• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Synthesis,Crystal Structure,Thermal Behavior and Sensitivity of[Mn(AZT)2(H2O)4](HTNR)2·4H2O

    2012-11-06 07:01:06FENGJinLingZHANGJianGuoZHANGTongLaiCUIYan
    物理化學學報 2012年7期
    關(guān)鍵詞:張建國疊氮北京理工大學

    FENG Jin-Ling ZHANG Jian-Guo,* ZHANG Tong-Lai,* CUI Yan

    (1State Key Laboratory of Explosion Science and Technology,Beijing Institute of Technology,Beijing 100081,P.R.China;2The 6th Department,Research Institute of Chemical Defense(PLA),Beijing 102205,P.R.China)

    Synthesis,Crystal Structure,Thermal Behavior and Sensitivity of[Mn(AZT)2(H2O)4](HTNR)2·4H2O

    FENG Jin-Ling1ZHANG Jian-Guo1,*ZHANG Tong-Lai1,*CUI Yan2

    (1State Key Laboratory of Explosion Science and Technology,Beijing Institute of Technology,Beijing 100081,P.R.China;2The 6th Department,Research Institute of Chemical Defense(PLA),Beijing 102205,P.R.China)

    A novel energetic coordination complex of[Mn(AZT)2(H2O)4](HTNR)2·4H2O(AZT=3-azido-1,2,4-triazole,HTNR=2,4,6-trinitro resorcinol)was prepared by the reaction between the acidic manganese(II)salt of 2,4,6-trinitro resorcinol and AZT in an aqueous solution.The complex was characterized by elemental analysis and FTIR spectroscopy.The molecular structure was determined by X-ray single crystal diffraction.The crystal belongs to the triclinic system with a P1 space group.The central manganese(II)cation has a slightly distorted octahedron feature.Three-dimension networks were formed and the layers are linked by extensive hydrogen bonding.The thermal decompositionmechanismof[Mn(AZT)2(H2O)4](HTNR)2·4H2O was predicted based on differential scanning calorimetry(DSC)and thermogravimetry-derivative thermogravimetry(TG-DTG)analyses.One endothermic peak and three exothermic peaks are present during the thermal decomposition process with the final residue at 600℃being MnO and MnO2.The kinetic parameters of the exothermic process for the complex were studied using Kissinger′s and Ozawa-Doyle′s methods.Furthermore,impact sensitivity,flame sensitivity,and friction sensitivity tests reveal that the title complex is sensitive and selective towards external stimulants.

    Crystal structure;3-Azido-1,2,4-triazole;Manganese(II)complex;Sensitivity;Thermal behavior

    Nitrogen-rich compounds have attracted significant attention due to their potential applications as high-energy-density materials(HEDMs)in propulsion and explosive fields[1-7].They derive most of their energies either from the oxidation of the carbon backbone,or from their high positive heats of formation[8].Good HEDMs possess high density,have a fast velocity of detonation, and are energetically unstable with respect to their reaction products.Five-member nitrogen-rich heterocyclic compounds, such as triazole series[9-15],are one of the representative candidates of HEDMs.The high positive formation enthalpy and high nitrogen content of triazole have made its complexes interesting for being used as energetic materials.The addition of azide group strongly immproves its energetic properties[16].The nitrogen content of 3-azido-1,2,4-triazole(AZT)is 76.36%,and its standard heat of formation(ΔH?f)is 458 kJ·mol-1[17].

    Hydroxyl O atoms and triazolyl ring N atoms have good coordination capacities.Therefore,1,2,4-triazole has potential bridging fashions(μ1,2,μ2,4,and μ1,2,4)and strong coordination capabilities to bridge transition metal ions[18].To the best of our knowledge in published studies on 1,2,4-triazole-based energetic complexes,the ligands have been limited to 1,2,4-triazol-5-one[19-20],3-nitro-1,2,4-triazol-5-one[21-24],and 4-amino-1,2,4-triazol-5-one[25]. Thusfar,theligandsofothertriazolederivatives,suchas3-amino-1H-1,2,4-triazole[26]and 3,4,5-triamino-1,2,4-triazole[27],have been briefly studied.For the compound of AZT,main attention has been focused on its energetic ionic salts[28-32],except for our early research of using AZT as ligands for zinc(II)and cadmium(II) cations,where the structure and thermal properties were investigated[33-34].

    Enlightened by previous studies,we have selected other transition metals to construct novel AZT-based coordination compounds with new structures.Herein,we report a new manganese coordination compound[Mn(AZT)2(H2O)4](HTNR)2·4H2O,with AZT and H2O molecules as ligands,acidic anion of 2,4,6-trinitro resorcinol(HTNR)as outer anion.Thermal decomposition mechanism was studied with differential scanning calorimetry(DSC), thermogravimetry-derivative thermogravimetry(TG-DTG)analyses,and Fourier transform infrared(FTIR)spectroscopy.Furthermore,the investigations of sensitivity properties revealed the potential application of the title compound as an energetic material in ammunitions.

    1 Experimental

    General caution:AZT and its coordination compound are energetic materials and tend to explode under certain conditions. Appropriate safety precautions,such as safety glasses,face shields,leather coat,and ear plugs,should be taken during the synthesis,test,and measurement processes,especially when these compounds are prepared on a large scale and in dry states.

    1.1 Materials and instruments

    All chemicals from commercial sources were of analytical pure and used without further purification.AZT was prepared according to the method literature[35]reported.

    FTIR spectrum was recorded as KBr pellets on a Bruker Equinox 55 infrared spectrometer(Germany)in the range of 4000-400 cm-1with the resolution of 4 cm-1.Elemental analysis was carried out by a Flash EA 1112 full-automatic trace element analyzer(USA).

    DSC studies were performed on Perkin-Elmer Pyris-1 Differential Scanning Calorimeter(USA)with heating rates of 2,5,10, 15,and 20℃·min-1,respectively.TG analysis was conducted on Perkin-Elmer Pyris-1 Thermo-gravimetric Analyzer(USA) with a heating rate of 10℃·min-1in a flow of dry oxygen-free nitrogen at 20 mL·min-1.The sample of 0.5 mg was sealed in aluminum pans for DSC and held in platinum pans for TG-DTG.

