• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Physical generation of random numbers using an asymmetrical Boolean network*

    2021-11-23 07:25:56HaiFangLiu劉海芳YunCaiWang王云才LuXiaoSang桑魯驍andJianGuoZhang張建國
    Chinese Physics B 2021年11期
    關鍵詞:張建國劉海

    Hai-Fang Liu(劉海芳) Yun-Cai Wang(王云才) Lu-Xiao Sang(桑魯驍) and Jian-Guo Zhang(張建國)

    1Key Laboratory of Advanced Transducers and Intelligent Control System,Ministry of Education,Taiyuan University of Technology,Taiyuan 030024,China

    2College of Physics and Optoelectronics,Taiyuan University of Technology,Taiyuan 030024,China

    3Guangdong Provincial Key Laboratory of Photonics Information Technology,Guangzhou 510006,China

    4School of Information Engineering,Guangdong University of Technology,Guangzhou 510006,China

    Keywords: autonomous Boolean networks,random numbers,chaos,unpredictability

    1. Introduction

    Random numbers are important in many fields, such as identity recognition,[1-3]Monte Carlo simulations[4,5]and information encryption.[1,6,7]In those applications, the quality of random numbers is extremely significant. Especially in information encryption, randomness and unpredictability of random numbers are the key factors to ensure information security.[1,6,7]

    Random number generators may be divided into pseudorandom number generators and physical random number generators. The pseudorandom numbers are generated by algorithms, which can produce random numbers with high speed and good distribution characteristics.[8,9]However,the unpredictability of pseudorandom numbers is determined by the seeds of the algorithm,i.e.,the sequence of random numbers is deterministic and can be generated repeatedly as long as the seeds are fixed.[1]The physical random numbers are generated by extracting and quantifying the random characteristics of physical processes. The optical physical random number generators (PRNGs) feature the highspeed physical generation of random numbers due to the high speed of optical devices.[10]On the other hand, electrical random numbers are more widely used because they are inexpensive and easily integrated. Entropy sources of electrical PRNGs include noise, metastability, oscillator and chaos. The PRNGs based on noise directly amplify and extract the noise from a device, and the entropy source is genuinely random, but the amplitude of the noise is so small that a strong amplifier is needed, thereby introducing a 0-1 bias and increasing the power consumption.[11-13]The PRNGs based on metastability obtain random numbers from a metastable system, which produces two stable states with equal probability. However,it is hard to obtain perfectly balanced probabilities, and thus a 0-1 bias is introduced.[14,15]The PRNGs based on oscillations extract random numbers by sampling phase jitter from an oscillator.[16,17]The PRNGs based on chaos obtains random numbers from physical chaotic systems, in which noise is amplified rapidly by chaos.[18,19]Chaotic PRNGs have become standard in the field because of their sensitivity to noise,broadband features,and large amplitude.[1]

    Boolean chaos produced by ABN has been widely addressed in recent years. In 2009, Zhang Ruiet al.[20]realized an ABN by using a logical circuit and observed chaos in experiment. The chaotic bandwidth may be on the order of GHz (?10 dB), which largely outperforms the existing electrical sources.[20]In ABN-based chaotic systems,all nodes of the network may produce chaos,i.e.,there are at least 2 positive Lyapunov exponents, thus leading to complex dynamics. The ABN chaotic system is composed of digital logic devices, which have a simple structure and are easy to integrate in comparison with other hyperchaotic systems, whose hardware implementation requires analog devices such as resistances, capacitances or inductances.[21-23]Boolean chaos,due to its advantages of low power consumption, wide bandwidth and easy integration, has been successfully applied to random numbers generation.In 2013,Rosinet al.proposed an ABN-based PRNG composed of fifteen 3-input logical XOR gates and one 3-input logical XNOR gate.[24]In 2017, Donget al. improved the architecture,showing that only four nodes,instead of six, may be used to produce chaotic oscillations.However, to fabricate a random number generator, 16 logical gates are necessary.[25]In 2018, MAet al. proposed a new PRNG based on an ABN with 7 3-input logical gates, thus reducing the power consumption.[26]However,their device is prone to 0-1 bias and should employ an XOR chain for postprocessing. The 2-input logical gates may reduce power consumption because they use fewer CMOS MOSFETs or transistors than 3-input logical gates. In 2015,Parket al. developed a PRNG based on an ABN composed of one 2-input logical XNOR gate and 32 inverters.[27]The generated random numbers can pass the NIST tests after a post-processing. In 2019,Zhanget al. proposed a PRNG based on an ABN composed of 15 2-input logical gates, it can generate random numbers passing the NIST tests without post-processing.[28]However,the oscillations of the ABN are dependent on the delay time along links,because of the symmetric structure.

