin,A.;Gan,F.X.Trans.Nonferrous Met.Soc.China, 2006,16(5):1193

    11 Hu,J.M.;Zhang,J.Q.;Cao,C.N.International Journal of Hydrogen Energy,2004,29(8):791

    12 Stefanov,Y.;Dobrev,T.Transactions of the Institute of Metal Finishing,2005,83(6):291

    13 Cattarin,S.;Guerriero,P.;Musiani,M.Electrochimica Acta,2001, 46:4229

    14 Shrivastava,P.;Moats,M.S.Journal of the Electrochemical Society,2008,155(7):E101

    15 de Mussy,J.P.G.;MacPherson,J.V.;Delplancke,J.L. Electrochimica Acta,2003,48:1131

    16 Felder,A.;Prengaman R.D.JOM,2006,58(10):28

    17 Zhong,S.P.;Lai,Y.Q.;Jiang,L.X.;Lü,X.J.;Chen,P.R.;Li,J.; Liu,Y.X.Journal of Central South University of Technology, 2008,15(6):757

    18 Lai,Y.Q.;Jiang,L.X.;Li,J.;Zhong,S.P.;Lü,X.J.;Peng,H.J.; Liu,Y.X.Hydrometallurgy,2010,102:73

    19 Lai,Y.Q.;Jiang,L.X.;Li,J.;Zhong,S.P.;Lü,X.J.;Peng,H.J.; Liu,Y.X.Hydrometallurgy,2010,102:81

    20 Peng,R.Q.;Ren,H.J.;Zhang,X.P.Metallurgy of lead and zinc. Beijing:Science Press,2003:413 [彭容秋,任鴻九,張訓(xùn)鵬.鉛鋅冶金學(xué).北京:科學(xué)出版社,2003:413]

    21 Mei,G.G.;Wang,R.D.;Zhou,J.Y.;Wang,H.Hyrometallurgy of zinc.Changsha:Central South University Press,2001:340-402 [梅光貴,王德潤(rùn),周敬元,王 輝.濕法煉鋅學(xué),長(zhǎng)沙:中南大學(xué)出版社,2001:340-402]

    22 Zhang,Y.P.Hydrometallurgy of China,2001,20(4):169 [張玉萍.濕法冶金,2001,20(4):169]

    23 Ivanov,I.;Stefanov,Y.;Noncheva,Z.;Petrova,M.;Dobrev,T.; Mirkova,L.;Vermeersch,R.;Demaerel,J.P.Hydrometallurgy, 2000,57:125

    24 Nguyen,T.;Atrens,A.Hydrometallurgy,2009,96:14

    25 Pu,Y.;O′Keefe,T.J.Journal of the Electrochemical Society, 2002,149(5):558

    電流密度對(duì)鋅電積用Pb-Ag平板陽(yáng)極電化學(xué)行為的影響

    蔣良興1衷水平2賴延清1,*呂曉軍1洪 波1彭紅建1周向陽(yáng)1李 劼1劉業(yè)翔1

    (1中南大學(xué)冶金科學(xué)與工程學(xué)院,長(zhǎng)沙 410083;2紫金礦業(yè)集團(tuán)股份有限公司,福建上杭 364200)

