• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    MnO2的晶相結(jié)構(gòu)和表面性質(zhì)對低溫NH3-SCR反應(yīng)的影響

    2012-11-30 10:57:08李俊華唐幸福
    物理化學(xué)學(xué)報 2012年7期
    關(guān)鍵詞:晶相晶面性質(zhì)

    戴 韻 李俊華,* 彭 悅 唐幸福

    (1清華大學(xué)環(huán)境學(xué)院,環(huán)境模擬與污染控制國家重點聯(lián)合實驗室,北京100084;2復(fù)旦大學(xué)環(huán)境科學(xué)與工程系,上海200433)

    MnO2的晶相結(jié)構(gòu)和表面性質(zhì)對低溫NH3-SCR反應(yīng)的影響

    戴 韻1李俊華1,*彭 悅1唐幸福2,*

    (1清華大學(xué)環(huán)境學(xué)院,環(huán)境模擬與污染控制國家重點聯(lián)合實驗室,北京100084;2復(fù)旦大學(xué)環(huán)境科學(xué)與工程系,上海200433)

    采用水熱法合成了兩種具有相同形貌但是不同物相結(jié)構(gòu)的MnO2納米棒,分別為隧道狀和層狀結(jié)構(gòu),考察其低溫NH3選擇性催化還原NOx(NH3-SCR)的性能.結(jié)果表明MnO2納米棒的比表面積不是影響活性的主要因素,催化劑的晶相結(jié)構(gòu)和表面性質(zhì)對催化活性有很大影響,隧道狀α-MnO2納米棒的低溫NH3-SCR活性明顯高于層狀δ-MnO2納米棒.結(jié)構(gòu)分析和NH3程序升溫脫附(NH3-TPD)實驗表明,α-MnO2納米棒的暴露晶面(110)面存在大量的配位不飽和Mn離子,形成較多的Lewis酸性位點,而且α-MnO2較弱的Mn―O鍵和隧道結(jié)構(gòu)都有利于NH3的吸附;而δ-MnO2納米棒的暴露晶面(001)面上的Mn離子已達到配位飽和,所以其表面Lewis酸性位點較少.X射線光電子能譜(XPS)和熱重(TG)分析表明α-MnO2納米棒的表面更有利于NH3和NOx的活化.具有有利于吸附NH3和活化NH3和NOx的表面性質(zhì)和晶型結(jié)構(gòu),是α-MnO2納米棒活性高的主要原因.

    α-MnO2;δ-MnO2;低溫;NH3-選擇性催化還原NOx;晶相結(jié)構(gòu);表面性質(zhì).

    1 Introduction

    Nitrogen oxides(NOx)emitted from stationary and mobile sources are major air pollutants,contributing to acid rain,photochemical smog,ozone depletion,and fine particle pollution.1Over the past years,many methods have been used to abate NOx,and selective catalytic reduction of NOxwith NH3(NH3-SCR)has been approved to be the most efficient one.2,3The commercial catalyst for NH3-SCR is V2O5-WO3(MoO3)/ TiO2.3The catalyst has to be located upstream the electric precipitator and desulfurizing unit to meet the optimum operating temperature of 350-400°C.2,4Thus the catalyst is subjected to be blocked and poisoned by the particles and sulfates(resulting from SO2)in the flue gas.A better alternative is locating the catalysts downstream the electric precipitator and desulfurizing unit,where the temperature of the flue gas is lower than 200°C.4Therefore,it is significant to develop the low-temperature catalysts that are active below 200°C.

    Various transition metal oxides have been studied as the catalysts for low-temperature NH3-SCR,and Mn-based catalysts are considered to be the most active ones.3,5Supported MnOxcatalysts such as MnOx/Al2O36and MnOx/TiO27,8and unsupported MnOxcatalysts such as MnOx-CeO24have attracted much interest due to their high SCR activities.Kapteijn et al.9studied the NH3-SCR activities over pure manganese oxides of different valences and concluded that MnO2(Mn4+)had the best activity for its highest valence.In the recent studies,Tian et al.10prepared MnO2with different morphologies and found out that the activities decreased in the order:nanorod>nanoparticle>nanotube.Wang et al.11analyzed the NH3-SCR activities over α-MnO2and β-MnO2with tunnel structures,and deduced that α-MnO2showed higher activity than β-MnO2because α-MnO2had semitunnel structured external surface and more surface lattice oxygen.

    MnO2exists with various structures,and among them,the tunnel and layer structures have been paid considerable attention for their applications on electrochemical and catalytic fields.12,13However,few investigations have been done on lowtemperature NH3-SCR over MnO2with different structures. Therefore,in the present study,tunneled α-MnO2nanorods and layered δ-MnO2nanorods were prepared and investigated for low-temperature NH3-SCR.Analysis on the exposed crystal planes and characterizations,such as X-ray diffraction(XRD), temperature-programmed desorption of NH3(NH3-TPD),X-ray photoelectron spectroscopy(XPS),and thermal gravimetric (TG)analysis,were carried out to investigate the relationship between surface structure and catalytic activity.

    2 Experimental

    2.1 Catalyst synthesis

    α-and δ-MnO2were synthesized by hydrothermal methods.14For the preparation of α-MnO2,KMnO4(2.5 g,AR)and MnSO4·H2O(1.05 g,AR)were mixed in distilled water and then hydrothermally treated in a Teflon-lined autoclave at 160°C for 12 h.δ-MnO2was obtained by hydrothermally heating the mixture of KMnO4(6.0 g,AR)and MnSO4·H2O(1.1 g,AR)at 240°C for 24 h.Before used,α-and δ-MnO2were calcinated at 400 and 350°C for 4 h,respectively.