    1.2 Preparation

    MnCO3(2.30 g,20 mmol)was added to a suspending solution of 2,4,6-trinitro resorcinol(9.80 g,40 mmol)in 20 mL distilled water at 50℃with vigorous stirring.Mn(HTNR)2solution was obtained after filtering the mixture.AZT(4.40 g,40 mmol)was dissolved in 40 mL distilled water,and the solution was added dropwise when the temperature reached 60℃.The mixture was stirred for an additional 1 h to complete the reaction.The jacinth precipitate was collected by filtration,washed with ethanol and dried in vacuum,with a yield of 84%(based on AZT).Element analysis,Calcd.(%)for[Mn(AZT)2(H2O)4](HTNR)2·4H2O:C, 21.16;H,2.64;N,27.77;Found(%):C,21.11;H,2.62;N,27.95. IR data(KBr pellet,ν/cm-1):3394(s),2150(s),1631(s),1572(s), 1531(s),1465(s),1333(s),1272(m),1180(m),1085(s),971(w), 927(m),873(w),735(m),692(m),626(w).

    1.3 X-ray crystallography

    Single crystals of[Mn(AZT)2(H2O)4](HTNR)2·4H2O were obtained through slow evaporation of a saturated water solution at 15℃for 25 d(distilled water,white rods,0.22 mm×0.20 mm× 0.18 mm).A Bruker Smart 1000 CCD diffractometer(Germany) with graphite monochromatic Mo Kαradiation(λ=0.07107 nm) was used for data collection at 21℃.Intensity measurements were performed using φ and ω scan modes.A total of 2793 reflections were used to determine the lattice parameters and orientation matrix in the range of 2.38°≤θ≤26.34°.The structure was solved by direct methods using SHELXS-97[36]and refined by full-matrix least squares techniques based on F2with the SHELXL-97 program[37].All non-hydrogen atoms were obtained from the difference Fourier map and refined anisotropically.All hydrogen atoms were generated geometrically or from the difference Fourier map,and treated by a constrained refinement. Crystallographic and refinement data are listed in Table 1.

    2 Results and discussion

    2.1 Structure description

    [Mn(AZT)2(H2O)4](HTNR)2·4H2O crystallizes with a triclinic unit cell in the space group P1.The coordination environment of themanganesecationandthemolecularunitof[Mn(AZT)2(H2O)4] (HTNR)2·4H2O,with atom labeling and the intra-molecular hydrogen bonds,are shown in Fig.1.Packing diagram of [Mn(AZT)2(H2O)4](HTNR)2·4H2O viewed along a-axis is shownin Fig.2.Selected bond data of[Mn(AZT)2(H2O)4](HTNR)2· 4H2O,compared with those in the molecular crystal of AZT[34], are listed in Table 2.The hydrogen bond lengths and bond angles are listed in Table 3.

    Table 1 Crystal data and structure refinement for [Mn(AZT)2(H2O)4](HTNR)2·4H2O

    As we can see from Fig.1,in the molecular unit of[Mn(AZT)2(H2O)4](HTNR)2·4H2O,each central manganese(II)ion is hexacoordinated with two N(4)atoms from two AZT molecules and four O atoms from four H2O molecules to form a centrosymmetric slightly distorted octahedron.There are three parallelogram planes in the structure,N(4)—O(9)—Mn(1)—N(4)#1—O(9)#1 (plane A),O(10)—N(4)—Mn(1)—O(10)#1—N(4)#1(plane B), and O(10)—O(9)—Mn(1)—O(10)#1—O(9)#1(plane C).The angles between plane A and plane B,plane B and plane C,plane C and plane A,all slightly derivate from 90°,are 86.0°,91.4°, and 91.2°,respectively.The bond lengths of manganese(II)centertothesixcoordinationatomscanbeobservedtobe0.2140(13) nm for Mn(1)—O(10)and Mn(1)—O(10)#1,0.2212(14)nm for Mn(1)—O(9)and Mn(1)—O(9)#1,0.2277(16)nm for Mn(1)—N(4)and Mn(1)—N(4)#1.The bond angles for O(10)—Mn(1)—O(10)#1,O(9)—Mn(1)—O(9)#1 and N(4)#1—Mn(1)—N(4)are almost the same(180°),while those around the central Mn2+derivate from 90°by the value of 1.28°,1.06°,and 3.97°,for the reason of the steric hindrance effect by the bulky AZT molecules and H2O molecules.

    In the crystal structure of[Mn(AZT)2(H2O)4](HTNR)2·4H2O, thecoordinationsiteofAZTisalsoN(5)atom,whichhasthemost negative charge(-0.49387e)as calculated at the B3LYP/6-311+ G**level using the Gaussian 98 program package[34].Most of the bond lengths and bond angles for the AZT ligand differ slightly from the corresponding ones of AZT molecule(Table 2),except for the azido-group with relatively obvious changes.The bond lengths of N(6)—C(8),N(7)—C(8)and N(8)—N(9)are shortened by 0.0007,0.0012 and 0.0007 nm,respectively,the elongation of the N(4)—C(8)bond is 0.0008 nm,otherwise.The rea-son for this can be concluded as the existence of the small steric hindrance effect of four H2O molecules.Besides,the coordination of Mn—N(4)destroys the natural p-π conjugation and π-π conjugation among the crystal structure of AZT in which the triazole ring is aromatic and contains six delocalized π-electrons. Corresponding to the length changes,the bond angels of N(8)—N(7)—C(8)and N(6)—N(8)—N(7)are increased by ca 3°,while that of N(9)—N(8)—N(7)is decreased by ca 3°.This kind of arrangement can facilitate the coordinated small-sized H2O molecules and the bulky AZT molecules with central manganese(II)cation to complete the octahedral sphere figure.The bond lengths and bond angles of HTNR are usual for coordination compounds with HTNR as outer anions.