    研究了在不同電流密度下進(jìn)行長(zhǎng)時(shí)間極化后Pb-Ag(0.8%(質(zhì)量分?jǐn)?shù),w))平板陽(yáng)極的陽(yáng)極電位、腐蝕率及陽(yáng)極鈍化膜.同時(shí),也研究了該陽(yáng)極在ZnSO4-MnSO4-H2SO4電解液中的陰極電流效率和陰極鋅品質(zhì).陽(yáng)極鈍化膜的表面形貌用掃描電鏡(SEM)進(jìn)行觀測(cè).實(shí)驗(yàn)結(jié)果表明,不管電解液中是否存在Mn2+,電流密度對(duì)陽(yáng)極和陰極的電化學(xué)行為都產(chǎn)生了顯著的影響.隨著電流密度的升高,陽(yáng)極電位、腐蝕率、陰極電流效率和陽(yáng)極泥生成量也增加,而陰極鋅中的Pb含量則減少.當(dāng)電流密度從500 A·m-2降到200 A·m-2時(shí),陽(yáng)極在ZnSO4-MnSO4-H2SO4電解液中的穩(wěn)定電位和腐蝕率分別減少64 mV和40%.此外,在比較低的電流密度下,陽(yáng)極電位更容易穩(wěn)定,陽(yáng)極表面生成的鈍化膜更加致密并與基體結(jié)合牢固,這些都有利于降低陽(yáng)極腐蝕率.為了降低陽(yáng)極電位、減小陽(yáng)極腐蝕率及陽(yáng)極泥生成量并提高陰極電流效率和陽(yáng)極鋅品質(zhì),鋅電積的理想工作條件是較低的陽(yáng)極電流密度和較高的陰極電流密度.

    鋅電積;電流密度;Pb-Ag陽(yáng)極;陽(yáng)極電位;腐蝕率

    O646

    Received:April 12,2010;Revised:May 31,2010;Published on Web:July 27,2010.

    *Corresponding author.Email:csulightmetals@126.com;Tel:+86-731-88830649.

    The project was supported by the National Natural Science Foundation of China(50954006).