    2.2 Catalytic performance

    The activity measurements were carried out in a fixed-bed quartz reactor(inner diameter 9 mm)using 0.4 g catalyst (40-60 mesh).The feed gas mixture contained 0.1%(volume fraction,φ)NO,0.1%(φ)NH3,2%(φ)O2and N2as the balance gas.The total flow rate of the feed gas was 200 mL· min-1,corresponding to a space velocity of about 38000 h-1. The concentrations of NO,NO2,and NH3in the inlet and outlet gases were measured by Fourier transform infrared(FT-IR) spectroscopy gas analyzer Gasmet Dx-4000(Gasmet Technologies,Finland).

    2.3 Catalyst characterization

    X-ray diffraction measurements were performed on a D/ MAX-RB system with Cu Kαradiation(PIGAKV,Japan). Brunauer-Emmett-Teller(BET)surface areas were measured by nitrogen adsorption at liquid nitrogen temperature(77 K)on a Micromeritics ASAP 2010 micropore size analyzer(Quantachrome,America).JSM 7401 scanning electron microscope (SEM)instrument(JEOL,Japan)was used to characterize the morphology and the particle size of the catalysts.X-ray photoelectron spectroscopy data were obtained with an ESCAL-ab220i-XL electron spectrometer using 300 W Mg Kαradiations(VG scientific,England).The binding energies(EB)were referenced to the C 1s line at 284.8 eV from adventitious carbon.Thermal gravimetric analyses were performed on a Perkin-Elmer Pyric Diamond TG Analyzer(Perkin-Elmer,America)at a heating rate of 10°C·min-1.Temperature programmed desorption(TPD)experiments of NH3were carried out in a fixed-bed quartz reactor.The experiments consisted of four stages:(1)purge the sample in N2at 300°C for 1 h,(2)adsorb 0.1%(φ)NH3at 100°C for 1 h,(3)isothermal desorption in N2at room temperature until no NOxor NH3was detected,and(4) temperature-programmed desorption in N2(TPD stage)at a rate of 10°C·min-1up to 800°C.

    3 Results and discussion

    3.1 SCR catalytic activity

    Fig.1 NOxconversion(a)and NH3conversion(b)over α-and δ-MnO2for low-temperature NH3-SCR

    Thelow-temperatureNH3-SCR activitiesoverα-and δ-MnO2catalysts are shown in Fig.1.α-MnO2with a tunnel structure showed much higher activity than δ-MnO2with a layer structure.As shown in Fig.1a,the NOxconversion for α-MnO2was higher than 90%during the temperature range of 120-200°C,while that for δ-MnO2was less than 40%.The activities reached to maximum at 150°C.Fig.1b shows that the NH3conversion increases as the temperature rises.Comparing the NOxconversion in Fig.1a with the NH3conversion in Fig.1b,it could be inferred that the SCR reaction carried out between NH3and NO at a ratio of 1:1,and the NH3oxidation reaction occurred above 150°C.The BET surface areas of αand δ-MnO2were 28.0 and 40.5 m2·g-1,respectively.In general,the catalytic activity is greatly influenced by the surface area.However,δ-MnO2nanorods with a larger surface area showed much lower activity than α-MnO2nanorods.Consequently,the catalytic activities of the MnO2catalyst were not predominately controlled by the surface area.

    3.2 Structure analysis

    Fig.2a shows the XRD patterns of the two synthetic manganese oxides.The manganese oxide prepared at 160°C was attributed to a cryptomelane-type α-MnO2(JCPDS 44-0141,tetragonal,I4/m,a=b=0.978 nm,c=0.286 nm).14The pattern of MnO2prepared at 240°C showed planes(001),(002),(111)at 2θ=12.3°,24.9°,36.9°,indexed to δ-MnO2(JCPDS 80-1098, monoclinic,C2/m,a=0.515 nm,b=0.284 nm,c=0.717 nm).14,15

    Fig.2 XRD patterns(a),schematic structures(b,b?), model structures of the exposed planes(c,c?),andSEM images(d,d?)of α-and δ-MnO2

    α-MnO2and δ-MnO2are both constructed by chains of MnO6octahedra linking in different ways.Fig.2(b,b?)shows the schematic structures of the α-MnO2and δ-MnO2.The structure of α-MnO2consists of double chains of edge-sharing MnO6octahedra to form[2×2]tunnels of ca 0.46 nm×0.46 nm.16The morphology of α-MnO2was nanorod-shaped as shown in Fig.2d.Wang et al.11proposed that α-MnO2nanorods grew along a(001)axis direction and exposed the most stable (110)crystal planes(Fig.2(c,c?)).The crystal structure of δ-MnO2is built up from layers of edge-sharing MnO6octahedra with a certain number of water molecules and foreign cations between them.The spacing between the two layers is about 0.713 nm,16larger than the tunnel size of α-MnO2,so δ-MnO2needs more H2O or other foreign cations to stabilize the structure.According to Bragg?s equation,the interplanar spacing for(001)plane of δ-MnO2was calculated to be 0.719 nm,close to the interlayer spacing of 0.713 nm,which was in agreement with the schematic structures of δ-MnO2(Fig.2b?). Fig.2d?shows that the δ-MnO2prepared also had nanorod morphology.On the basis of the XRD pattern,the(001)plane(parallel to(002)plane)of δ-MnO2had much higher diffraction in-tensities than(111)plane,indicating that δ-MnO2might expose the(001)plane as shown in Fig.2c?,and the conclusion was proved by Xiao et al.15.