    Table 2 Selected bond lengths and bond angles for[Mn(AZT)2(H2O)4](HTNR)2·4H2O and AZT

    Table 3 Hydrogen bond lengths and bond angles for[Mn(AZT)2(H2O)4](HTNR)2·4H2O

    There are many kinds of hydrogen bonds in the crystal structure of[Mn(AZT)2(H2O)4](HTNR)2·4H2O.Lattice and coordination H2O molecules play vital roles in the formation of the structure.Three types of intra-molecular hydrogen bonds can be observed from Fig.1.The first type is formed between the hydroxylgroup and nitro-group of the HTNR anion,O(6)—H(6)…O(5) and O(6)—H(6)…N(2).The second type occurs between the lattice H2O molecules and the adjacent nitro-group of the HTNR anion,O(11)—H(11A)…O(3).The third type takes place among the coordinated and lattice H2O molecules of O(9),O(11),and O (12).we can see from Fig.2 that all the molecular units are linked together into 3D structures by the intermolecular hydrogen bonds,which are formed among different molecular units and can be divided into two types.One type takes place between the lattice H2O molecules and coordinated H2O molecules or AZT molecule,O(12)—H(12A)…O(9)#3,O(10)—H(10A)…O (11)#2,N(5)—H(5)…O(12)#4.The similar mode occurs between the hydroxyl-group or deprotonated hydroxylgroup of the outer HTNR anion and the coordinated H2O molecules or AZT molecule,O(10)—H(10B)…O(1)#4,O(9)—H(9A)…O(4)#2, and O(6)—H(6)…N(6)#1,O(12)—H(12B)…O(1)#4.These extensive hydrogen bonds also make an important contribution totheformationandstabilityofthecrystalstructureof[Mn(AZT)2(H2O)4](HTNR)2·4H2O.

    2.2 Thermal decompositions

    Under the linear heating rate of 10℃·min-1,DSC and TGDTG experiments were carried out in order to investigate the thermal behaviors of[Mn(AZT)2(H2O)4](HTNR)2·4H2O.The DSC and TG-DTG curves of[Mn(AZT)2(H2O)4](HTNR)2·4H2O are illustrated in Fig.3 and Fig.4.

    Fig.3 DSC curve of[Mn(AZT)2(H2O)4](HTNR)2·4H2O at a heating rate of 10℃·min-1

    Fig.4 TG-DTG curves of[Mn(AZT)2(H2O)4](HTNR)2·4H2O at a heating rate of 10℃·min-1

    There are one endothermic process and three exothermic peaks in the range of 45.3-600℃.A mass loss of 15.8%can be seen in the TG-DTG curves during the first stage of 45.3-176.2℃,which is in coincident with the theoretical value of losing four lattice H2O molecules and four coordination H2O molecules. The structure of the compound is unstable and begins decomposing with three steps after lossing all the H2O molecules.The first-step is a sharp exothermic decomposition occurred during the temperature range of 176.2-229.8℃,with the peak temperature at 210.9℃and the exothermic enthalpy change of 185.9 kJ·mol-1.There is a mass loss of 20.2%in the TG-DTG curve. The compound undergoes further decomposition in the range of 229.8-339.2℃,with a peak temperature at 303.9℃and a mass loss of 29.7%.The exothermic enthalpy of this process is 187.1 kJ·mol-1,the value of which is similar to the first exothermic process.The last exothermic process occurs with the onset temperature at 388.2℃and the peak temperature at 444.1℃,the mass loss corresponding to this stage in TG-DTG curves is 35.0%.The exothermic enthalpy change(1038.3 kJ·mol-1)of this process is very strong.The mass fraction of the final residue is 9.3%,which is between the theoretical values of MnO and MnO2,7.8%and 9.6%.The absorption band at 600 and 650 cm-1in the FTIR spectrum of the residue at 600℃also proves that the final residue is the mixture of MnO[38]and MnO2[39].

    Based on the experimental and calculated results,the thermal decomposition processes of the complex can be proposed as follows:

    2.3 Non-isothermal kinetics analysis

    We can see,from the DSC and TG-DTG curves,the first exothermic process has dominant effects on the decomposition of the complex.Hence,we studied the kinetics parameters of the first exothermic process of[Mn(AZT)2(H2O)4](HTNR)2·4H2O by using the Kissinger′s[40]and Ozawa-Doyle′s[41]methods.The Kissinger equation(1)and Ozawa-Doyle equations(2)are as follows:

    where Tpis the peak temperature,℃;R is the gas constant,8.314 J·mol-1·℃-1;β is the linear heating rate,℃·min-1;C is a constant.

    Based on the multiple non-isothermal DSC curves obtained atfive different heating rates of 2,5,10,15,20℃·min-1,the peak temperatures Tpcan be observed as 196.5,203.3,211.1,214.8, 215.7℃.The values of apparent activation energy Ekand Eo, which are calculated by the Kissinger′s method and Ozawa-Doyle′s method,are 206.3 and 203.7 kJ·mol-1,respectively.The corresponding linear coefficients rkand roare 0.9934 and 0.9939. The pre-exponential factor Akdetermined with the Kissinger′s method is 20.55 s-1.The calculated results using both methods are similar and within the normal range of kinetic parameters of such thermal decomposition reaction[42].

    The Arrhenius equation can be expressed with Ea(the average of Ekand Eo)and lnAkas follows:lnk=20.55-206.3×103/(RT). This equation can be used to estimate the rate constants of the initialthermaldecompositionprocessof[Mn(AZT)2(H2O)4](HTNR)2· 4H2O.

    2.4 Sensitivitypropertiesofcomplex[Mn(AZT)2(H2O)4] (HTNR)2·4H2O

    Inordertostudythestabilityandthehazardof[Mn(AZT)2(H2O)4] (HTNR)2·4H2O,we tested its sensitivity properties.The sample of 20 mg was compacted in a copper cap with a pressure of 39.2 MPa to test the impact sensitivity and flame sensitivity.The impact sensitivity was determined with a Bruceton method[43]on the standard fall hammer apparatus,and the compacted sample was hit with 0.8 kg drop hammer on the apparatus.The results of impact sensitivity showed that[Mn(AZT)2(H2O)4](HTNR)2·4H2O did not fire at the highest apparatus limitation of 53 cm.

    The flame sensitivity was determined on a designed flame sensitivity apparatus,and the compacted sample was ignited by a standard black powder pellet right above the sample.The friction sensitivity was determined by using a standard pendulum apparatus.According to the standard method[44],flame sensitivity was evaluated with the height for 50%probability of explosion (h50%)of the sample.h50%of[Mn(AZT)2(H2O)4](HTNR)2·4H2O is calculated as 15.42 cm,which reveals that the compound has a moderate flame sensitivity.

    The sample was compressed firmly between two steel poles with mirror surfaces at the pressure of 1.96 MPa,then it was hit horizontally with a 1 kg hammer dropping from 90°angle.The statistical firing rate about friction sensitivity of[Mn(AZT)2(H2O)4](HTNR)2·4H2O is 80%,which shows that it is relatively sensitive to friction at the testing conditions.The sensitivity testing results are related with the molecular structure and thermal stability of the compound.