    國(guó)家自然科學(xué)基金(50954006)資助項(xiàng)目

    ?Editorial office of Acta Physico-Chimica Sinica

    猜你喜歡
    電積陽(yáng)極泥電流效率
    低濃度溶液中金的旋流電積
    濕法冶金(2022年1期)2022-02-18 08:03:06
    銅鎘渣酸浸液旋流電積提銅對(duì)比分析
    提高鉛電解回收率生產(chǎn)實(shí)踐
    有機(jī)物對(duì)電解錳電流效率的影響
    濕法冶金(2020年1期)2020-02-24 06:22:04
    銅電解電積脫銅生產(chǎn)高純陰極銅的實(shí)踐
    降低永久陰極銅電解陽(yáng)極泥含銅實(shí)踐
    淺析210KA電解槽電流效率的影響因素
    影響離子膜電解槽電流效率的因素
    工藝參數(shù)對(duì)高速鍍錫電流效率及鍍錫層表面形貌的影響
    銅陽(yáng)極泥中碲回收工程設(shè)計(jì)
    a级毛片a级免费在线| 欧美最新免费一区二区三区 | 国产野战对白在线观看| 精品人妻偷拍中文字幕| 亚洲一区二区三区色噜噜| 此物有八面人人有两片| 欧美在线黄色| 国产精品影院久久| 级片在线观看| 国产成人a区在线观看| 色尼玛亚洲综合影院| 亚洲第一欧美日韩一区二区三区| 在线看三级毛片| xxxwww97欧美| e午夜精品久久久久久久| 免费在线观看成人毛片| 两人在一起打扑克的视频| 美女 人体艺术 gogo| 国产中年淑女户外野战色| 亚洲人成伊人成综合网2020| 亚洲成人久久爱视频| 国产视频内射| 欧美日韩亚洲国产一区二区在线观看| 色尼玛亚洲综合影院| 小蜜桃在线观看免费完整版高清| 久久国产精品影院| 久久婷婷人人爽人人干人人爱| 51午夜福利影视在线观看| 色视频www国产| 看黄色毛片网站| 日韩欧美 国产精品| 亚洲av免费在线观看| 久久亚洲真实| 亚洲国产中文字幕在线视频| 激情在线观看视频在线高清| 一a级毛片在线观看| 天美传媒精品一区二区| 亚洲欧美激情综合另类| 蜜桃久久精品国产亚洲av| 成人欧美大片| 久久国产精品影院| 久久人人精品亚洲av| 他把我摸到了高潮在线观看| 18禁在线播放成人免费| 在线观看日韩欧美| 天堂影院成人在线观看| 欧美日韩瑟瑟在线播放| 久久欧美精品欧美久久欧美| 一二三四社区在线视频社区8| 亚洲av熟女| 久久久国产成人免费| 精品久久久久久成人av| 99热精品在线国产| 国产精品亚洲美女久久久| 午夜福利在线在线| 欧美性猛交黑人性爽| 亚洲av电影不卡..在线观看| 无限看片的www在线观看| 亚洲中文字幕一区二区三区有码在线看| 国产精品影院久久| 热99在线观看视频| 琪琪午夜伦伦电影理论片6080| a级毛片a级免费在线| a级毛片a级免费在线| 日韩av在线大香蕉| 18美女黄网站色大片免费观看| 亚洲精品久久国产高清桃花| 日本一二三区视频观看| 美女 人体艺术 gogo| 精品99又大又爽又粗少妇毛片 | 一区福利在线观看| 在线观看av片永久免费下载| 国产三级中文精品| 一区福利在线观看| 欧美日韩中文字幕国产精品一区二区三区| 90打野战视频偷拍视频| a在线观看视频网站| 亚洲欧美激情综合另类| 99在线视频只有这里精品首页| 性色avwww在线观看| 在线免费观看不下载黄p国产 | a级毛片a级免费在线| 99国产综合亚洲精品| 亚洲五月婷婷丁香| 桃色一区二区三区在线观看| 久久久久久久亚洲中文字幕 | 国产久久久一区二区三区| 99精品在免费线老司机午夜| 亚洲欧美日韩东京热| 国产黄片美女视频| 午夜免费成人在线视频| 久久亚洲精品不卡| www.