    3.3 Acidity

    NH3-TPD experiments were taken to demonstrate the acidities of the two MnO2nanorods and the results are shown in Fig.3 and Table 1.NH3,together with N2O and NO were desorbed as the temperature increased.The NH3desorption temperature for α-MnO2was higher than that for δ-MnO2,revealing the higher acidity of α-MnO2.The total NH3adsorption amounts(NH3+2N2O+NO)for α-MnO2were much higher than that for δ-MnO2as shown in Table 1.Therefore,α-MnO2nanorods had much more acid sites than δ-MnO2nanorods on the surface.NH3was adsorbed on the catalyst as the form of NH4+ions(Br?nsted acid sites)or coordinated NH3(Lewis acid sites).Since the surface hydroxyl groups can act as Br?nsted acid sites,17,18NH3adsorption as the form of NH4+on δ-MnO2nanorods was greatly enhanced by the large number of H2O between the layers.In spite of many Br?nsted acid sites,δ-MnO2nanorods exhibited less acidity than α-MnO2,probably because of few Lewis acid sites existed on the exposed plane.The Lewis acid sites on the surface of MnO2nanorods should be octahedral Mn sites in coordinatively unsaturated environment.11As seen in Fig.2c?,all of the Mn cations on the exposed(001) plane of δ-MnO2are at the center of oxygenic octahedra,6 fold coordinated to oxygen in a coordinatively saturated environment.The octahedral coordination model for δ-MnO2is considerably stable,19indicative of few Lewis acid sites on the plane. For α-MnO2,the Mn cations on the exposed(110)plane are 3 or 5 fold coordinated to oxygen in coordinately unsaturated environment,which indicates that α-MnO2nanorods possesses many Lewis acid sites.11The average Mn―O bond lengths of α-and δ-MnO2are 0.198 and 0.194 nm,respectively.16It suggests that the Mn cations of α-MnO2are more active than those of δ-MnO2,beneficial to the NH3adsorption on Mn sites.Furthermore,α-MnO2owns the[2×2]tunnels as shown in Fig.2b, of which the effective pore opening for gas adsorption is close to 0.265 nm,so that NH3and H2O molecules with diameters below 0.265 nm can be inserted into the tunnels.20,21Therefore, α-MnO2has much higher NH3adsorption than δ-MnO2,due to more Lewis acid sites on the surface,weaker Mn―O bonds, and effective[2×2]tunnels.Remarkably,α-MnO2had a N2O desorption peak centered at ca 280°C,while δ-MnO2had a high-temperature NO desorption peak but no low-temperature one.It could be seen that the adsorbed NH4+ions between the layers of δ-MnO2were easy to desorb as the form of NH3and difficult to be oxidized at low temperature.

    Fig.3 NH3-TPD profiles of α-and δ-MnO2nanorods

    Table 1 NH3,N2O,and NO desorption amounts(unit in μmol·g-1) of α-and δ-MnO2nanorods during the NH3-TPD experiments

    3.4 Redox property

    Fig.4 Mn 2p(a)and O 1s(b)XPS spectra of α-and δ-MnO2nanorods

    Fig.5 TG curves of α-and δ-MnO2nanorods

    In general,for low-temperature NH3-SCR over Mn-based catalysts,the surface redox property is more important than the bulk redox property.XPS experiments were done to present the surface electronic state of the catalysts,and the results are shown in Fig.4.As seen in Fig.4a,two main peaks corresponding to Mn 2p1/2and Mn 2p3/2were observed for Mn 2p XPS spectra.The Mn 2p3/2peaks for the two MnO2nanorods were both located at 642.4 eV,indicating that the surfaces were presented dominantly as Mn4+.22Fig.4b shows the O 1s XPS spectra.The O 1s peak is generally composed of two surface oxygen species.The binding energy range of 531.0-532.0 eV is assigned to surface chemisorbed oxygen such as defect oxides or oxygen ions with low coordination(donated as Oα),and the binding energy range of 529.5-530.0 eV is characteristic of lattice oxygen(donated as Oβ).23Oαwas reported to be highly active in the oxidation reaction due to its higher mobility than lattice oxygen Oβ.24Therefore,Oαcould promote the oxidation of NO to NO2and H-abstraction of the adsorbed NH3,which were both supposed to be very important in low-temperature NH3-SCR.17,25The corresponding concentrations of Oαwere calculated from the relative areas of the sub-peaks and the results were 37.1%and 24.9%for α-and δ-MnO2,respectively.It indicated that α-MnO2nanorods had a higher capability to activate NH3and NO,which were also proved by NH3-TPD and NO-TPD (Fig.S1(see Supporting Information))results.The results of H2-TPR are shown in Fig.S2(see Supporting Information). δ-MnO2nanorods exhibited slightly higher bulk reducibility than α-MnO2nanorods,which implied that the bulk reducibility was not the main factor to affect the activity in the present study.

    The profiles of TG are shown in Fig.5.The initial mass loss below 250°C is generally attributed to the loss of physically and chemically adsorbed water,including the loosely bound and tightly bound(interlayer)H2O molecules;26,27the mass loss in the temperature range of 250-540°C is believed to be the loss of chemical oxygen,which was considered to be highly active in the oxidation reactions;11the following evident mass losses are due to the transformation of MnO2to Mn2O3,then to Mn3O4.18The water losses for α-and δ-MnO2were 2.0%and 8.2%,respectively.The water losses of δ-MnO2were much larger than that of α-MnO2,in accordance with the existence of abundant water molecules between the layers even after calcination.The chemical oxygen losses for α-and δ-MnO2were 1.0%and 0.7%,respectively.α-MnO2had more chemical oxygen loss than δ-MnO2,which probably promoted the activation of NO and NH3,consistent with the XPS results.

    4 Conclusions

    α-MnO2nanorods with a[2×2]tunnel structure obtained much better low-temperature NH3-SCR performance than δ-MnO2nanorods with a layer structure.The BET surface area is not the main factor to affect the catalytic activity.The SCR activity over the MnO2nanorods is structure sensitive.The exposed(110)plane of α-MnO2possesses many manganese cations in coordinatively unsaturated environment while all the manganese cations on the exposed(001)plane of δ-MnO2are in coordinatively saturated environment,which suggests that α-MnO2has more Lewis acid sites.With more Lewis acid sites,weaker Mn―O bonds,efficient tunnel structure,and higher capacity to activate NO and NH3,α-MnO2catalyst is more adaptable for low-temperature NH3-SCR.

    Supporting Information: available free of charge via the internet at http://www.whxb.pku.edu.cn.