    3 Conclusions

    A novel energetic coordination compound[Mn(AZT)2(H2O)4] (HTNR)2·4H2O was synthesized and structurally characterized. Thermal analyses show that there are one endothermic process and three exothermic decomposition stages in the temperature range of 45.3-600℃,with the final residue at 600℃being the mixture of MnO and MnO2.The sensitivity test results indicate that[Mn(AZT)2(H2O)4](HTNR)2·4H2O has relatively strong sensitivity to friction,moderate sensitivity to flame and weak sensitivity to vertically hit,which means the compound possesses sensitivity and selectivity,which is of significance interest for ammunition application.

    Supporting information: CCDC No.746340 contains the supplementary crystallographic data for this article.These data can be obtained free of charge at http://www.ccdc.cam.ac.uk[or from the Cambridge Crystallographic Data Centre(CCDC),12 Union Road,Cambridge CB2 1EZ,UK;Fax:+44(0)1223-336033;Email:deposit@ccdc.cam.ac.uk].

    1 Mondal,T.;Saritha,B.;Ghanta,S.;Roy,T.K.;Mahapatra,S.; Durga,M.P.J.Mol.Struct.-Theochem.,2009,897:42

    2 Kokan,T.S.;Olds,J.R.;Seitzman,J.M.;Ludovice,P.J.Acta Astro.,2009,65:967

    3 Badgujar,D.M.;Talawar,M.B.;Asthana,S.N.;Mahulikar,P.P. J.Hazard.Mater.,2008,151:289

    4 Cottrell,R.;McAdory,D.;Jones,J.;Gilchrist,A.;Shields,D.; Strout,D.L.J.Phys.Chem.A,2006,110:13889

    5 Sikder,A.K.;Sikder,N.J.Hazard.Mater.,2004,112:1

    6 Pagoria,P.F.;Lee,G.S.;Mitchell,A.R.;Schmidt,R.D. Thermochim.Acta,2002,384:187

    7 Striebich,R.C.;Lawrence,J.J.Anal.Appl.Pyrolysis.,2003,70: 339

    8 Turker,L.;Atalar,T.;Guemues,S.;Camur,Y.J.Hazard.Mater., 2009,167:440

    9 Angelo,N.G.;Arora,P.S.J.Am.Chem.Soc.,2005,127:17134

    10 Lamanna,M.E.;Horra,E.;Jacobo,S.;Accorso,N.B.React. Funct.Polym.,2009,69:759

    11 Senchyk,G.A.;Lysenko,A.B.;Rusanov,E.B.;Chernega,A.N.; Krautscheid,H.;Domasevitch,K.V.Inorg.Chim.Acta,2009, 362:4439

    12 Isloor,A.M.;Kalluray,B.;Shetty,P.Eur.J.Med.Chem.,2009, 44:3784

    13 Mullen,K.M.;Mercurio,J.;Serpell,C.J.;Beer,P.D.Angew. Chem.Int.Edit.,2009,48:4781

    14 Sherif,S.M.;Erasmus,R.M.;Comins,J.D.J.Colloid Interface Sci.,2007,311:144

    15 Kuroiwa,K.;Shibata,T.;Takada,A.;Nemoto,N.;Kimizuka,N. J.Am.Chem.Soc.,2004,126:2016

    16 Li,Q.S.;Duan,H.X.J.Phys.Chem.A,2005,109:9089

    17 Xiao,Y.D.;Wei,L.H.;Wang,J.T.;Zhang,J.B.;Lin,S.F.;Zhou, Z.H.Chemom.Intell.Lab.Syst.,1999,45:277

    18 Zhai,Q.G.;Wu,X.Y.;Chen,S.M.;Lu,C.Z.;Yang,W.B.Cryst. Growth Des.,2006,6:2126

    19 Zhang,J.G.;Zhang,T.L.;Lu,Z.;Yu,K.B.Acta Chim.Sin., 1999,57:1233 [張建國,張同來,陸 政,郁開北.化學學報, 1999,57:1233]

    20 Zhang,J.G.;Zhang,T.L.;Yang,L.;Mao,L.Q.;Yu,K.B.Chin.J. Inorg.Chem.,2002,18:284 [張建國,張同來,楊 利,毛利秋,郁開北.無機化學學報,2002,18:284]

    21 Zhang,T.L.;Lü,C.H.;Zhang,J.G.;Zhang,Z.G.;Yu,K.B. Chin.J.Inorg.Chem.,2002,18:138 [張同來,呂春華,張建國,張志剛,郁開北.無機化學學報,2002,18:138]

    22 Singh,G.;Kapoor,I.P.S.;Felix,S.P.;Agrawal,J.P.Propellants Explos.Pyrotech.,2002,27:16

    23 Yun,S.S.;Kim,J.K.;Kim,C.H.J.Alloy.Compd.,2006,408: 945

    24 Song,J.R.;Ma,H.X.;Huang,J.;Hu,R.Z.Thermochim.Acta, 2004,416:43

    25 Zhang,J.G.;Zhang,T.L.Acta Chim.Sin.,2000,58:1563 [張建國,張同來.化學學報,2000,58:1563]

    26 Liu,B.;Chen,Y.H.;Zhang,X.C.Inorg.Chem.Commun.,2008, 11:965

    27 Bichay,M.;Fronabarger,J.W.;Gilardi,R.;Butcher,R.J.; Sanborn,W.B.;Sitzmanna,M.E.;Williams,M.D.Tetrahedron Lett.,2006,47:6663