色视频.com| 中文字幕人妻丝袜一区二区| 久久久久久久久大av| 亚洲欧美一区二区三区黑人| 亚洲一区高清亚洲精品| 一级毛片女人18水好多| 精品国产超薄肉色丝袜足j| 女人高潮潮喷娇喘18禁视频| 久久亚洲精品不卡| 少妇裸体淫交视频免费看高清| 操出白浆在线播放| 天堂网av新在线| 内射极品少妇av片p| 999久久久精品免费观看国产| 色吧在线观看| 18禁裸乳无遮挡免费网站照片| 免费在线观看成人毛片| 欧美日韩亚洲国产一区二区在线观看| 欧美不卡视频在线免费观看| 日韩欧美国产一区二区入口| 国产欧美日韩一区二区三| av在线天堂中文字幕| 高清毛片免费观看视频网站| 欧美日韩亚洲国产一区二区在线观看| 脱女人内裤的视频| 亚洲最大成人中文| 国产99白浆流出| 日本 av在线| 搡老妇女老女人老熟妇| 一级黄片播放器| 91麻豆av在线| 搞女人的毛片| 久久久久久九九精品二区国产| www.999成人在线观看| 69人妻影院| 非洲黑人性xxxx精品又粗又长| 久久久精品大字幕| 亚洲电影在线观看av| 欧美黄色片欧美黄色片| av在线天堂中文字幕| 麻豆成人午夜福利视频| 99久久成人亚洲精品观看| 黄色成人免费大全| 国产精品久久久人人做人人爽| 日韩高清综合在线| 欧洲精品卡2卡3卡4卡5卡区| 香蕉久久夜色| 日本黄色视频三级网站网址| 一进一出抽搐动态| 色av中文字幕| 在线播放无遮挡| 精品不卡国产一区二区三区| 精品人妻1区二区| 99热只有精品国产| 日韩欧美免费精品| 欧美日韩一级在线毛片| 久久草成人影院| 久久香蕉国产精品| 丝袜美腿在线中文| 中文字幕精品亚洲无线码一区| 国产综合懂色| 99视频精品全部免费 在线| 99热只有精品国产| 午夜免费激情av| 亚洲人成网站在线播| 国产成+人综合+亚洲专区| 久久精品人妻少妇| 天堂√8在线中文| 国产亚洲av嫩草精品影院| 制服人妻中文乱码| 变态另类成人亚洲欧美熟女| 午夜影院日韩av| 男女做爰动态图高潮gif福利片| 亚洲第一欧美日韩一区二区三区| 韩国av一区二区三区四区| 少妇的逼水好多| 老熟妇乱子伦视频在线观看| 精品人妻偷拍中文字幕| 欧美午夜高清在线| 免费人成视频x8x8入口观看| 日本黄色片子视频| a级一级毛片免费在线观看| 国产99白浆流出| 亚洲av美国av| 一区二区三区免费毛片| 欧美一级毛片孕妇| 亚洲国产日韩欧美精品在线观看 | 色综合站精品国产| 最近在线观看免费完整版| 色尼玛亚洲综合影院| 老熟妇乱子伦视频在线观看| 久久亚洲精品不卡| 18禁美女被吸乳视频| 精品久久久久久久久久久久久| 一区二区三区高清视频在线| 综合色av麻豆| 亚洲第一电影网av| 欧美又色又爽又黄视频| 中国美女看黄片| 亚洲中文日韩欧美视频| 午夜免费成人在线视频| 精品国产三级普通话版| 国产综合懂色| 99久久九九国产精品国产免费| 小说图片视频综合网站| 村上凉子中文字幕在线| 国产成年人精品一区二区| 成人午夜高清在线视频| 亚洲欧美精品综合久久99| 搡老熟女国产l中国老女人| 大型黄色视频在线免费观看| 久久香蕉国产精品| 日韩有码中文字幕| 日日摸夜夜添夜夜添小说| 免费av观看视频| 国产 一区 欧美 日韩| 看黄色毛片网站| 国产乱人视频| 宅男免费午夜| 欧美乱妇无乱码| 脱女人内裤的视频| 国产免费一级a男人的天堂| 精品国产美女av久久久久小说| www.www免费av| 日本一本二区三区精品| 岛国在线观看网站| 午夜a级毛片| 国模一区二区三区四区视频| 亚洲不卡免费看| 国产精品98久久久久久宅男小说| 久久精品夜夜夜夜夜久久蜜豆| 国产精品 国内视频| 成熟少妇高潮喷水视频| 欧美精品啪啪一区二区三区| 中文字幕人成人乱码亚洲影| 