    (1) Schneider,H.;Tschudin,S.;Schneider,M.;Wokaun,A.;Baiker, A.J.Catal.1994,147,5.doi:10.1006/jcat.1994.1109

    (2) Busca,G.;Lietti,L.;Ramis,G.;Berti,F.Appl.Catal.B: Environ.1998,18,1.doi:10.1016/S0926-3373(98)00040-X

    (3) Marban,G.;Valdes-Solis,T.;Fuertes,A.B.J.Catal.2004,226, 138.doi:10.1016/j.jcat.2004.05.022

    (4) Qi,G.S.;Yang,R.T.J.Catal.2003,217,434.

    (5) Tang,X.F.;Li,J.H.;Sun,L.;Hao,J.M.Appl.Catal.B: Environ.2010,99,156.doi:10.1016/j.apcatb.2010.06.012

    (6) Kijlstra,W.S.;Brands,D.S.;Smit,H.I.;Poels,E.K.;Bliek,A. J.Catal.1997,171,219.doi:10.1006/jcat.1997.1789

    (7) Li,J.H.;Chen,J.J.;Ke,R.;Luo,C.K.;Hao,J.M.Catal. Commun.2007,8,1896.doi:10.1016/j.catcom.2007.03.007

    (8) Lin,T.;Zhang,Q.L.;Li,W.;Gong,M.C.;Xing,Y.X.;Chen, Y.Q.Acta Phys.-Chim.Sin.2008,24,1127.[林 濤,張秋林,李 偉,龔茂初,幸怡汛,陳耀強.物理化學(xué)學(xué)報,2008,24, 1127.]doi:10.1016/S1872-1508(08)60046-7

    (9) Kapteijn,F.;Singoredjo,L.;Andreini,A.;Moulijn,J.A.Appl. Catal.B:Environ.1994,3,173.doi:10.1016/0926-3373(93) E0034-9

    (10)Tian,W.;Yang,H.S.;Fan,X.Y.;Zhang,X.B.J.Hazard. Mater.2011,188,105.doi:10.1016/j.jhazmat.2011.01.078

    (11)Wang,C.;Sun,L.;Cao,Q.Q.;Hu,B.B.;Huang,Z.W.;Tang, X.F.Appl.Catal.B:Environ.2011,101,598.doi:10.1016/j. apcatb.2010.10.034

    (12) Brock,S.L.;Duan,N.G.;Tian,Z.R.;Giraldo,O.;Zhou,H.; Suib,S.L.Chem.Mater.1998,10,2619.doi:10.1021/ cm980227h

    (13) Suib,S.L.Accounts Chem.Res.2008,41,479.doi:10.1021/ ar7001667

    (14) Liang,S.H.;Teng,F.;Bulgan,G.;Zong,R.L.;Zhu,Y.F. J.Phys.Chem.C 2008,112,5307.doi:10.1021/jp0774995

    (15)Xiao,W.;Wang,D.L.;Lou,X.W.J.Phys.Chem.C 2010,114, 1694.doi:10.1021/jp909386d

    (16) Albering,J.H.Structural Chemistry of Manganese Dioxide and Related Compounds.In Handbook of Battery Materials;Daniel, C.,Besenhard,J.O.Eds.;McGraw-Hill:New York,1997;pp 85-107.

    (17) Liu,F.D.;He,H.;Ding,Y.;Zhang,C.B.Appl.Catal.B: Environ.2009,93,194.doi:10.1016/j.apcatb.2009.09.029

    (18) Wang,Z.M.;Kanoh,H.Thermochim.Acta 2001,379,7.doi: 10.1016/S0040-6031(01)00596-2

    (19) Chen,S.H.;Niu,J.Z.;Liu,J.X.;Li,S.B.Chin.J.Chem.Phys. 1999,12,176.[陳善宏,牛建中,劉新建,李樹本.化學(xué)物理學(xué)報,1999,12,176.]

    (20)Wang,Z.M.;Tezuka,S.;Kanoh,H.Chem.Mater.2001,13, 530.doi:10.1021/cm0007609

    (21) Wang,Z.M.;Tezuka,S.;Kanoh,H.Chem.Lett.2000,29,560.

    (22) Lee,S.J.;Gavriilidis,A.;Pankhurst,Q.A.;Kyek,A.;Wagner, F.E.;Wong,P.C.L.;Yeung,K.L.J.Catal.2001,200,298.doi: 10.1006/jcat.2001.3209

    (23) Larachi,F.;Pierre,J.;Adnot,A.;Bernis,A.Appl.Surf.Sci. 2002,195,236.doi:10.1016/S0169-4332(02)00559-7

    (24)Wu,Z.B.;Jin,R.B.;Liu,Y.;Wang,H.Q.Catal.Commun. 2008,9,2217.doi:10.1016/j.catcom.2008.05.001

    (25) Kang,M.;Park,E.D.;Kim,J.M.;Yie,J.E.Appl.Catal.A: Gen.2007,327,261.doi:10.1016/j.apcata.2007.05.024

    (26) Giovanoli,R.Thermochim.Acta 1994,234,303.doi:10.1016/ 0040-6031(94)85154-9

    (27) Lemus,M.A.;Lopez,T.;Recillas,S.;Frias,D.M.;Montes,M.; Delgado,J.J.;Centeno,M.A.;Odriozola,J.A.J.Mol.Catal. A:Chem.2008,281,107.doi:10.1016/j.molcata.2007.10.037

    March 6,2012;Revised:April 17,2012;Published on Web:April 17,2012.