    28 Zhang,J.P.;Lin,Y.Y.;Zhang,W.X.;Chen,X.M.J.Am.Chem. Soc.,2005,127:14162

    29 Xue,H.;Gao,Y.;Twamley,B.;Shreeve,J.M.Inorg.Chem., 2005,44:5068

    30 Huang,Y.G.;Gao,H.X.;Twamley,B.;Shreeve,J.M.Eur.J. Inorg.Chem.,2008,16:2560

    31 Moderhack,D.;Daoud,A.J.Heterocycl.Chem.,2003,40:625

    32 Drake,G.;Hawkins,T.;Brand,A.;Hall,L.;Mckay,M. Propellants Explos.Pyrotech.,2003,28:174

    33 Cui,Y.;Zhang,T.L.;Zhang,J.G.;Yang,L.Chin.J.Chem.,2008, 26:2021

    34 Cui,Y.;Zhang,T.L.;Zhang,J.G.;Yang,L.;Zhang,J.;Hu,X.C. Struct.Chem.,2008,19:269

    35 Kofman,T.P.;Krasnov,K.N.Russ.J.Org.Chem.,2004,40: 1651

    36 Sheldrick,G.M.SHELXL-97,program for the solution of crystal structure.Gottingen,Germany:University of Gottingen,1997

    37 Sheldrick,G.M.SHELXS-97,program for the refining of crystal structure.Gottingen,Germany:University of Gottingen,1997

    38 Nyquist,R.A.;Kagel,R.O.Infrared spectra of inorganic compounds.New York:Academic Press,1971:218

    39 Fernandes,J.B.;Desai,B.;Dalal,V.N.K.Electrochim.Acta, 1983,28:309

    40 Kissinger,H.E.Anal.Chem.,1957,29:1702

    41 Ozawa,T.Bull.Chem.Soc.Jpn.,1965,38:1881

    42 Hu,R.Z.;Yang,Z.Q.;Liang,Y.J.Thermochim.Acta,1988, 123:135

    43 Dixon,W.J.;Mood,A.M.J.Am.Stat.Assoc.,1948,43:109

    44 Liu,Z.T.;Lao,Y.L.Initiating explosive experimental.Beijing: Beijing Institute of Technology,1995:238-250 [劉自湯,勞允亮.起爆藥實驗.北京:北京理工大學出版社,1995:238-250]

    [Mn(AZT)2(H2O)4](HTNR)2·4H2O的合成、晶體結(jié)構(gòu)、熱行為及感度性質(zhì)

    馮金玲1張建國1,*張同來1,*崔 燕2

    (1北京理工大學爆炸科學與技術(shù)國家重點實驗室,北京 100081;2防化研究院第六研究所,北京 102205)

    通過酸性2,4,6-三硝基間苯二酚(HTNR)的錳鹽與3-疊氮-1,2,4-三唑(AZT)在水溶液中反應,制備得到一種新穎的錳配合物[Mn(AZT)2(H2O)4](HTNR)2·4H2O.通過元素分析和紅外光譜對配合物進行了表征,用X射線單晶衍射分析確定其晶體結(jié)構(gòu).該配合物為三斜晶系,空間群為P1,中心錳(II)離子為六配位的畸變的八面體結(jié)構(gòu),分子內(nèi)和分子間強烈的氫鍵作用構(gòu)成了有序的三維(3D)網(wǎng)狀結(jié)構(gòu).采用差示掃描量熱(DSC)和熱重-微分熱重 (TG-DTG)分析技術(shù)研究了配合物的熱分解特性,并預測了它的熱分解反應機理.利用Kissinger方法和Ozawa-Doyle方法研究了其第一放熱分解峰的分解動力學過程.其分解過程包括一個吸熱峰和三個放熱峰,在600℃的分解產(chǎn)物為MnO和MnO2的混合物.同時.對這個配合物進行了感度(撞擊感度、火焰感度、摩擦感度)性能分析,結(jié)果表明,它對外界刺激具有很強的響應性和選擇性.

    晶體結(jié)構(gòu);3-疊氮-1,2,4-三唑;錳(II)配合物;感度;熱行為

    O641;O642;O741

    Received:April 1,2010;Revised:May 23,2010;Published on Web:July 15,2010.

    *Corresponding authors.ZHANG Jian-Guo,Email:zhangjianguobit@yahoo.com.cn.ZHANG Tong-Lai,Email:ztlbit@bit.edu.cn;

    Tel/Fax:+86-10-68913818.

    The project was supported by the National Natural Science Foundation of China(20471008)and Program for New Century Excellent Talents in Universities of the Ministry of Education of China(NCET-09-0051).