    In this paper,an aABN with asymmetric topology is proposed. Its main advantage is the reduction in power consumption due to the reduction in the number of nodes. The PRNG based on the proposed aABN produces random numbers passing the NIST tests without post-processing. The rest of this paper is structured as follows. Results from numerical simulations are presented in Section 2, showing that the oscillation of the aABN is independent of the incommensurate delays along links. In Section 3, we describe the experimental implementation of the aABN on an FPGA(Chip: Altera Cyclone IV FPGA, EP4CE10F17C8N), and discuss experimental results,showing that the chaotic features are comparable to those obtained from symmetric ABNs,e.g.those suggested in Refs.[24,28],with a reduced number of logical gates. In Section 4, a novel aABN-based RNG is proposed. We generate 1 Gbit of data(1000 sequences of 1 Mbit)and prove they can pass the NIST test suite successfully. The unpredictability of random numbers is also analyzed by repeatedly restarting the RNG. Finally, in Section 5, we draw some conclusions from the present study and also present the perspectives in this research topic.

    2. Asymmetrical autonomous Boolean network model

    The structure diagram of the aABN is shown in Fig.1(a).For comparison, figures 1(b)and 1(c)show the structure diagrams of the symmetric ABNs proposed in Refs. [24,28]. In the following, ABNs of Figs. 1(b) and 1(c) will be referred to as sABN1 and sABN2, respectively. In Fig. 1, each node represents a logical gate, node 0 executes logic XNOR while the other nodes execute logic XOR,τi jrepresents the delay time along the link from nodejto nodei. The number of nodes in aABN, sABN1, and sABN2 are 12, 15, and 16, respectively. Each node in aABN and sABN1 have two inputs from other nodes, while each node in sABN2 has three inputs from two other nodes and one self-feedback. Each node in sABN1 and sABN2 are coupled with their adjacent nodes,leading to a symmetric structure. The topology of aABN is asymmetric instead,because nodes 7,8 and node 0,1 are not mutually coupled.

    The mathematical model of aABN is shown as follows:

    whereτlp,iis the response characteristic parameter of the logical gatei, which regulates the response speed of the logical gate,xidenotes the output of nodei,τijrepresents the delay time along the link from nodejtoi,fiis the logical function of nodei, andXiis 0 or 1, depending on whetherxiis below or above a given thresholdxth. The threshold is set to bexth=0.5 in the simulations,and it is determined by the logical gate itself in experiment.

    Looking at the results of simulated experiments, we see that the oscillations of ABNs are sensitive to the delay time along links. The oscillation amplitudes of some nodes of sABN1 and sABN2 are very small, and some nodes do not even oscillate when the parametersτijare assumed to be the same value. In order to make a comparison, the oscillations of aABN, sABN1, and sABN2 are observed under the identicalτi j. The simulation results are shown in Fig. 2. In this simulation,we assumeτlp,i=0.35 ns andτij=0.05 ns. Time series of aABN,sABN1,and sABN2 are shown in Figs.2(a),2(b), and 2(c), respectively. It may be seen that the output waveforms of symmetric nodes of sABN1 and sABN2 are identical: in Fig. 2(b) we havex1(t)=x14(t),x2(t)=x13(t),x3(t) =x12(t),x4(t) =x11(t),x5(t) =x10(t),x6(t) =x9(t),andx7(t) =x8(t), and in Fig. 2(c) we havex1(t) =x15(t),x2(t)=x14(t),x3(t)=x13(t),x4(t)=x12(t),x5(t)=x11(t),x6(t)=x10(t), andx7(t)=x9(t). As shown in Fig. 2(a), almost every node oscillates between 0 and 1 with a large amplitude,only node 1 has a small amplitude of oscillations.Figure 2(b)shows that the outputs of ten nodes are stable,whereas those from the other five nodes oscillate slightly. In Fig.2(c),we may see three nodes with stable output,whereas the other 13 nodes oscillate. The amplitudes are smaller than those of aABN as shown in Fig.2(a).The outputs are also observed for different values ofτi j. When the parametersτijare equal,the oscillation amplitudes of sABN1 and sABN2 increase withτijincreasing. However,the performances of sABN1 and sABN2 are worse than those of aABN. If the parametersτijchanges withiandj(incommensurately),all nodes of aABN,sABN1 and sABN2 can produce large amplitude oscillations. We observe that our aABN always oscillates independently of the choice ofτijchanges. In particular, the oscillations of aABN are independent of the incommensurate time delays and logical gates.

    Fig.1. Structure diagrams of(a)aABN,(b)sABN1,and(c)sABN2.

    Fig.2. Simulation results: (a)time series of aABN,(b)time series of sABN1,(c)time series of sABN2.