    Effects of MnO2Crystal Structure and Surface Property on the NH3-SCR Reaction at Low Temperature

    DAI Yun1LI Jun-Hua1,*PENG Yue1TANG Xing-Fu2,*
    (1State Key Joint Laboratory of Environment Simulation and Pollution Control,School of Environment,Tsinghua University,Beijing 100084,P.R.China;2Department of Environmental Science and Engineering,Fudan University,Shanghai 200433,P.R.China)

    Two manganese oxides with the same nanorod-shaped morphology but different crystal structures,tunnel and layer structures,were synthesized and investigated for selective catalytic reduction of NOxwith NH3(NH3-SCR)at low temperature.Tunneled α-MnO2had much higher catalytic activity than layered δ-MnO2under the same reaction conditions.Experiment results revealed that the surface area was not the main factor to affect the NH3-SCR activities over the MnO2nanorods and that the activities were structure sensitive.Structure analysis and temperature-programmed desorption experiments of NH3(NH3-TPD)suggested that the exposed(110)plane of α-MnO2had many Mn cations in coordinatively unsaturated environment,while all of the Mn cations on the exposed(001)plane of δ-MnO2were in coordinatively saturated environment.Thus,α-MnO2possessed many more Lewis acid sites.Furthermore, α-MnO2has weaker Mn―O bonds and an efficient tunnel structure,which are favorable characteristics for NH3adsorption.Moreover,X-ray photoelectron spectroscopy(XPS)and thermal gravimetric(TG)analysis indicated that α-MnO2obtained a higher capability for NH3and NOxactivation than δ-MnO2.The crystal structure and surface properties of α-MnO2are more suitable to the adsorption of NH3and activation of NH3and NOx,which accounts for the higher catalytic activity of the α-MnO2nanorods.

    α-MnO2;δ-MnO2;Low-temperature;Selective catalytic reduction of NOxwith NH3; Crystal structure; Surface property

    10.3866/PKU.WHXB201204175

    O643

    ?Corresponding authors.LI Jun-Hua,Email:lijunhua@tsinghua.edu.cn;Tel:+86-10-62771093.TANG Xing-Fu,Email:tangxf@fudan.edu.cn; Tel:+86-21-55664880.

    The project was supported by the National Natural Science Fundation of China(51078203)and National High-Tech Research and Development Program of China(863)(2010AA065002,2009AA06Z301).