    國家自然科學基金(20471008)和教育部新世紀優(yōu)秀人才支持計劃(NCET-09-0051)資助項目

    ?Editorial office of Acta Physico-Chimica Sinica

    猜你喜歡
    張建國疊氮北京理工大學
    湖州師范學院設計作品選登
    北京理工大學機械與車輛學院簡介
    兵工學報(2023年1期)2023-03-03 02:55:40
    復數(shù)熱點題型淺析
    Physical generation of random numbers using an asymmetrical Boolean network*
    北京理工大學通信與網(wǎng)絡實驗室
    降低乏燃料后處理工藝中HN3 含量的方法研究
    兩種不同結(jié)構(gòu)納米疊氮化銅的含能特性研究
    火工品(2018年1期)2018-05-03 02:27:56
    齊多夫定生產(chǎn)中疊氮化工藝優(yōu)化
    Design of Two-wheeled Mobile Control Robot with Holographic Projection
    人民交警之歌
    国产免费又黄又爽又色| 久久人人爽人人爽人人片va| 哪个播放器可以免费观看大片| 女性被躁到高潮视频| 久久久国产精品麻豆| 亚州av有码| 国产高清不卡午夜福利| 一区二区av电影网| 午夜福利视频在线观看免费| 久久久久网色| 91精品伊人久久大香线蕉| 免费观看无遮挡的男女| 大片免费播放器 马上看| 美女内射精品一级片tv| 夜夜骑夜夜射夜夜干| 天堂8中文在线网| 日本av免费视频播放| 免费日韩欧美在线观看| 人妻 亚洲 视频| 少妇人妻 视频| 啦啦啦啦在线视频资源| 日本午夜av视频| 国产男女超爽视频在线观看| 亚洲av成人精品一区久久| av一本久久久久| 国产精品.久久久| 久久精品夜色国产| 欧美精品一区二区大全| 久久精品夜色国产| 成人毛片a级毛片在线播放| 曰老女人黄片| 精品99又大又爽又粗少妇毛片| 黄色一级大片看看| 最近2019中文字幕mv第一页| 哪个播放器可以免费观看大片| 国产精品麻豆人妻色哟哟久久| 成人国产av品久久久| 九色成人免费人妻av| 日韩免费高清中文字幕av| 中文字幕免费在线视频6| 三级国产精品欧美在线观看| 亚洲国产色片| 成人国产麻豆网| 国产成人午夜福利电影在线观看| 嫩草影院入口| 日本-黄色视频高清免费观看| 成人无遮挡网站| 久久精品人人爽人人爽视色| 91国产中文字幕| 91精品伊人久久大香线蕉| 蜜臀久久99精品久久宅男| 日韩av在线免费看完整版不卡| 国国产精品蜜臀av免费| 国产免费现黄频在线看| 亚洲国产色片| 久久久久精品久久久久真实原创| 在线免费观看不下载黄p国产| 午夜福利在线观看免费完整高清在| 97精品久久久久久久久久精品| 国产成人精品婷婷| 男的添女的下面高潮视频| 精品99又大又爽又粗少妇毛片| 日日撸夜夜添| 免费少妇av软件| 国产亚洲欧美精品永久| 欧美97在线视频| 色哟哟·www| 麻豆成人av视频| 精品国产一区二区久久| 最近2019中文字幕mv第一页| 最近最新中文字幕免费大全7| 精品人妻偷拍中文字幕| 尾随美女入室| 日韩成人伦理影院| 中国美白少妇内射xxxbb| 日日摸夜夜添夜夜添av毛片| 国产免费又黄又爽又色| 久久久a久久爽久久v久久| 亚洲国产精品成人久久小说| 少妇猛男粗大的猛烈进出视频| 久久午夜综合久久蜜桃| 国产一区亚洲一区在线观看| 婷婷色麻豆天堂久久| 国产在线视频一区二区| 午夜福利,免费看| 夜夜爽夜夜爽视频| 狠狠精品人妻久久久久久综合| 日韩成人av中文字幕在线观看| 一级毛片电影观看| 亚洲av中文av极速乱| 欧美激情国产日韩精品一区| 热99久久久久精品小说推荐| 国产成人午夜福利电影在线观看| 涩涩av久久男人的天堂| 免费黄网站久久成人精品| 在线免费观看不下载黄p国产| 色婷婷久久久亚洲欧美| 午夜福利影视在线免费观看| 精品国产国语对白av| 亚洲欧洲日产国产| 久久久久久久精品精品| 久久综合国产亚洲精品| 大话2 男鬼变身卡| 欧美+日韩+精品| 国产探花极品一区二区| 美女脱内裤让男人舔精品视频| 国产免费福利视频在线观看| 日本wwww免费看| 久久 成人 亚洲| 天堂俺去俺来也www色官网| 欧美日韩av久久| 热re99久久国产66热| 熟女人妻精品中文字幕| 晚上一个人看的免费电影| 狠狠精品人妻久久久久久综合| 国产精品一二三区在线看| 最近2019中文字幕mv第一页| 欧美日韩视频高清一区二区三区二| 国产一区二区三区综合在线观看 | 最近2019中文字幕mv第一页| 卡戴珊不雅视频在线播放| 亚洲欧洲日产国产| 免费av中文字幕在线| 亚洲色图 男人天堂 中文字幕 | 日韩av免费高清视频| 一区在线观看完整版| 亚洲欧洲国产日韩| 桃花免费在线播放| 2018国产大陆天天弄谢| 精品一区二区免费观看| 99国产精品免费福利视频| av国产精品久久久久影院| 菩萨蛮人人尽说江南好唐韦庄| 91午夜精品亚洲一区二区三区| 午夜福利网站1000一区二区三区| 欧美+日韩+精品| 午夜精品国产一区二区电影| 国产精品99久久99久久久不卡 | 国产av国产精品国产| 免费观看无遮挡的男女| 国产免费一区二区三区四区乱码| 久久韩国三级中文字幕| 亚洲精品视频女| 亚洲av综合色区一区| 女性被躁到高潮视频| 美女福利国产在线| 少妇的逼好多水| 777米奇影视久久| 国产男女内射视频| 啦啦啦在线观看免费高清www| 成人国产av品久久久| 男男h啪啪无遮挡| 色哟哟·www| 一区二区av电影网| 女人精品久久久久毛片| 日本wwww免费看| 最黄视频免费看| 亚洲欧洲国产日韩| 九九久久精品国产亚洲av麻豆| 蜜臀久久99精品久久宅男| 成人毛片60女人毛片免费| 亚洲第一区二区三区不卡| 亚洲av二区三区四区| 久久鲁丝午夜福利片| 国产男女超爽视频在线观看| 色5月婷婷丁香| 免费看不卡的av| 久久狼人影院| 天天影视国产精品| 蜜桃久久精品国产亚洲av| 亚洲精品中文字幕在线视频| a级毛色黄片| 热re99久久国产66热| 日韩亚洲欧美综合| 