• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Adsorption Mechanism of Nonylphenol Polyethoxylate onto Hypercrosslinked Resins

    2012-11-06 07:01:06YANGWeiBenRENLi
    物理化學(xué)學(xué)報(bào) 2012年7期
    關(guān)鍵詞:壬基聚氧乙烯醚聚集體

    YANG Wei-Ben REN Li

    (College of Chemistry and Environment Science,Nanjing Normal University,Nanjing 210097,P.R.China)

    Adsorption Mechanism of Nonylphenol Polyethoxylate onto Hypercrosslinked Resins

    YANG Wei-Ben*REN Li

    (College of Chemistry and Environment Science,Nanjing Normal University,Nanjing 210097,P.R.China)

    The aim of this study was to determine the behaviors and mechanism of three hypercrosslinked polymers during the adsorption of nonylphenol ethoxylated decylether(NPEO-10)from aqueous solutions.The polymers were characterized to determine their specific surface areas,pore sizes,and elemental contents.The adsorption isotherms of NPEO-10 on the three polymers fit the Langmuir and double Langmuir models better than the Freundlich model,and the isotherm curves had similar shapes on a lg-lg scale.The amount of adsorbed NPEO-10 depends on the specific surface area,the pore size of the polymer,and the temperature of the solution.Thermodynamic analysis indicated that the adsorption process was characterized by an interaction of the hydrophobic part of the surfactant molecule with the surface of the polymer and by the formation of micelle-like aggregates on the surface of the polymer.A twodimensional mixture consists of singly dispersed surfactant molecules and monolayered or bi-layered aggregates on the surface of the polymers.Adsorption dynamics confirmed that the adsorption process involved two plateaus which were related to the formation of a monolayer and a bi-layer.Finally,the elution processes were investigated to further establish the appropriate adsorption conditions for the purification of water containing NPEO-10.

    Elution;Nonylphenol polyethoxylate;Isotherm;Resin;Temperature

    Nonylphenol polyethoxylates(NPEOs)are the most widely used non-ionic surfactants.Over 300000 tons of NPEOs are produced and used annually throughout the world in many industries,such as those of pulp and paper,textile manufacturing,plastics,petroleum production,cleaning products,pesticides,metal processing,paint and protective coating,etc.However,NPEOs are endocrine disrupting chemicals,and their biodegradation intermediates,nonylphenol mono-ethoxylate,diethoxylate,and nonylphenol,are more toxic and persistent than their parent substances in the environment[1].Moreover,as surfactants, NPEOs can remarkably enhance the solubility of hydrophobic organic contaminants,and accordingly worsen water quality and increase the difficulty and cost of water treatment.The use of NPEOs has been banned in Europe for several industrial uses because they are common water pollutants discharged into wastewater treatment facilities or directly into the aquatic environment, whereas an exception is made for industries possessing wastewater treatment technologies which are able to completely remove theorganicfractionofthewaste(EUregulationNo.1816,2004)[2].

    Several methods,such as membrane[3],oxidation[4],and adsorption[5-8],are available for the removal of NPEOs from contaminated water.Comparatively,though adsorption of NPEOs has achieved considerable attention,the study on adsorption of NPEOs by polymeric adsorbents is still limited.Specially,the importance of porous structure on the adsorption of NPEOs in aqueous solution is not well understood and needs further study.Moreover,the design and optimization of an adsorption process on an industrial scale relies on a thorough understanding of the fundamental mechanisms involved in the various adsorption interactions.

    Adsorption process of NPEOs at a solid/water interface is affected by coulombic interactions,the hydrophobicity and polarity of the solid surface,the length of the hydrophobic chain and hydrophilic group of NPEOs[9].As a consequence,systematic studies are needed to explore different variables of the systems and to establish their influence on NPEOs adsorption.Non-functionalized macroporous hypercrosslinked polymer is particularly suitable for the efficient sorption of high molecular weight organic molecules with lipophilic properties.This polymeric material can be regenerated more easily by using organic solvents such as ethanol,methanol,or acetone[10-12].So,in the present work,adsorption behaviors and mechanisms of NPEO-10(representative of NPEOs)onto hypercrosslinked polymer NU-100 prepared in our laboratory were investigated.For comparison,commercially available hypercrosslinked polymers,NDA-150 and MN-200, were also adopted for study of NPEO-10 adsorption.