日韩av在线大香蕉| 欧洲精品卡2卡3卡4卡5卡区| 波野结衣二区三区在线 | or卡值多少钱| 欧美一级毛片孕妇| 黄色成人免费大全| 天堂动漫精品| 久9热在线精品视频| 免费人成在线观看视频色| 变态另类成人亚洲欧美熟女| 高清日韩中文字幕在线| 操出白浆在线播放| 国产探花极品一区二区| 黄色女人牲交| 1024手机看黄色片| 欧美高清成人免费视频www| 3wmmmm亚洲av在线观看| 亚洲国产精品成人综合色| 丰满人妻熟妇乱又伦精品不卡| 熟女电影av网| www.999成人在线观看| 国产精品美女特级片免费视频播放器| 免费人成在线观看视频色| 中文字幕av成人在线电影| 精品久久久久久久毛片微露脸| 日本黄色片子视频| 日韩欧美在线乱码| 亚洲成人精品中文字幕电影| 午夜亚洲福利在线播放| 特大巨黑吊av在线直播| 白带黄色成豆腐渣| 国产欧美日韩一区二区三| 欧美乱妇无乱码| 天堂av国产一区二区熟女人妻| 国产男靠女视频免费网站| 在线观看美女被高潮喷水网站 | 午夜福利视频1000在线观看| 亚洲人成网站高清观看| 12—13女人毛片做爰片一| 听说在线观看完整版免费高清| 精品午夜福利视频在线观看一区| 久久香蕉精品热| 九色成人免费人妻av| 国产日本99.免费观看| 午夜两性在线视频| 老鸭窝网址在线观看| 亚洲午夜理论影院| 女生性感内裤真人,穿戴方法视频| 国产高清videossex| 美女大奶头视频| 欧美日韩福利视频一区二区| 夜夜看夜夜爽夜夜摸| 丝袜美腿在线中文| 内射极品少妇av片p| 亚洲av日韩精品久久久久久密| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 一级a爱片免费观看的视频| 女警被强在线播放| 不卡一级毛片| 午夜老司机福利剧场| 欧美日韩国产亚洲二区| 欧美日韩中文字幕国产精品一区二区三区| 高潮久久久久久久久久久不卡| 亚洲片人在线观看| 亚洲av不卡在线观看| 亚洲专区中文字幕在线| 欧美成狂野欧美在线观看| 成年版毛片免费区| 日日干狠狠操夜夜爽| 看黄色毛片网站| 国产主播在线观看一区二区| www国产在线视频色| 97碰自拍视频| 18禁黄网站禁片午夜丰满| 亚洲国产高清在线一区二区三| 国产精品久久久久久人妻精品电影| 人人妻人人看人人澡| 99精品欧美一区二区三区四区| 蜜桃久久精品国产亚洲av| 少妇人妻一区二区三区视频| 夜夜夜夜夜久久久久| 日韩人妻高清精品专区| 在线观看免费午夜福利视频| 欧美日韩黄片免| 中亚洲国语对白在线视频| 熟妇人妻久久中文字幕3abv| 国产精品自产拍在线观看55亚洲| 少妇的逼水好多| 国产欧美日韩精品亚洲av| 亚洲av电影不卡..在线观看| 国产一区在线观看成人免费| 精品欧美国产一区二区三| 麻豆成人av在线观看| 18禁美女被吸乳视频| 搡老熟女国产l中国老女人| 国产精品日韩av在线免费观看| 午夜精品一区二区三区免费看| 国产精品久久久人人做人人爽| 人妻久久中文字幕网| av中文乱码字幕在线| 精品熟女少妇八av免费久了| 日韩欧美 国产精品| 久久午夜亚洲精品久久| 欧美三级亚洲精品| 男人的好看免费观看在线视频| 国产精品1区2区在线观看.| а√天堂www在线а√下载| 国产伦在线观看视频一区| 久久久久久久午夜电影| 真人做人爱边吃奶动态| АⅤ资源中文在线天堂| 日日夜夜操网爽| 亚洲精品美女久久久久99蜜臀| 尤物成人国产欧美一区二区三区| 免费av毛片视频| 日本在线视频免费播放| 免费av毛片视频| 色尼玛亚洲综合影院| 久久精品夜夜夜夜夜久久蜜豆| 精品午夜福利视频在线观看一区| 久久精品国产自在天天线| 狂野欧美激情性xxxx| 欧美+亚洲+日韩+国产| 99riav亚洲国产免费| 无限看片的www在线观看| 亚洲内射少妇av| 免费高清视频大片| 中文字幕精品亚洲无线码一区| 变态另类成人亚洲欧美熟女| 51午夜福利影视在线观看| 99久久99久久久精品蜜桃| 亚洲,欧美精品.