    國家自然科學(xué)基金(51078203)及國家高技術(shù)研究發(fā)展計劃項目(863)(2010AA065002,2009AA06Z301)資助

    猜你喜歡
    晶相晶面性質(zhì)
    專利名稱:一種銪摻雜含鉬酸鋅晶相透明玻璃陶瓷及其制備方法
    乙酸乙酯與ε-CL-20不同晶面的微觀作用機制
    鋰電池正極材料燒成用匣缽物相的半定量分析
    隨機變量的分布列性質(zhì)的應(yīng)用
    完全平方數(shù)的性質(zhì)及其應(yīng)用
    九點圓的性質(zhì)和應(yīng)用
    NaCl單晶非切割面晶面的X射線衍射
    物理實驗(2019年7期)2019-08-06 05:35:56
    (100)/(111)面金剛石膜抗氧等離子刻蝕能力
    不同硅晶面指數(shù)上的類倒金字塔結(jié)構(gòu)研究與分析?
    厲害了,我的性質(zhì)
    国产精品国产三级专区第一集| 日日撸夜夜添| 精品国产一区二区三区久久久樱花 | 国模一区二区三区四区视频| 免费观看性生交大片5| 日本爱情动作片www.在线观看| 卡戴珊不雅视频在线播放| 国产精品一区二区三区四区久久| 亚洲国产精品sss在线观看| 一区二区三区高清视频在线| 欧美日韩一区二区视频在线观看视频在线 | 一级片'在线观看视频| 国产成年人精品一区二区| xxx大片免费视频| 搡老妇女老女人老熟妇| 国产 亚洲一区二区三区 | 亚洲真实伦在线观看| 亚洲精品,欧美精品| 日韩人妻高清精品专区| 亚洲欧美一区二区三区黑人 | 久久久久久久久久人人人人人人| 一个人看的www免费观看视频| 寂寞人妻少妇视频99o| 久久精品人妻少妇| 哪个播放器可以免费观看大片| 在线观看一区二区三区| 中文精品一卡2卡3卡4更新| 国产精品三级大全| 麻豆国产97在线/欧美| 激情五月婷婷亚洲| 国产精品爽爽va在线观看网站| 一级二级三级毛片免费看| 午夜亚洲福利在线播放| 国产av国产精品国产| 午夜福利视频1000在线观看| 老司机影院成人| 欧美3d第一页| 中文字幕亚洲精品专区| 乱码一卡2卡4卡精品| 国产在线男女| 日本熟妇午夜| 久久精品国产鲁丝片午夜精品| 18禁裸乳无遮挡免费网站照片| 老司机影院成人| 国产中年淑女户外野战色| 三级毛片av免费| 91精品国产九色| 午夜精品一区二区三区免费看| 国产成人精品福利久久| 国产爱豆传媒在线观看| 最新中文字幕久久久久| 狂野欧美激情性xxxx在线观看| 日韩强制内射视频| 色哟哟·www| 黑人高潮一二区| 国产精品国产三级国产av玫瑰| 最近最新中文字幕免费大全7| 色哟哟·www| 欧美激情在线99| 男插女下体视频免费在线播放| 国产人妻一区二区三区在| 亚洲av电影不卡..在线观看| 成人午夜精彩视频在线观看| av天堂中文字幕网| 免费看a级黄色片| 日韩大片免费观看网站| 成人毛片60女人毛片免费| 久久久久久九九精品二区国产| 少妇人妻一区二区三区视频| 日韩精品有码人妻一区| 看非洲黑人一级黄片| 国产午夜精品久久久久久一区二区三区| 国产av在哪里看| 亚洲综合色惰| 99热网站在线观看| 国产综合精华液| 日日干狠狠操夜夜爽| 乱系列少妇在线播放| 久久草成人影院| 日韩一区二区三区影片| 婷婷六月久久综合丁香| 亚洲国产av新网站| xxx大片免费视频| 乱人视频在线观看| or卡值多少钱| 国产高清有码在线观看视频| 免费观看无遮挡的男女| 舔av片在线| 日本av手机在线免费观看| 久久韩国三级中文字幕| 日本欧美国产在线视频| 99热6这里只有精品| 中文字幕制服av| 天堂影院成人在线观看| 99久久精品一区二区三区| 高清视频免费观看一区二区 | 亚洲一级一片aⅴ在线观看| 国产黄a三级三级三级人| 最近中文字幕高清免费大全6| 性插视频无遮挡在线免费观看| 中文乱码字字幕精品一区二区三区 | 亚洲精品一区蜜桃| 国产伦精品一区二区三区四那| av在线亚洲专区| 欧美最新免费一区二区三区| 女人久久www免费人成看片| 免费看光身美女| 伦精品一区二区三区| 岛国毛片在线播放| 日韩欧美精品v在线| 欧美精品国产亚洲| 亚洲精品久久午夜乱码| 18禁在线无遮挡免费观看视频| 欧美一区二区亚洲| 18禁在线无遮挡免费观看视频| 美女内射精品一级片tv| 亚洲国产精品成人久久小说| 狂野欧美白嫩少妇大欣赏| 久久久久久久国产电影| 在线观看人妻少妇| 久久精品熟女亚洲av麻豆精品 | 女人久久www免费人成看片| 精品国产露脸久久av麻豆 | 色吧在线观看| 一级a做视频免费观看| 青青草视频在线视频观看| 国产黄片视频在线免费观看| 久久午夜福利片| 精品一区二区三区视频在线| 亚洲精品日本国产第一区| 亚洲人与动物交配视频| 男人狂女人下面高潮的视频| 亚洲人成网站在线播| 精品亚洲乱码少妇综合久久| 精品一区二区三卡| 亚洲欧美成人精品一区二区| 白带黄色成豆腐渣| av免费观看日本| 五月玫瑰六月丁香| 欧美成人一区二区免费高清观看| 国产成人aa在线观看| 丝袜喷水一区| 不卡视频在线观看欧美| 国产男女超爽视频在线观看| 婷婷色综合大香蕉| 青春草亚洲视频在线观看| 国产精品久久视频播放| 国产精品久久久久久久久免| 99re6热这里在线精品视频| 久久精品人妻少妇| 九色成人免费人妻av| 精品欧美国产一区二区三| 亚洲三级黄色毛片| 你懂的网址亚洲精品在线观看| 久久国产乱子免费精品| av一本久久久久| 国产精品精品国产色婷婷| 日本一二三区视频观看| 国产黄色视频一区二区在线观看| 韩国高清视频一区二区三区| 中文字幕人妻熟人妻熟丝袜美| 国产欧美日韩精品一区二区| 久久久久久久久久久免费av| 日韩欧美 国产精品| 国产不卡一卡二| 日韩三级伦理在线观看| 深爱激情五月婷婷| 亚洲婷婷狠狠爱综合网| 麻豆乱淫一区二区| 老女人水多毛片| 国产成人a区在线观看| 国产成人一区二区在线| 亚洲av日韩在线播放| 男女下面进入的视频免费午夜| 床上黄色一级片| 午夜福利在线观看吧| 一级黄片播放器| 