    1 Materials and methods

    1.1 Materials

    NPEO-10(molecular weight 660)was obtained from Aldrich Chemical Company.The water used for the NPEO-10 adsorption was purified by distillation.Nitrobenzene,acetone,hydrochloric acid,sulfuric acid,ethanol,and benzene were all analytically pure grades and were obtained from Shanghai Chemical Reagent Plant(Shanghai,China).

    1.2 Polymers

    Hypercrosslinked polymer NU-100 was prepared in our laboratory with the method described in literature[13-14].Commercially hypercrosslinked polymers,MN-200 and NDA-150,were used in this work.MN-200 was supplied by Shanghai Office,Purolite International Co.,Ltd.,and NDA-150 was donated by Jiangsu Nandagede Environmental Science&Technology Co.,Ltd.in Nanjing,China.The polymers were conditioned in methanolhydrochloric acid mixtures and finally in water before used in the adsorption experiments.Nitrogen adsorption and desorption experiments were carried out at temperature 77 K to determine the textural properties of the polymeric resins.The BET surface area was calculated from the desorption isotherms using the standard Brunauer-Emmert-Teller equation,and the mesoporous pore size distribution was determined from desorption isotherms through the Barrett-Joyner-Halenda(BJH)method.All these calculations were performed by an Accelerated Surface Area and Porosimeter system(ASAP 2010,Micromeritics,USA)automatically.The elemental analysis of the polymers was peformed using a Perkin-Elmer 240C Elemental Analytical Instrument (Wellesley,MA,USA).

    1.3 Adsorption assay

    The equilibrium adsorption experiments of polymers were carried out at 288,303,and 318 K.Firstly,0.0500 g polymer was introduced into a series of 150 mL conical flasks and 100 mL aqueous solution of NPEO-10 with known concentration was added into each flask.The initial concentrations of the solutions were 200,400,600,800,and 1000 mg·L-1.The flasks were then completely sealed and placed in a model G25 incubator shaker at a pre-set temperature with shaking speed of 130 r· min-1.The adsorption tests were run continuously for 72 h to ensure the equilibrium.

    Finally the residual concentrations of NPEO-10 in solutions were determined with spectrophotometric measurements on a UV3100-PC ultraviolet and visible spectrometer(Mapada,China) at 230 nm.The adsorption capacity was calculated using Eq.(1):

    where C0is the initial concentration(mg·L-1),Ceis the residual concentration(mg·L-1)at equilibrium;qeis the adsorption capacity(mg·g-1)of NPEO-10 on the polymer at equilibrium system;V is the volume(L)of solution;and m is the mass(g)of dry polymer.

    1.4 Kinetics and elution

    To obtain the kinetic data and determine the time required for equilibrium for the adsorption of NPEO-10 onto the polymer, 100 mL NPEO-10 solution were introduced into a series of 150 mL conical flasks.The NPEO-10 solutions with an initial concentration of 1000 mg·L-1were shaken with 0.0500 g polymer at 303 K and sampled at different time intervals.The adsorption capacity was calculated using Eq.(1).And then,0.0500 g of the polymer that adsorbed NPEO-10 was placed in 100 mL aqueous solutions with various ethanol contents and shaken for 24 h at 303 K.The amounts of NPEO-10 eluted were estimated by measuring the absorbance of solutions at 230 nm.

    2 Results and discussion

    2.1 Characterization of polymers

    It is well known that pore diameter and specific surface area of polymer affect its adsorption capacity[15].In order to investigate the adsorption behaviors and mechanisms of NPEO-10 onto the three hypercrosslinked polymers,the physicochemical properties of the polymers were characterized and listed in Table 1.