    3. Experimental results

    In our experiments, aABN, sABN1, and sABN2 are implemented on the same FPGA.There are no additional delays,i.e.,eachτijis the delay of the connection line in the FPGA.Figure 3(b) shows a schematic diagram of the experimental device,which includes a computer,an FPGA chip and an oscilloscope. The FPGA implementation includes 4 steps:

    (i)the Verilog program code is written(see Fig.3(a)),realizing the function in formula(1);

    (ii)the Verilog program is compiled to generate the JTAG Indirect Configuration File;

    (iii)the JTAG Indirect Configuration File is downloaded to FPGA chip. Figure 3(c)shows the RTL circuit diagram of FPGA,where net~idenotes nodei,i.e.,XOR gate fori=1-11, and XNOR gate fori=0, net[i] is buffer fori=0-11,wordout0 denotes the outputxi,takingxi=x0for example in the picture;

    (iv) the output data are observed and collected through the oscilloscope connected to the FPGA.

    Fig.3. (a)Verilog program code of Eq.(1),(b)schematic diagram of experimental device,and(c)RTL circuit diagram of FPGA.

    Experimental results show that all nodes of aABN,sABN1, and sABN2 can produce chaos. Taking the outputs of node 0 for example, experimental results are shown in Fig. 4. Figures 4(a1), 4(b1), and 4(c1) show that time series from aABN, sABN1, and sABN2 are chaotic. Figures 4(a2), 4(b2), and 4(c2) display the distributions of the output voltage amplitudes: one may see a double-peak structure with maxima at high(1 V)level and low(0 V)level. Indeed,the digital logical gates’0-1(1-0)transition process is very short and the output sequences are close to binary. The largest Lyapunov exponent is a popular method to measure chaos.[20,29]The largest Lyapunov exponentλis the slope of the red line shown in each of Figs. 4(a3), 4(b3), and 4(c3),i.e., λ= (ln(d(s))?ln(d(0)))/s.[20]Values ofλare larger than 0,indicating that outputs of aABN,sABN1,and sABN2 are all chaotic. The corresponding autocorrelation functions are shown in Figs. 4(a4), 4(b4), and 4(c4), the full widths at half height are about 0.5 ns. There is no significant difference among the spectra shown in Figs.4(a5),4(b5),and 4(c5),the?10-dB bandwidths are about 600 MHz. These results show that the chaotic features of aABN are comparable to those of sABN1 and sABN2, however, they are obtained with a reduced number of gates,and thus requiring less power.

    Permutation entropy is an effective method to measure the complexity of time series.[30]Figure 5 shows the plots of permutation entropyH versusembedded delayτdof the outputs from aABN, sABN1, and sABN2, where the embedded dimensions are all set to be 5.The permutation entropy of aABN and sABN1 are very close and higher than that of sABN2.

    Fig. 4. Time series, distribution, the largest Lyapunov exponents, autocorrelation functions, and spectra of the output voltage amplitudes of[(a1)-(a5)]aABN,[(b1)-(b5)]sABN1,[(c1)-(c5)]sABN2.

    Fig.5.Permutation entropy H versus embedded delay td for aABN,sABN1,and sABN2.

    4. A random number generator based on proposed aABN

    The experimental results show that aABN may be used as the entropy source of RNG,i.e.,the double-peak curve at high (1 V) and low (0 V) levels may be exploited to extract random numbers. Figure 6 shows the structure of our RNG with using the aABN as an entropy source. The sampling and quantization process just use a flip-flop, because the output approximates a binary sequence. In order to eliminate any potential 0-1 bias and to generate high-quality random numbers,the outputs of nodes 1,2,5,9 are extracted for XOR.

    Fig.6. Schematic diagram of random number generator based on aABN.

    The RNG is implemented on an FPGA, the clock frequency is set to be 100 MHz, and experimental results are shown in Fig. 7. Figure 7(a) shows a random numbers sequence: the minimum pulse width is 10 ns, the amplitude is 0-2 V. The grayscale dot matrix graphic of the sequence is shown in Fig. 7(b), and provides a qualitative assessment of the sequence randomness. It shows no obvious pattern, indicating that the random numbers are aperiodic. The NIST statistical test suite is the international common random number test standard with a“passed”threshold requiring aP-value larger than 10?4and a proportion larger than 0.98. We generate 1 Gbits of data for the NIST tests, and all 15 tests are passed. Results are shown in Table 1. From these experimental results,we conclude that our aABN-based RNG is able to generate at least 100-Mbit/s random numbers passing NIST tests.

    Fig. 7. (a) Random number sequences and (b) grayscale dot matrix graphics of 90000 random numbers rearranged into a 300 ~300 square matrix,black represents 1 and white represents 0.

    Table 1. Results of NIST statistical test suite.