日韩欧美国产在线观看| 人妻一区二区av| 身体一侧抽搐| 99久久精品热视频| 久久精品综合一区二区三区| 日日摸夜夜添夜夜爱| 一级黄片播放器| 亚洲精品乱码久久久v下载方式| 国产激情偷乱视频一区二区| 成人亚洲精品一区在线观看 | 亚洲aⅴ乱码一区二区在线播放| 麻豆乱淫一区二区| 国产 一区 欧美 日韩| 亚洲,欧美,日韩| 久久久午夜欧美精品| 五月玫瑰六月丁香| 一二三四中文在线观看免费高清| 最近的中文字幕免费完整| 99热这里只有是精品50| 欧美人与善性xxx| 2021天堂中文幕一二区在线观| 精品一区二区免费观看| 免费大片18禁| 国产亚洲精品久久久com| 熟妇人妻不卡中文字幕| 不卡视频在线观看欧美| freevideosex欧美| 免费av毛片视频| 国产av国产精品国产| 三级国产精品片| 成人午夜精彩视频在线观看| 国产一级毛片七仙女欲春2| 免费不卡的大黄色大毛片视频在线观看 | 久久久色成人| 亚洲图色成人| 岛国毛片在线播放| 亚洲精品乱码久久久久久按摩| 国产精品国产三级国产av玫瑰| 一夜夜www| 三级国产精品片| 久久精品熟女亚洲av麻豆精品 | 亚洲国产精品sss在线观看| 精品一区在线观看国产| 亚洲精品日本国产第一区| 伊人久久国产一区二区| 国产精品99久久久久久久久| 只有这里有精品99| a级毛片免费高清观看在线播放| 看非洲黑人一级黄片| 中文在线观看免费www的网站| 成年人午夜在线观看视频 | 大香蕉久久网| 伊人久久精品亚洲午夜| 午夜免费男女啪啪视频观看| 成人亚洲欧美一区二区av| 精品99又大又爽又粗少妇毛片| 国产老妇伦熟女老妇高清| 51国产日韩欧美| 天美传媒精品一区二区| 极品教师在线视频| 日韩 亚洲 欧美在线| 嫩草影院精品99| 两个人视频免费观看高清| 国产精品1区2区在线观看.| 欧美3d第一页| 国产人妻一区二区三区在| 好男人在线观看高清免费视频| 久久久久精品性色| 极品教师在线视频| 久久久久久久久久久丰满| 在线观看人妻少妇| a级一级毛片免费在线观看| 国产伦一二天堂av在线观看| 伦理电影大哥的女人| 国产免费一级a男人的天堂| 国产黄色免费在线视频| 伊人久久精品亚洲午夜| 看免费成人av毛片| 午夜日本视频在线| 国产精品不卡视频一区二区| 国产精品蜜桃在线观看| 嫩草影院入口| 色哟哟·www| 日本午夜av视频| 纵有疾风起免费观看全集完整版 | 亚洲国产精品国产精品| 日产精品乱码卡一卡2卡三| 国产成人精品久久久久久| 搞女人的毛片| 免费少妇av软件| 十八禁国产超污无遮挡网站| 日韩 亚洲 欧美在线| 少妇人妻精品综合一区二区| 18禁裸乳无遮挡免费网站照片| 亚洲精品久久午夜乱码| 免费观看a级毛片全部| 深夜a级毛片| 你懂的网址亚洲精品在线观看| 麻豆成人av视频| 国产午夜精品一二区理论片| 色尼玛亚洲综合影院| 国产精品一二三区在线看| 免费看美女性在线毛片视频| 亚洲av.av天堂| 亚洲av国产av综合av卡| 高清午夜精品一区二区三区| 欧美日本视频| 亚洲在线观看片| 麻豆精品久久久久久蜜桃| 日本欧美国产在线视频| 日韩欧美精品免费久久| 一级a做视频免费观看| 久久精品国产自在天天线| 少妇高潮的动态图| 91狼人影院| 国产精品伦人一区二区| 水蜜桃什么品种好| 在现免费观看毛片| 亚洲高清免费不卡视频| 久久99热这里只频精品6学生| 久久久久久久久久黄片| 一级毛片 在线播放| 国产精品无大码| 日韩一本色道免费dvd| 波野结衣二区三区在线| 精品久久久噜噜| 中文字幕制服av| 国产亚洲一区二区精品| 一本久久精品| 日日摸夜夜添夜夜爱| 免费大片18禁| 日韩精品有码人妻一区| 国产 一区精品| freevideosex欧美| 人妻夜夜爽99麻豆av| 国产 一区 欧美 日韩| av在线天堂中文字幕| 欧美精品一区二区大全| av.在线天堂| 色网站视频免费| 黄色一级大片看看| 黄色一级大片看看| 国内精品一区二区在线观看| 熟妇人妻久久中文字幕3abv| 国产午夜精品论理片| 久久久久免费精品人妻一区二区| 国产在线男女| 内射极品少妇av片p| 国产免费又黄又爽又色| 成人亚洲精品av一区二区| 男人狂女人下面高潮的视频| 水蜜桃什么品种好| 51国产日韩欧美| 建设人人有责人人尽责人人享有的 | 国国产精品蜜臀av免费| or卡值多少钱| 搡老乐熟女国产| or卡值多少钱| 日韩成人av中文字幕在线观看| 91精品伊人久久大香线蕉| 欧美zozozo另类| 精品久久久精品久久久| 免费大片18禁| 免费大片18禁| 嫩草影院入口| 最近手机中文字幕大全| 亚洲人与动物交配视频| 亚洲美女搞黄在线观看| 国产在视频线在精品| 日日啪夜夜爽| 草草在线视频免费看| 只有这里有精品99| 在线a可以看的网站| 国产精品不卡视频一区二区| 黄色配什么色好看| 日韩国内少妇激情av| 久久久久久久大尺度免费视频| 99久久人妻综合| 国产高清三级在线| kizo精华| 久久久精品免费免费高清| 欧美+日韩+精品| 国产免费福利视频在线观看| 麻豆久久精品国产亚洲av| 日本色播在线视频| 一级毛片 在线播放| 国产综合精华液| 男插女下体视频免费在线播放| 99热6这里只有精品| 如何舔出高潮| 男女那种视频在线观看| 国产成人午夜福利电影在线观看| 欧美激情国产日韩精品一区| 精品国产一区二区三区久久久樱花 | 一个人免费在线观看电影| 观看美女的网站| 久久午夜福利片| 欧美丝袜亚洲另类| 久久人人爽人人片av| 国产 一区 欧美 日韩| 国产毛片a区久久久久| 精品国产露脸久久av麻豆 | 男人舔女人下体高潮全视频| 精品久久国产蜜桃| 啦啦啦中文免费视频观看日本| 日韩亚洲欧美综合| 日本黄色片子视频| 欧美潮喷喷水| 免费观看av网站的网址| 男人舔奶头视频| 亚洲欧美成人综合另类久久久| 精品久久久久久久久av| 亚洲精品国产av成人精品| 亚洲精品国产av蜜桃| 国产精品.