成人18禁高潮啪啪吃奶动态图 | freevideosex欧美| 18在线观看网站| 女人久久www免费人成看片| 国产在线视频一区二区| 成人综合一区亚洲| 久久人人爽人人片av| 啦啦啦啦在线视频资源| 亚洲欧美日韩卡通动漫| 中国三级夫妇交换| 国产一区二区在线观看av| 久久久亚洲精品成人影院| 伦理电影大哥的女人| 老女人水多毛片| 涩涩av久久男人的天堂| 香蕉精品网在线| 婷婷成人精品国产| 国产日韩欧美视频二区| 一级黄片播放器| 成年人午夜在线观看视频| 精品国产国语对白av| 中文字幕av电影在线播放| 色视频在线一区二区三区| 天堂8中文在线网| 国产免费视频播放在线视频| 成年人午夜在线观看视频| 黄色毛片三级朝国网站| 国产高清国产精品国产三级| 国产男人的电影天堂91| 亚洲国产最新在线播放| 欧美亚洲日本最大视频资源| 国产精品国产三级国产专区5o| 简卡轻食公司| xxxhd国产人妻xxx| 丰满少妇做爰视频| 免费日韩欧美在线观看| 国产无遮挡羞羞视频在线观看| 久久久久久久国产电影| 久久毛片免费看一区二区三区| 久热这里只有精品99| 中文字幕av电影在线播放| 国产免费一级a男人的天堂| 丁香六月天网| 国产精品嫩草影院av在线观看| 91久久精品国产一区二区成人| 成人影院久久| 久久影院123| 黑人欧美特级aaaaaa片| 中文字幕av电影在线播放| 国产黄片视频在线免费观看| 免费大片18禁| 男男h啪啪无遮挡| 亚洲综合精品二区| 精品一区二区三区视频在线| 午夜老司机福利剧场| 成年人午夜在线观看视频| 人妻系列 视频| 精品人妻一区二区三区麻豆| 亚洲性久久影院| 日韩精品免费视频一区二区三区 | 69精品国产乱码久久久| 少妇丰满av| 中国三级夫妇交换| 男女高潮啪啪啪动态图| 成人影院久久| 黑人欧美特级aaaaaa片| 欧美日韩国产mv在线观看视频| 美女cb高潮喷水在线观看| 一级黄片播放器| 九九爱精品视频在线观看| 国产一区有黄有色的免费视频| 国产色婷婷99| 亚洲性久久影院| 午夜福利在线观看免费完整高清在| 亚洲第一av免费看| 欧美精品高潮呻吟av久久| 国产av一区二区精品久久| 性高湖久久久久久久久免费观看| 大陆偷拍与自拍| 亚洲精品日韩在线中文字幕| 看非洲黑人一级黄片| 少妇人妻久久综合中文| 一本—道久久a久久精品蜜桃钙片| 国产精品免费大片| 久久 成人 亚洲| 99九九在线精品视频| 免费观看无遮挡的男女| 九色亚洲精品在线播放| 中文字幕亚洲精品专区| 黄色欧美视频在线观看| 午夜福利,免费看| 久久人妻熟女aⅴ| 99热网站在线观看| 亚洲综合色网址| 国产视频首页在线观看| 免费观看的影片在线观看| 久久久精品免费免费高清| 两个人免费观看高清视频| 大陆偷拍与自拍| 国产精品国产三级国产av玫瑰| av一本久久久久| 一级毛片我不卡| 秋霞在线观看毛片| 18禁观看日本| 亚洲不卡免费看| 欧美变态另类bdsm刘玥| 人妻制服诱惑在线中文字幕| 精品熟女少妇av免费看| 国产极品天堂在线| 亚洲美女视频黄频| 国产精品三级大全| av天堂久久9| 91久久精品国产一区二区成人| 人妻人人澡人人爽人人| 久久精品夜色国产| 午夜精品国产一区二区电影| 精品人妻一区二区三区麻豆| 黑人巨大精品欧美一区二区蜜桃 | 久久午夜综合久久蜜桃| 视频中文字幕在线观看| 91精品伊人久久大香线蕉| 欧美 亚洲 国产 日韩一| 日韩 亚洲 欧美在线| 婷婷色av中文字幕| 亚洲图色成人| 精品视频人人做人人爽| 国产男女超爽视频在线观看| 亚洲av成人精品一二三区| 午夜久久久在线观看| 午夜福利影视在线免费观看| 蜜桃国产av成人99| av线在线观看网站| 国产在线视频一区二区| 日产精品乱码卡一卡2卡三| 在线观看三级黄色| 成人18禁高潮啪啪吃奶动态图 | 国产 精品1| 如何舔出高潮| 久久精品熟女亚洲av麻豆精品| 精品国产一区二区三区久久久樱花| 日本av免费视频播放| 国产精品国产三级国产av玫瑰| 王馨瑶露胸无遮挡在线观看| 蜜桃国产av成人99| 乱码一卡2卡4卡精品| 在线观看免费视频网站a站| 色5月婷婷丁香| 视频在线观看一区二区三区| 欧美日韩视频精品一区| 成人国产麻豆网| 国产国拍精品亚洲av在线观看| 少妇人妻久久综合中文| 亚洲欧洲国产日韩| 午夜激情久久久久久久| 免费久久久久久久精品成人欧美视频 | 亚洲精品美女久久av网站| 国产毛片在线视频| 美女脱内裤让男人舔精品视频| 2022亚洲国产成人精品| 国产精品国产三级专区第一集| 97超视频在线观看视频| 中文字幕av电影在线播放| 日韩 亚洲 欧美在线| 91精品国产九色| 丝袜脚勾引网站| 秋霞在线观看毛片| 丝袜在线中文字幕| videos熟女内射| 大又大粗又爽又黄少妇毛片口| 中文字幕制服av| 国产深夜福利视频在线观看| 午夜影院在线不卡| 亚洲国产精品999| 永久网站在线| 国产熟女午夜一区二区三区 | 国产精品嫩草影院av在线观看| 亚洲精品456在线播放app| 一级爰片在线观看| 成人免费观看视频高清| 边亲边吃奶的免费视频| 最黄视频免费看| 国产精品人妻久久久影院| 日韩大片免费观看网站| 丰满乱子伦码专区| 国产成人免费无遮挡视频| 午夜福利影视在线免费观看| 水蜜桃什么品种好| 纯流量卡能插随身wifi吗| 欧美精品高潮呻吟av久久| 亚洲精华国产精华液的使用体验| 97超碰精品成人国产| 一级爰片在线观看| 精品国产一区二区三区久久久樱花| 视频在线观看一区二区三区| 亚洲av福利一区| 91久久精品国产一区二区成人| 建设人人有责人人尽责人人享有的| 亚洲国产毛片av蜜桃av| 伦理电影大哥的女人| 亚洲熟女精品中文字幕| 亚洲欧洲国产日韩| 伦理电影免费视频| 精品国产国语对白av| 蜜桃国产av成人99| 欧美精品高潮呻吟av久久| 人人妻人人爽人人添夜夜欢视频| 久久久久国产网址| 少妇高潮的动态图| 亚洲欧美精品自产自拍| 日本色播在线视频| 欧美人与性动交α欧美精品济南到 | 一本色道久久久久久精品综合| 男女高潮啪啪啪动态图| 高清av免费在线| 夜夜骑夜夜射夜夜干| 狠狠精品人妻久久久久久综合| 日韩欧美一区视频在线观看| 伊人久久精品亚洲午夜| 99精国产麻豆久久婷婷| 母亲3免费完整高清在线观看 | 91aial.com中文字幕在线观看| 