    The data for MN-200 determined in this study are in accordance with those given by Purolite Corporation[16-17].The contents of oxygen,carbon,and hydrogen of the NU-100 resin prepared in our laboratory are similar to those of the MN-200 and NDA-150 resins.Both surface area and micropore area of the MN-200 resin are larger than those of the NU-100 and NDA-150 resins; and the average pore diameters of the polymers exhibit an opposite trend.

    2.2 Adsorption isotherm

    The amounts of NPEO-10 adsorbed per gram of the polymers (qe)versus the equilibrium concentration(Ce)are shown in Fig.1.From these plots it can be seen that the effect of temperature on the adsorption capacity is different for the three polymers.At 318 K with the largest concentration,the adsorption capacities of the polymers are in the following order:NDA-150>NU-100>MN-200,which agrees well with the order of their average pore diameters.In addition,for all the studied temperatures the adsorption capacities of NDA-150 are always greater than those of NU-100 at the highest concentration.Surprisingly,the adsorption capacities of the three polymers at 288 and 303 K did not increase as their specific surface area or average pore diameter increased,indicating that the adsorption capacity of the polymers was possibly affected simultaneously by several factors,including the specific area,pore structures of adsorbents,and temperature of the solution.

    Table 1 Properties of polymers measured in our study

    Generally,adsorption of surfactants onto solid-liquid interface is controlled by many factors,such as the nature of the solid surfaces,the type of head group and tail part of the surfactant molecule.In the case of NPEO-10 adsorption onto hydrophobic surfaces of the three hypercrosslinked polymers,the hydrocarbon moiety of the NPEO-10 is in contact with the surface of the polymers,and the oxyethylenic part of the molecule protrudes into the aqueous solution.From the profiles of the adsorption isotherm,the arrangement of surfactant molecules on the adsorbent surface can be modeled as a single layer of surfactant molecules at the initial stage of adsorption,a close-packed ad-sorbate layer in the further course and a multi-layer aggregate at the last stage[19-20].The following two isotherm models were employed to fit the above data.

    Linear Langmuir model:

    where KLis a direct measure of the intensity(L·mg-1)of the adsorption process;M is a constant relating to the surface area occupied by a monolayer of adsorbate,reflecting the adsorption capacity(mg·g-1);Kfis a system constant related to the bonding energy;Kfis defined as an adsorption or distribution coefficient that represents the general capacity of the adsorbate adsorbed onto the adsorbent for a unit equilibrium concentration;and the slope n is a measure of the adsorption intensity or surface heterogeneity.

    Table 2 lists the fitting results with the Langmuir and Freundlich models and the correlation coefficients R2values. Clearly,the experimental data fit better with the Langmuir model (R2≥0.999)than that with the Freundlich one(R2ranges from 0.866 to 0.961).

    Many researchers reported that the adsorption isotherms of surfactant could not be well fitted with the Freundlich equation. Moreover,when the Freundlich model is plotted on a lg-lg scale, four regions can be distinguished in the adsorption isotherms[21-22]. In the present work,it is shown in Fig.1D that the adsorptionisotherms of NPEO-10 on a lg-lg scale nearly have the same shape and consist of three main regions rather than four regions as described in the literature(plotted as an insert in Fig.1D).This is mainly due to the ignorance of the low concentration range (<100 mg·L-1)in our study.

    Table 2 Fitted adsorption parameters under different temperatures with the Langmuir model and the Freundlich model

    Although the isotherms can be perfectly fitted with the Langmuir equation,it is difficult to interpret the arrangement of surfactant molecules on the adsorbent surface with the corresponding parameters because the basic assumption of Langmuir equation is monlayer adsorption.Double Langmuir model provides a semi-empirical method to analyze the experimental results of adsorption processes.This model,extrapolated to the solid/liquid interface,allows the arrangement of adsorbed molecules to be studied in more detail.González-Gárc and coworkers[23]analyzed the surfactant adsorption behavior by applying the Double Langmuir equation and interpreted the experimental data successfully.Double Langmuir equation is given as follows:

    where Mtis the total amount of adsorbate adsorbed at the equilibrium concentration Ce;M1,M2and KL1,KL2are parameters corresponding to each individual Langmuir equation.