| e午夜精品久久久久久久| 国产极品精品免费视频能看的| 久久亚洲真实| 欧美绝顶高潮抽搐喷水| 国产一区二区在线av高清观看| 中出人妻视频一区二区| 婷婷亚洲欧美| 女生性感内裤真人,穿戴方法视频| 午夜福利成人在线免费观看| 欧美日韩黄片免| 亚洲七黄色美女视频| 99热精品在线国产| www日本黄色视频网| 午夜精品久久久久久毛片777| 在线十欧美十亚洲十日本专区| 99精品欧美一区二区三区四区| 国产v大片淫在线免费观看| 老汉色∧v一级毛片| 99国产精品一区二区蜜桃av| 99热这里只有是精品50| 久久精品国产自在天天线| 一进一出抽搐动态| 一级黄色大片毛片| 制服丝袜大香蕉在线| 男女那种视频在线观看| 91av网一区二区| 老司机午夜福利在线观看视频| 午夜影院日韩av| 少妇的丰满在线观看| 日韩欧美精品v在线| 欧美3d第一页| 国产精品香港三级国产av潘金莲| av黄色大香蕉| 岛国视频午夜一区免费看| 天堂网av新在线| 国产黄a三级三级三级人| 免费人成在线观看视频色| 国产三级黄色录像| 搡老熟女国产l中国老女人| 少妇裸体淫交视频免费看高清| 日韩国内少妇激情av| 欧美zozozo另类| 激情在线观看视频在线高清| 性色avwww在线观看| 999久久久精品免费观看国产| 久9热在线精品视频| 国内少妇人妻偷人精品xxx网站| 一级作爱视频免费观看| 女人高潮潮喷娇喘18禁视频| 亚洲av不卡在线观看| 国产高清激情床上av| 成人18禁在线播放| 五月玫瑰六月丁香| 看黄色毛片网站| 超碰av人人做人人爽久久 | 婷婷六月久久综合丁香| 亚洲人成网站高清观看| 亚洲av日韩精品久久久久久密| netflix在线观看网站| 国产精品女同一区二区软件 | 亚洲国产欧美网| 免费看美女性在线毛片视频| 伊人久久精品亚洲午夜| 国产精品 国内视频| 成人特级黄色片久久久久久久| 99在线视频只有这里精品首页| 伊人久久大香线蕉亚洲五| 色视频www国产| 国产真人三级小视频在线观看| 狂野欧美激情性xxxx| 日本 av在线| 尤物成人国产欧美一区二区三区| 老汉色av国产亚洲站长工具| 国产熟女xx| 日本a在线网址| 成年版毛片免费区| 亚洲成av人片免费观看| 欧美+亚洲+日韩+国产| 首页视频小说图片口味搜索| 搡女人真爽免费视频火全软件 | 五月伊人婷婷丁香| 日韩欧美国产在线观看| 久久香蕉国产精品| 国产免费男女视频| 嫩草影院入口| 欧美日韩黄片免| 三级毛片av免费| 亚洲精品日韩av片在线观看 | 美女大奶头视频| 日本在线视频免费播放| 中文字幕人妻丝袜一区二区| netflix在线观看网站| 亚洲七黄色美女视频| av天堂中文字幕网| 最近在线观看免费完整版| 欧美又色又爽又黄视频| 精品99又大又爽又粗少妇毛片 | 热99在线观看视频| 亚洲欧美日韩高清在线视频| 极品教师在线免费播放| 激情在线观看视频在线高清| 久久午夜亚洲精品久久| 免费看a级黄色片| 99热这里只有精品一区| 十八禁网站免费在线| 亚洲无线在线观看| 国产亚洲精品av在线| 日本a在线网址| 女同久久另类99精品国产91| 午夜精品久久久久久毛片777| 久久久久国产精品人妻aⅴ院| 亚洲aⅴ乱码一区二区在线播放| 九九在线视频观看精品| bbb黄色大片| 一级a爱片免费观看的视频| av黄色大香蕉| 色综合站精品国产| 少妇高潮的动态图| 麻豆国产av国片精品| 欧美日本亚洲视频在线播放| 亚洲国产精品久久男人天堂| 亚洲熟妇中文字幕五十中出| 一本综合久久免费| 