    Unpredictability is another important property of random numbers.To analyze the unpredictability of the aABN entropy source, the RNG is repeatedly restarted in the same experimental conditions and the chaotic sequences are observed.[31]Figure 8 shows the experimental results,and figure 8(a)shows that the restarting sequences for each restarting time series of 80 ns are generated. The initial values of all nodes are set to be at a low level (0 V) which is maintained for 10 ns, which is shown in the gray shadowed region. After this stage, the RNG begins to evolve. Figure 8(b) shows 100 restarting sequences: we cannot see any repeating structure after the 10-ns initial time and the 10-ns dispersed time, indicating that the values of each restarting sequence are different and random after the short autonomous evolution time. Shannon entropy is used to evaluate the randomness.[32]Figure 8(c)shows the Shannon entropy of 1000 restarting random number sequences,and Shannon entropy is 0 because the sequences are the same before 10 ns. Then,Shannon entropy increases with time increasing and approaches to 1 at about 20 ns, it fluctuates slightly after 20 ns.We conclude that the random numbers generated by RNG based on the aABN are unpredictable.

    Fig.8. Restarting experimental results,showing(a)restarting chaotic sequences,(b)map of restarting sequences 100 times,and(c)Shannon entropy of restarting sequences 1000 times.

    5. Conclusions and perspectives

    In this paper, an aABN composed of 12 nodes is proposed and its performance is analyzed in detail. Simulation results indicate that the oscillations of the aABN do not depend on the incommensurate time delays along links. Experimental results show that our aABN may offer performance comparable to that of sABN1 and sABN2 in terms of the the largest Lyapunov exponents,spectra,autocorrelation function,and permutation entropy,however with using a reduced number of nodes. Thus, it is instrumental in reducing the power consumptions of ABN systems. A novel aABN-based RNG is also proposed and experimentally implemented on an FPGA.Experimental results show that our RNG may generate random numbers passing NIST statistical tests suite at 100 Mbit/s.Compared with the RNG proposed in Refs.[24,28],the power consumption of our RNG is reduced due to the reduced number of required logical gates. Experimental results also show that the output sequences generated after 10 ns of autonomous evolution follow totally different trajectories,i.e., the generated random numbers are unpredictable.

    Acknowledgment

    The authors would like to express their gratitude to EditSprings(https://www.editsprings.com/)for providing the expert linguistic services.