久久久亚洲精品成人影院| 精品久久久久久电影网| 亚洲情色 制服丝袜| 少妇猛男粗大的猛烈进出视频| 最近的中文字幕免费完整| 一级爰片在线观看| 免费高清在线观看日韩| 国产 一区精品| 伦理电影免费视频| 日韩 亚洲 欧美在线| 亚洲不卡免费看| 十八禁网站网址无遮挡| 伦理电影大哥的女人| 国产免费福利视频在线观看| 成人毛片a级毛片在线播放| 欧美日韩精品成人综合77777| 精品久久蜜臀av无| 久久久久久久精品精品| 欧美日韩av久久| 亚洲图色成人| 久久av网站| 免费高清在线观看视频在线观看| 国产亚洲最大av| 丝袜脚勾引网站| 成年女人在线观看亚洲视频| 制服丝袜香蕉在线| 大码成人一级视频| 老司机影院成人| 国产日韩欧美在线精品| 成人亚洲精品一区在线观看| 3wmmmm亚洲av在线观看| 啦啦啦中文免费视频观看日本| 国产欧美日韩一区二区三区在线 | 亚洲精品日韩在线中文字幕| 天天操日日干夜夜撸| 久久精品国产自在天天线| 久久ye,这里只有精品| 女性被躁到高潮视频| 国产高清三级在线| 国产精品.久久久| 免费观看a级毛片全部| 多毛熟女@视频| 久久久久国产精品人妻一区二区| 在线观看一区二区三区激情| 夫妻性生交免费视频一级片| 最近最新中文字幕免费大全7| 亚洲色图综合在线观看| 超碰97精品在线观看| 18+在线观看网站| 国产 一区精品| 中文字幕av电影在线播放| 中文字幕免费在线视频6| 九草在线视频观看| 国产永久视频网站| 午夜久久久在线观看| 亚洲欧美一区二区三区国产| 免费人成在线观看视频色| 亚洲精品aⅴ在线观看| 2018国产大陆天天弄谢| 在线免费观看不下载黄p国产| 欧美97在线视频| 免费观看在线日韩| 一本—道久久a久久精品蜜桃钙片| 能在线免费看毛片的网站| 国产爽快片一区二区三区| 亚洲久久久国产精品| 国产精品无大码| 人人妻人人添人人爽欧美一区卜| 亚洲精品中文字幕在线视频| 99国产精品免费福利视频| 婷婷色综合大香蕉| 91精品国产国语对白视频| 亚洲国产精品国产精品| 成人免费观看视频高清| 国产欧美日韩综合在线一区二区| av国产久精品久网站免费入址| 激情五月婷婷亚洲| 人妻系列 视频| 免费看光身美女| 国产国语露脸激情在线看| 最后的刺客免费高清国语| 男人添女人高潮全过程视频| 2022亚洲国产成人精品| 免费大片18禁| 丝袜在线中文字幕| 国产精品一区二区在线观看99| 日韩三级伦理在线观看| 一边摸一边做爽爽视频免费| 大香蕉久久网| 亚州av有码| 秋霞在线观看毛片| 伦理电影大哥的女人| 亚洲内射少妇av| 少妇 在线观看| 国产在线免费精品| 亚洲怡红院男人天堂| 一区二区三区乱码不卡18| 久久精品熟女亚洲av麻豆精品| 亚洲精品乱码久久久久久按摩| 9色porny在线观看| 内地一区二区视频在线| 亚洲第一区二区三区不卡| 久久久精品94久久精品| 亚洲av不卡在线观看| 波野结衣二区三区在线| 精品久久国产蜜桃| 亚洲精品第二区| 伦理电影大哥的女人| 久久人人爽人人爽人人片va| 国产精品久久久久久久久免| 九九在线视频观看精品| √禁漫天堂资源中文www| 亚洲人成网站在线播| 寂寞人妻少妇视频99o| 色视频在线一区二区三区| 国产高清三级在线| 只有这里有精品99| 亚洲欧美日韩卡通动漫| av在线老鸭窝| 国产女主播在线喷水免费视频网站| 在线观看国产h片| 精品99又大又爽又粗少妇毛片| 国产有黄有色有爽视频| 中国国产av一级| 在线观看一区二区三区激情| 国产黄频视频在线观看| 最后的刺客免费高清国语| 18+在线观看网站| 亚洲综合色惰| 久久99热6这里只有精品| 精品国产露脸久久av麻豆| 伦理电影免费视频| 九九爱精品视频在线观看| 91久久精品电影网| 亚洲欧美日韩卡通动漫| 久久精品熟女亚洲av麻豆精品| 日本与韩国留学比较| videossex国产| 欧美 亚洲 国产 日韩一| 最近手机中文字幕大全| 亚洲欧美成人精品一区二区| 91aial.com中文字幕在线观看| av天堂久久9| 中文字幕亚洲精品专区| 免费观看在线日韩| 色视频在线一区二区三区| 在线亚洲精品国产二区图片欧美 | 日韩av不卡免费在线播放| 国产精品免费大片| 伦理电影免费视频| 久久精品国产亚洲网站| 伊人久久精品亚洲午夜| 国产欧美另类精品又又久久亚洲欧美| 亚洲精品日本国产第一区| 99久久精品一区二区三区| 国产极品粉嫩免费观看在线 | 天美传媒精品一区二区| 欧美成人精品欧美一级黄| 插逼视频在线观看| 夫妻午夜视频| 中文字幕亚洲精品专区| 免费观看在线日韩| 中文字幕av电影在线播放| 日本91视频免费播放| 91aial.com中文字幕在线观看| 国产片内射在线| 天堂俺去俺来也www色官网| www.av在线官网国产| 国产一区亚洲一区在线观看| 在线观看www视频免费| 欧美人与善性xxx| 97在线视频观看| 2021少妇久久久久久久久久久| 久久久欧美国产精品| 精品国产乱码久久久久久小说| 99久久综合免费| 亚洲人成网站在线观看播放| 精品久久久久久久久亚洲| 国产精品久久久久久精品电影小说| 欧美激情 高清一区二区三区| 国产成人精品婷婷| 丰满饥渴人妻一区二区三| 中文字幕人妻丝袜制服| 久久久精品94久久精品| 国产日韩欧美亚洲二区| 日韩av在线免费看完整版不卡| 我要看黄色一级片免费的| 色5月婷婷丁香| 寂寞人妻少妇视频99o| 亚洲高清免费不卡视频| 97超碰精品成人国产| 免费久久久久久久精品成人欧美视频 | 国产男女内射视频| 久久99热6这里只有精品| 免费观看在线日韩| 久久国产亚洲av麻豆专区| 晚上一个人看的免费电影| 99视频精品全部免费 在线| 又大又黄又爽视频免费| 亚洲四区av| 国产有黄有色有爽视频| 免费大片18禁| 人人妻人人澡人人爽人人夜夜| 亚洲精品乱久久久久久| 亚洲精品乱码久久久v下载方式| 国产精品.久久久| 欧美性感艳星| 成年人免费黄色播放视频| 久久久久视频综合| 久久精品熟女亚洲av麻豆精品| 国产精品欧美亚洲77777| 亚洲精品一区蜜桃| 日韩不卡一区二区三区视频在线| 狠狠精品人妻久久久久久综合| 亚洲欧洲国产日韩| 下体分泌物呈黄色| 久久99一区二区三区| 日韩免费高清中文字幕av| 免费大片黄手机在线观看| 久久青草综合色|