一边摸一边抽搐一进一小说| 亚洲精品亚洲一区二区| 欧美成人免费av一区二区三区| 美女黄网站色视频| 91在线观看av| 国产精品 国内视频| 两个人的视频大全免费| 成年女人毛片免费观看观看9| 黄色女人牲交| 中文字幕高清在线视频| 久久亚洲真实| 12—13女人毛片做爰片一| 久久久国产成人精品二区| 色综合亚洲欧美另类图片| 国产色爽女视频免费观看| 国产三级黄色录像| 成人国产综合亚洲| 午夜精品久久久久久毛片777| 少妇人妻一区二区三区视频| 男女那种视频在线观看| 叶爱在线成人免费视频播放| 麻豆成人av在线观看| 国产麻豆成人av免费视频| 色噜噜av男人的天堂激情| 夜夜躁狠狠躁天天躁| 国产精品精品国产色婷婷| 亚洲色图av天堂| 国产真实乱freesex| 美女免费视频网站| 高潮久久久久久久久久久不卡| 我要搜黄色片| 亚洲电影在线观看av| 两人在一起打扑克的视频| 丰满的人妻完整版| 99久久99久久久精品蜜桃| 亚洲五月天丁香| 91字幕亚洲| 国产成人啪精品午夜网站| 19禁男女啪啪无遮挡网站| 岛国在线观看网站| 一级作爱视频免费观看| 欧美bdsm另类| 啦啦啦韩国在线观看视频| 搡老妇女老女人老熟妇| 精品一区二区三区人妻视频| 又爽又黄无遮挡网站| 97超视频在线观看视频| 欧美日本视频| 免费看十八禁软件| 亚洲真实伦在线观看| 中文在线观看免费www的网站| 丰满乱子伦码专区| 精品福利观看| 美女 人体艺术 gogo| 久久婷婷人人爽人人干人人爱| 一区二区三区国产精品乱码| 天天躁日日操中文字幕| 又粗又爽又猛毛片免费看| 欧美一级毛片孕妇| 九色成人免费人妻av| 99久久九九国产精品国产免费| 欧美日韩福利视频一区二区| 热99在线观看视频| 午夜日韩欧美国产| 在线观看午夜福利视频| 日本与韩国留学比较| 国产高清三级在线| 18禁美女被吸乳视频| 12—13女人毛片做爰片一| 校园春色视频在线观看| 国产三级黄色录像| av天堂中文字幕网| 亚洲成a人片在线一区二区| 美女黄网站色视频| 久久精品国产亚洲av涩爱 | 国内精品久久久久精免费| 亚洲七黄色美女视频| 99久久久亚洲精品蜜臀av| 精品久久久久久成人av| 久久久久久国产a免费观看| 欧美最新免费一区二区三区 | 黄色丝袜av网址大全| 国产精品精品国产色婷婷| 动漫黄色视频在线观看| 免费看日本二区| 十八禁网站免费在线| 手机成人av网站| 18禁黄网站禁片午夜丰满| 色综合亚洲欧美另类图片| 香蕉久久夜色| 好男人在线观看高清免费视频| 日韩 欧美 亚洲 中文字幕| 看片在线看免费视频| 国模一区二区三区四区视频| 久久人人精品亚洲av| 国内精品久久久久精免费| 免费人成视频x8x8入口观看| 神马国产精品三级电影在线观看| 制服人妻中文乱码| 18禁美女被吸乳视频| 午夜福利高清视频| 久久伊人香网站| 欧美性感艳星| 999久久久精品免费观看国产| 欧美极品一区二区三区四区| 国产精品日韩av在线免费观看| 女同久久另类99精品国产91| 少妇的丰满在线观看| 国产一区二区在线av高清观看| 三级男女做爰猛烈吃奶摸视频| 欧美3d第一页| 有码 亚洲区| 天天一区二区日本电影三级| 黄色片一级片一级黄色片| 美女黄网站色视频| 亚洲国产精品合色在线| 非洲黑人性xxxx精品又粗又长| 在线免费观看的www视频| 亚洲国产精品合色在线| 精品无人区乱码1区二区| 深夜精品福利| 国产乱人伦免费视频| 久久久久性生活片| www.999成人在线观看| 国产精品98久久久久久宅男小说| 美女高潮的动态| 亚洲精品国产精品久久久不卡| 三级男女做爰猛烈吃奶摸视频| 狂野欧美激情性xxxx| 亚洲无线在线观看| 国产99白浆流出| 日本三级黄在线观看| 欧美日韩乱码在线|