    猜你喜歡
    張建國劉海
    湖州師范學院設計作品選登
    以小見大 以情動人
    復數(shù)熱點題型淺析
    A multi-band and polarization-independent perfect absorber based on Dirac semimetals circles and semi-ellipses array?
    Establish a Three-dimensional Fluorescent Fingerprint Database of Traditional Chinese Medicines
    Hubbard model on an anisotropic checkerboard lattice at finite temperatures:Magnetic and metal–insulator transitions
    學生天地(2019年36期)2019-08-25 08:59:52
    只靠劉海就能實現(xiàn)的超簡單變身方法!
    人民交警之歌
    繪畫和陶藝的交織——談張建國的瓷版畫創(chuàng)作
    小說林(2014年5期)2014-02-28 19:51:50
    精品人妻熟女毛片av久久网站| 成人手机av| 色综合欧美亚洲国产小说| 精品少妇内射三级| 亚洲国产成人一精品久久久| 欧美人与善性xxx| 满18在线观看网站| 精品久久蜜臀av无| 午夜91福利影院| 欧美 日韩 精品 国产| 少妇被粗大的猛进出69影院| 国产黄色免费在线视频| av一本久久久久| www日本在线高清视频| 九九爱精品视频在线观看| 亚洲成人国产一区在线观看 | 亚洲av成人精品一二三区| 久久综合国产亚洲精品| 免费黄色在线免费观看| 18禁国产床啪视频网站| 亚洲精品久久久久久婷婷小说| 爱豆传媒免费全集在线观看| 婷婷色综合www| 久久人人97超碰香蕉20202| 91精品三级在线观看| 18在线观看网站| 欧美国产精品一级二级三级| 亚洲三区欧美一区| 欧美人与善性xxx| 只有这里有精品99| 午夜免费鲁丝| 久久人人97超碰香蕉20202| 19禁男女啪啪无遮挡网站| 欧美精品一区二区免费开放| 免费观看性生交大片5| 一边摸一边做爽爽视频免费| 国产伦理片在线播放av一区| 免费观看a级毛片全部| 欧美久久黑人一区二区| 亚洲精品国产av成人精品| 国产黄色视频一区二区在线观看| 国产不卡av网站在线观看| 老鸭窝网址在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 丰满少妇做爰视频| 日韩电影二区| 国产极品天堂在线| 校园人妻丝袜中文字幕| 亚洲图色成人| 在线天堂最新版资源| 国产成人免费观看mmmm| 老司机影院成人| 免费少妇av软件| 免费观看av网站的网址| 一本—道久久a久久精品蜜桃钙片| 在线观看三级黄色| 曰老女人黄片| 晚上一个人看的免费电影| 两个人免费观看高清视频| 天天操日日干夜夜撸| 777米奇影视久久| 国产老妇伦熟女老妇高清| 免费少妇av软件| 国产免费福利视频在线观看| 日本猛色少妇xxxxx猛交久久| 亚洲一区中文字幕在线| 国产成人午夜福利电影在线观看| 叶爱在线成人免费视频播放| 这个男人来自地球电影免费观看 | 国产日韩欧美视频二区| 丝袜在线中文字幕| 国产野战对白在线观看| 人妻 亚洲 视频| 久久av网站| 色网站视频免费| 日韩av在线免费看完整版不卡| 成人国产麻豆网| 在线观看三级黄色| 91老司机精品| 欧美 亚洲 国产 日韩一| 亚洲三区欧美一区| 国产野战对白在线观看| 18禁观看日本| 黄片小视频在线播放| 亚洲精品,欧美精品| 久久热在线av| 精品久久久精品久久久| 久热这里只有精品99| 母亲3免费完整高清在线观看| 欧美中文综合在线视频| 国产一级毛片在线| 久久鲁丝午夜福利片| 欧美日韩一级在线毛片| 中文乱码字字幕精品一区二区三区| 国产免费又黄又爽又色| 成人手机av| 国精品久久久久久国模美| 在线亚洲精品国产二区图片欧美| 欧美日韩亚洲综合一区二区三区_| 日日撸夜夜添| 狂野欧美激情性bbbbbb| 黄色一级大片看看| 国产男女内射视频| 女人被躁到高潮嗷嗷叫费观| 亚洲欧美精品自产自拍| 伦理电影免费视频| 在线亚洲精品国产二区图片欧美| 欧美xxⅹ黑人| 我的亚洲天堂| 91成人精品电影| 狠狠婷婷综合久久久久久88av| 可以免费在线观看a视频的电影网站 | 国产精品久久久人人做人人爽| 丝袜人妻中文字幕| 色播在线永久视频| 午夜福利一区二区在线看| 丝袜人妻中文字幕| 日本爱情动作片www.