久久久| 日本-黄色视频高清免费观看| 国产亚洲5aaaaa淫片| 毛片一级片免费看久久久久| 国产激情偷乱视频一区二区| 久久久久久伊人网av| 中文字幕亚洲精品专区| 亚洲电影在线观看av| 视频中文字幕在线观看| 亚洲不卡免费看| 91aial.com中文字幕在线观看| 最后的刺客免费高清国语| 国产亚洲精品av在线| 最近最新中文字幕免费大全7| 麻豆av噜噜一区二区三区| 寂寞人妻少妇视频99o| 乱人视频在线观看| 别揉我奶头 嗯啊视频| 神马国产精品三级电影在线观看| 午夜福利视频1000在线观看| 久久精品国产亚洲av涩爱| av免费在线看不卡| 又爽又黄无遮挡网站| 1000部很黄的大片| 激情 狠狠 欧美| 国产日韩欧美在线精品| 日本与韩国留学比较| 人妻少妇偷人精品九色| 岛国毛片在线播放| 嫩草影院精品99| 精品一区二区三卡| 99久久精品热视频| 人妻系列 视频| 久久热精品热| 亚洲精品影视一区二区三区av| 欧美高清成人免费视频www| 亚洲精品乱久久久久久| 亚洲美女搞黄在线观看| 中文欧美无线码| 亚洲精品国产av成人精品| 国内精品一区二区在线观看| 国产高清国产精品国产三级 | 国语对白做爰xxxⅹ性视频网站| 最近最新中文字幕大全电影3| 国产乱人视频| 女人十人毛片免费观看3o分钟| 真实男女啪啪啪动态图| 三级男女做爰猛烈吃奶摸视频| 大香蕉久久网| 国产成人福利小说| 天堂影院成人在线观看| 美女大奶头视频| 亚洲国产精品成人久久小说| 久久鲁丝午夜福利片| 免费大片18禁| 国产高清三级在线| 在线观看一区二区三区| 五月天丁香电影| 一个人看的www免费观看视频| 国产精品三级大全| 男女那种视频在线观看| 成人国产麻豆网| 啦啦啦啦在线视频资源| 免费观看在线日韩| 嫩草影院入口| 免费看光身美女| 淫秽高清视频在线观看| 久热久热在线精品观看| 伦理电影大哥的女人| 免费不卡的大黄色大毛片视频在线观看 | 老司机影院成人| 成人美女网站在线观看视频| 婷婷色麻豆天堂久久| 在线观看免费高清a一片| 嘟嘟电影网在线观看| 国产白丝娇喘喷水9色精品| 全区人妻精品视频| 日韩不卡一区二区三区视频在线| 三级毛片av免费| 91午夜精品亚洲一区二区三区| 亚洲最大成人手机在线| 亚洲最大成人中文| 一级毛片久久久久久久久女| 日韩在线高清观看一区二区三区| 最近最新中文字幕免费大全7| 丝瓜视频免费看黄片| 国产黄频视频在线观看| 国产成人aa在线观看| 亚洲,欧美,日韩| 麻豆国产97在线/欧美| 久久久久久久大尺度免费视频| 2022亚洲国产成人精品| 久久国内精品自在自线图片| 看免费成人av毛片| 视频中文字幕在线观看| 久久久久久久久中文| 777米奇影视久久| 真实男女啪啪啪动态图| 久久这里只有精品中国| 色视频www国产| 亚洲精品亚洲一区二区| 亚洲四区av| 国内精品美女久久久久久| 18禁裸乳无遮挡免费网站照片| 老司机影院毛片| 久久午夜福利片| 少妇高潮的动态图| 两个人视频免费观看高清| 久久久久久久久久成人| 男女国产视频网站| 国产一区有黄有色的免费视频 | 嫩草影院新地址| 国产精品不卡视频一区二区| 国产亚洲最大av| 欧美一级a爱片免费观看看| 亚州av有码| 国产精品麻豆人妻色哟哟久久 | 极品少妇高潮喷水抽搐| 又大又黄又爽视频免费| 91精品国产九色| 亚洲成人中文字幕在线播放| 午夜激情欧美在线| 在线观看av片永久免费下载| 国产片特级美女逼逼视频| 国内精品美女久久久久久| 亚洲av免费高清在线观看| 国产有黄有色有爽视频| 国产黄片视频在线免费观看| 在线播放无遮挡| 欧美性猛交╳xxx乱大交人| or卡值多少钱| 午夜视频国产福利| 夫妻午夜视频| 成人综合一区亚洲| 爱豆传媒免费全集在线观看| 国产成人a区在线观看| 亚州av有码| 日韩视频在线欧美| 777米奇影视久久| 免费观看精品视频网站| 天堂√8在线中文| 久久这里有精品视频免费| 精品久久国产蜜桃| 99久久精品一区二区三区| 高清av免费在线| 日韩电影二区| 亚洲国产欧美在线一区| 成人美女网站在线观看视频| 一级片'在线观看视频| 免费观看精品视频网站| 亚洲内射少妇av| 欧美变态另类bdsm刘玥| 国产精品日韩av在线免费观看| 国产精品人妻久久久久久| 校园人妻丝袜中文字幕| 少妇的逼水好多| 精品一区在线观看国产| 免费看不卡的av| 综合色av麻豆| 免费av观看视频| 国产精品女同一区二区软件| 欧美激情国产日韩精品一区| 免费观看无遮挡的男女| www.av在线官网国产| 欧美zozozo另类| 亚洲色图av天堂| 日韩av免费高清视频| 老师上课跳d突然被开到最大视频| 色吧在线观看| 国产日韩欧美在线精品| 久久久久久国产a免费观看| 国产亚洲精品av在线| 69人妻影院| 国产成人精品福利久久| 欧美成人一区二区免费高清观看| 三级男女做爰猛烈吃奶摸视频| 午夜老司机福利剧场| 国产男女超爽视频在线观看| 大片免费播放器 马上看| 国产一区二区三区综合在线观看 | 国产乱人偷精品视频| 日韩三级伦理在线观看| 美女被艹到高潮喷水动态| 青春草亚洲视频在线观看| 国产午夜精品论理片| 国产成人a∨麻豆精品| 伦理电影大哥的女人| 久久久a久久爽久久v久久| 寂寞人妻少妇视频99o| 51国产日韩欧美| 婷婷色综合大香蕉| 极品少妇高潮喷水抽搐| 一级a做视频免费观看| 内射极品少妇av片p| 97热精品久久久久久| 亚洲欧美一区二区三区黑人 | 一本一本综合久久| ponron亚洲| 免费看av在线观看网站| 久久99蜜桃精品久久| 九九爱精品视频在线观看| 亚州av有码| 午夜视频国产福利| 搡老妇女老女人老熟妇| 国产男女超爽视频在线观看| 好男人在线观看高清免费视频| 亚洲精品久久久久久婷婷小说| 亚洲av电影不卡..在线观看| 日韩制服骚丝袜av| 欧美97在线视频| 一级毛片 在线播放| av专区在线播放| 观看美女的网站| 国产老妇女一区| 国产黄色视频一区二区在线观看| 深夜a级毛片| 成人亚洲精品av一区二区| 99久久中文字幕三级久久日本| av专区在线播放| 在线观看美女被高潮喷水网站| 三级经典国产精品| 久久国内精品自在自线图片| 亚洲精品亚洲一区二区| 欧美成人精品欧美一级黄|