在线观看| 熟妇人妻不卡中文字幕| 中文天堂在线官网| 国产av国产精品国产| 国产深夜福利视频在线观看| 老鸭窝网址在线观看| 丰满迷人的少妇在线观看| 国产精品国产三级国产专区5o| 在线精品无人区一区二区三| 中国三级夫妇交换| 天堂俺去俺来也www色官网| 不卡视频在线观看欧美| 精品久久久久久电影网| 亚洲欧美精品综合一区二区三区| 精品酒店卫生间| e午夜精品久久久久久久| 超碰成人久久| 久久亚洲国产成人精品v| 美女主播在线视频| a 毛片基地| 午夜福利,免费看| 欧美日韩福利视频一区二区| 国产老妇伦熟女老妇高清| kizo精华| 亚洲国产av新网站| 一级a爱视频在线免费观看| 宅男免费午夜| 观看av在线不卡| 久久人人爽av亚洲精品天堂| 国产深夜福利视频在线观看| 亚洲精品aⅴ在线观看| 国产成人啪精品午夜网站| 啦啦啦啦在线视频资源| 男女之事视频高清在线观看 | 久久精品久久精品一区二区三区| 欧美在线黄色| 日本午夜av视频| 午夜91福利影院| 久久精品aⅴ一区二区三区四区| 只有这里有精品99| 99久国产av精品国产电影| 久热这里只有精品99| 免费观看a级毛片全部| 亚洲综合精品二区| 高清视频免费观看一区二区| 国产成人欧美在线观看 | 欧美激情 高清一区二区三区| 成人国产麻豆网| 在现免费观看毛片| 亚洲国产日韩一区二区| 中国三级夫妇交换| 亚洲国产欧美日韩在线播放| 满18在线观看网站| 国产精品成人在线| 嫩草影院入口| 国产不卡av网站在线观看| 久久精品久久久久久噜噜老黄| 一区二区三区乱码不卡18| 成人午夜精彩视频在线观看| 日韩一卡2卡3卡4卡2021年| 欧美精品亚洲一区二区| 午夜福利免费观看在线| 亚洲精品国产色婷婷电影| 女人被躁到高潮嗷嗷叫费观| 国产成人精品无人区| 欧美久久黑人一区二区| 国产日韩欧美亚洲二区| 久久性视频一级片| 不卡av一区二区三区| 日韩电影二区| 日韩一卡2卡3卡4卡2021年| a 毛片基地| 亚洲国产日韩一区二区| 男女高潮啪啪啪动态图| 极品少妇高潮喷水抽搐| 亚洲精品久久久久久婷婷小说| 毛片一级片免费看久久久久| 人妻一区二区av| 亚洲伊人久久精品综合| 亚洲精品在线美女| 天天操日日干夜夜撸| 久久99热这里只频精品6学生| 亚洲成人免费av在线播放| 狠狠婷婷综合久久久久久88av| 汤姆久久久久久久影院中文字幕| 国产又色又爽无遮挡免| 国产高清不卡午夜福利| 亚洲精品久久久久久婷婷小说| 各种免费的搞黄视频| 高清不卡的av网站| 婷婷色av中文字幕| 天天躁夜夜躁狠狠久久av| 91精品伊人久久大香线蕉| 一区福利在线观看| 99久久精品国产亚洲精品| 秋霞在线观看毛片| 中文字幕人妻丝袜制服| 中文字幕av电影在线播放| 日韩 欧美 亚洲 中文字幕| 国产国语露脸激情在线看| 亚洲精品国产一区二区精华液| 亚洲欧美一区二区三区久久| 婷婷色av中文字幕| 人人妻人人添人人爽欧美一区卜| 2021少妇久久久久久久久久久| av在线app专区| www.av在线官网国产| 国产精品成人在线| 日本猛色少妇xxxxx猛交久久| 激情视频va一区二区三区| 叶爱在线成人免费视频播放| 99久久人妻综合| 亚洲精品日韩在线中文字幕| 最近的中文字幕免费完整| 岛国毛片在线播放| 成人18禁高潮啪啪吃奶动态图| 乱人伦中国视频| 亚洲激情五月婷婷啪啪| www日本在线高清视频| 啦啦啦 在线观看视频| 国产精品免费大片| 高清在线视频一区二区三区| 日本色播在线视频| 黄网站色视频无遮挡免费观看| 久久人妻熟女aⅴ| 青青草视频在线视频观看| 天天影视国产精品| 国产成人免费观看mmmm| 中文字幕制服av| 国产成人精品久久二区二区91 | 久久久精品区二区三区| 亚洲一码二码三码区别大吗| 色播在线永久视频| 人人妻人人爽人人添夜夜欢视频| 国产一区亚洲一区在线观看| 天天躁夜夜躁狠狠躁躁| 亚洲色图 男人天堂 中文字幕| 亚洲欧美清纯卡通| videosex国产| 免费观看性生交大片5| 成人午夜精彩视频在线观看| 国产一区亚洲一区在线观看| 国产欧美日韩一区二区三区在线| 这个男人来自地球电影免费观看 | 日韩人妻精品一区2区三区| 亚洲国产欧美网| 久久天堂一区二区三区四区| 久久久久视频综合| 成年av动漫网址| 又大又爽又粗| 国产精品久久久久久精品电影小说| 国产免费现黄频在线看| 亚洲av电影在线观看一区二区三区| tube8黄色片| 观看av在线不卡| 亚洲精品第二区| 色94色欧美一区二区| √禁漫天堂资源中文www| 十八禁高潮呻吟视频| 街头女战士在线观看网站| 国产精品嫩草影院av在线观看| 国产免费现黄频在线看| 日日爽夜夜爽网站| 欧美黑人欧美精品刺激| 国产一区二区 视频在线| 久久国产精品男人的天堂亚洲| av免费观看日本| 精品少妇一区二区三区视频日本电影 | 十八禁人妻一区二区| 欧美 亚洲 国产 日韩一| 国产免费现黄频在线看| 国产成人免费无遮挡视频| 午夜福利,免费看| www.精华液| 天天躁狠狠躁夜夜躁狠狠躁| 色婷婷av一区二区三区视频| 丝瓜视频免费看黄片| 亚洲美女黄色视频免费看| 美女国产高潮福利片在线看| 国产免费福利视频在线观看| 亚洲欧美一区二区三区久久| 久久国产精品大桥未久av| 久久综合国产亚洲精品| 欧美变态另类bdsm刘玥| 丰满乱子伦码专区| 一区二区日韩欧美中文字幕| 国产精品亚洲av一区麻豆 | 自拍欧美九色日韩亚洲蝌蚪91| 18在线观看网站| 国产精品久久久久久精品电影小说| 肉色欧美久久久久久久蜜桃| 国产成人a∨麻豆精品| 精品国产一区二区三区四区第35| 国产男人的电影天堂91| 亚洲国产毛片av蜜桃av| 菩萨蛮人人尽说江南好唐韦庄| 亚洲av综合色区一区| 丝袜人妻中文字幕| 日韩 亚洲 欧美在线| 免费女性裸体啪啪无遮挡网站| 好男人视频免费观看在线| 熟女av电影| √禁漫天堂资源中文www| 在线观看一区二区三区激情| 性少妇av在线| 日韩制服丝袜自拍偷拍| 午夜老司机福利片| 国产欧美日韩一区二区三区在线| 精品国产乱码久久久久久小说| 国产无遮挡羞羞视频在线观看| 亚洲av中文av极速乱| 无限看片的www在线观看| 国产精品一区二区在线观看99| 久久97久久精品| 欧美黑人欧美精品刺激| 午夜免费鲁丝| 看免费成人av毛片| 啦啦啦中文免费视频观看日本| 久久久欧美国产精品| 国产精品免费大片| 欧美变态另类bdsm刘玥| 国产精品一区二区在线不卡| 久久久欧美国产精品| 国产精品三级大全| 久久毛片免费看一区二区三区| 国产成人啪精品午夜网站| 巨乳人妻的诱惑在线观看| 一本色道久久久久久精品综合| 伊人久久国产一区二区| 日韩一卡2卡3卡4卡2021年| av线在线观看网站| 亚洲免费av在线视频| 精品亚洲乱码少妇综合久久| 国产精品秋霞免费鲁丝片| 免费黄网站久久成人精品| av免费观看日本| 国产一级毛片在线| 日韩伦理黄色片| 在线亚洲精品国产二区图片欧美| 亚洲欧美成人综合另类久久久| 老司机靠b影院| 亚洲天堂av无毛| 亚洲精品国产区一区二| 少妇被粗大猛烈的视频| 亚洲图色成人| 亚洲一级一片aⅴ在线观看| 国产亚洲精品第一综合不卡| 精品久久蜜臀av无| 在线观看免费视频网站a站| av又黄又爽大尺度在线免费看| 国产一区有黄有色的免费视频| 亚洲精品乱久久久久久| 男女无遮挡免费网站观看| 2018国产大陆天天弄谢| 精品人妻在线不人妻| 日韩中文字幕视频在线看片| 久久国产精品男人的天堂亚洲| 大码成人一级视频| 搡老岳熟女国产| 日韩大片免费观看网站| 精品一区二区三卡| 欧美国产精品一级二级三级| 熟女av电影| 精品一区二区三区av网在线观看 | 欧美少妇被猛烈插入视频| 80岁老熟妇乱子伦牲交| 欧美久久黑人一区二区| 在线天堂中文资源库| 久久 成人 亚洲| videosex国产| 无限看片的www在线观看| 狠狠婷婷综合久久久久久88av| 我要看黄色一级片免费的| 香蕉丝袜av| 欧美人与性动交α欧美软件| 高清黄色对白视频在线免费看| 老司机亚洲免费影院| 亚洲七黄色美女视频| av女优亚洲男人天堂| 母亲3免费完整高清在线观看| 一二三四在线观看免费中文在| 男女下面插进去视频免费观看| a 毛片基地| 丝袜人妻中文字幕| 国产成人欧美| 日韩一卡2卡3卡4卡2021年| 国产亚洲精品第一综合不卡| 日韩av免费高清视频| h视频一区二区三区| 男女高潮啪啪啪动态图| 99re6热这里在线精品视频| 国精品久久久久久国模美| 色94色欧美一区二区| 欧美日韩国产mv在线观看视频| 你懂的网址亚洲精品在线观看| 热99国产精品久久久久久7| 亚洲av日韩在线播放| 色婷婷久久久亚洲欧美| 日韩av不卡免费在线播放| 建设人人有责人人尽责人人享有的| 大香蕉久久成人网| 18禁动态无遮挡网站| 精品国产一区二区久久| 国产日韩欧美在线精品| 亚洲欧洲精品一区二区精品久久久 | 久久天躁狠狠躁夜夜2o2o | 亚洲视频免费观看视频| 日本av手机在线免费观看| 国产精品.久久久| 欧美日韩国产mv在线观看视频| 黄频高清免费视频| 水蜜桃什么品种好| 欧美日韩成人在线一区二区| 国产精品久久久久久久久免| 操美女的视频在线观看| 午夜福利乱码中文字幕| 国产成人av激情在线播放| 国产一区二区激情短视频 | 丁香六月欧美| 精品国产一区二区三区久久久樱花| 欧美 亚洲 国产 日韩一| 美女大奶头黄色视频| 国产精品一二三区在线看| 最黄视频免费看| 日日啪夜夜爽| 大片电影免费在线观看免费| 国产午夜精品一二区理论片| av国产精品久久久久影院| 久久国产精品大桥未久av| 老司机亚洲免费影院| 视频在线观看一区二区三区| 欧美成人精品欧美一级黄| 成人国产麻豆网| 在线观看人妻少妇| xxx大片免费视频| 秋霞伦理黄片| 校园人妻丝袜中文字幕| 美女脱内裤让男人舔精品视频| 男人爽女人下面视频在线观看| 久久天躁狠狠躁夜夜2o2o | 国产在线免费精品| 老司机深夜福利视频在线观看 | 你懂的网址亚洲精品在线观看| a 毛片基地| 制服诱惑二区| 国产野战对白在线观看| www.熟女人妻精品国产| 国产一区二区三区综合在线观看| 精品国产国语对白av| 永久免费av网站大全| 韩国av在线不卡| 又大又黄又爽视频免费| 欧美精品高潮呻吟av久久| 国产视频首页在线观看| 19禁男女啪啪无遮挡网站| 夜夜骑夜夜射夜夜干| 久久久久久久久久久久大奶| 妹子高潮喷水视频| 最新在线观看一区二区三区 | 五月开心婷婷网| 高清欧美精品videossex| 伊人亚洲综合成人网| 老汉色∧v一级毛片| 七月丁香在线播放| 两个人免费观看高清视频| 久久青草综合色| 久久国产精品大桥未久av| 天天躁日日躁夜夜躁夜夜| 在线天堂最新版资源| 亚洲综合精品二区| 妹子高潮喷水视频| 99久久精品国产亚洲精品| 午夜免费观看性视频| 久久综合国产亚洲精品| 99国产综合亚洲精品| 国产精品久久久久久精品电影小说| 香蕉国产在线看| 99久久人妻综合| 国产成人啪精品午夜网站| 国产一区二区三区综合在线观看| 超碰成人久久| 国产精品一国产av| 国产成人系列免费观看| 精品一区二区三区av网在线观看 | 欧美久久黑人一区二区| 精品国产一区二区三区久久久樱花| 国产精品99久久99久久久不卡 | 欧美在线黄色| 精品少妇久久久久久888优播| 国产精品av久久久久免费| 国产 精品1| 别揉我奶头~嗯~啊~动态视频 | 亚洲av在线观看美女高潮| 一本色道久久久久久精品综合| 亚洲精品一二三| 99九九在线精品视频| 亚洲一区二区三区欧美精品| 亚洲av成人不卡在线观看播放网 | 亚洲免费av在线视频| 国产午夜精品一二区理论片| 丝袜美足系列| 国产黄色免费在线视频| 伊人久久国产一区二区| 欧美精品av麻豆av| 大陆偷拍与自拍| 久久人人爽人人片av| 欧美人与性动交α欧美精品济南到| 国产亚洲av片在线观看秒播厂| 黑人猛操日本美女一级片| 久久久久久久久久久免费av| 九色亚洲精品在线播放| 少妇被粗大猛烈的视频| avwww免费| 免费观看性生交大片5| 男女免费视频国产| 女的被弄到高潮叫床怎么办| 国产一区亚洲一区在线观看| 十八禁网站网址无遮挡| 女性被躁到高潮视频| 亚洲天堂av无毛| 国产色婷婷99| 丁香六月欧美| 久久免费观看电影| 99久久人妻综合| 成人影院久久| 香蕉丝袜av| 超碰97精品在线观看| 爱豆传媒免费全集在线观看| 国产探花极品一区二区| 免费在线观看视频国产中文字幕亚洲 | 午夜免费男女啪啪视频观看| 色播在线永久视频| 汤姆久久久久久久影院中文字幕| 丁香六月天网| 色视频在线一区二区三区| 久久精品国产亚洲av高清一级| 欧美成人精品欧美一级黄| 国产男女内射视频| 国产免费现黄频在线看| 一级黄片播放器| 日本vs欧美在线观看视频| 欧美激情 高清一区二区三区| 亚洲欧美清纯卡通| 日本av免费视频播放| 美女午夜性视频免费| 国产av国产精品国产| 老鸭窝网址在线观看| 乱人伦中国视频| 成人18禁高潮啪啪吃奶动态图| 欧美激情高清一区二区三区 | 超色免费av| 一区二区av电影网| 热99久久久久精品小说推荐| 美国免费a级毛片| 91国产中文字幕| 久久国产精品男人的天堂亚洲| 啦啦啦在线免费观看视频4| 天天躁夜夜躁狠狠久久av| 十八禁高潮呻吟视频| 黑人欧美特级aaaaaa片| 亚洲av日韩在线播放| 久久久久久人妻| 久久午夜综合久久蜜桃| 亚洲第一区二区三区不卡| 黄色 视频免费看| 大片电影免费在线观看免费| 午夜福利免费观看在线| 韩国高清视频一区二区三区| 亚洲综合色网址| 90打野战视频偷拍视频| 丰满饥渴人妻一区二区三| 国产男人的电影天堂91| 久久久久久久久久久免费av| 麻豆精品久久久久久蜜桃| 在线观看三级黄色| 久久精品人人爽人人爽视色| 天堂俺去俺来也www色官网| 啦啦啦在线观看免费高清www| 成年人免费黄色播放视频| 久热爱精品视频在线9| 99久久精品国产亚洲精品| 亚洲精品美女久久久久99蜜臀 | 久久久精品免费免费高清| 亚洲国产欧美网| 制服诱惑二区| 精品人妻在线不人妻| av国产久精品久网站免费入址| 成人手机av| 国产日韩欧美在线精品| 毛片一级片免费看久久久久| 街头女战士在线观看网站| h视频一区二区三区| 美国免费a级毛片| 看非洲黑人一级黄片| 久久毛片免费看一区二区三区| 免费在线观看视频国产中文字幕亚洲 | www.av在线官网国产| 久久人人爽人人片av|