    Similarly,the results of R2values listed in Table 3 show that the adsorption isotherms can be fitted well with the Double Langmuir equation.Mtis the total amount absorbed on the resins,which is the sum of M1and M2.The values of M1are almost the same as those of M2on the three polymers at 288 K, whereas the values of M1and M2are totally different at 318 K. Furthermore,the values of KL1and KL2are identical at 288 and 303 K,whereas the values of KL1are much smaller than those of KL2at 318 K.These observations indicate that the arrangement of NPEO-10 molecules on the polymers′surface is fundamentally affected by the temperature of the studied system.

    According to the fitting results of the Langmuir,Freundlich, and Double Langmuir equations,the NPEO-10 molecules appeared to be united as a“monolayer”on the surface of the polymers,and this“monlayer”resulted from the merger of two or more layers.At very low surface concentrations,the adsorption proceeds via attachment of single molecule,and a certain number of the segments of the hydrophobic tail conformably attaches to the surface of the adsorbent.The sudden steep rise in region 2in the inset of Fig.1D indicates a dramatic change in the adsorption mechanism which is due to the formation of small cluster of NPEO-10 molecules onto the surface until the surface is saturatedwiththehemimicelles[24-26].In region 3,formation of new surface cluster slows down;hence there is a decrease in the slope of isotherm.At higher concentrations,the slope of isotherm decreases,and a plateau forms(region 4),where the adsorption amounts remain constant.NPEO-10 may also adsorb onto the surfaces containing oxygen by electrostatic interaction between the oxyethylenic groups and the surfaces.The adsorbed phase is assumed to be a two-dimensional mixture consisting of singly dispersed surfactant molecules,monolayered and bilayered aggregates of various sizes,and empty sites[27-28].The explanations for the nature of adsorption curve in the three regions are depicted in Fig.2.

    Table 3 Regression data of isotherms by double Langmuir equation

    2.3 Factors affecting the adsorption process

    The factors affecting the adsorption process include the length of the hydrophobic and hydrophilic chains in the molecule and the relative size and cross-sectional area of the solvent and solute molecules[29].The interaction between adsorbate and adsorbent is reflected by the experimental adsorption isotherm and,if some theoretical models are assumed,by the predictions of the free energy of adsorption evaluated from the models.In this study, Eq.(5)is employed to determine the standard Gibbs energy change(ΔG0)[30].

    where KLis a thermodynamic constant determined from Langmuir equation;T is the absolute temperature in K;and R is the gas constant with a value of 8.314 J·mol-1·K-1.The values of ΔG0were calculated and listed in Table 2.These values are very similar for the three polymers at the same temperature.Further, to a certain adsorbent,the absolute values of ΔG0increases as the temperature increases.ΔG0indicates the degree of spontaneity of an adsorption process,and a higher absolute value reflects a more energetically favorable adsorption.This observation is consistent with the adsorption behavior of ethoxylated nonionic surfactants,that is,at higher temperature,the larger the pore size,the more the amount adsorbed on the polymer surface.

    Typically,the polar chain of non-ionic surfactants has a size well above the dimension of alkyl chain and forms an extended polar corona.The NEPO-10 molecule has a length of 4.9 nm, with a hydrophobic part of 1.8 nm and a hydrophilic part of 3.1 nm[31-32].Therefore,during the transfer of the adsorbate molecule onto the surface of the polymers,steric repulsion and stretching deformation should be considered.Essentially,the critical micelle concentration(CMC)of NEPO-10 was affected by the temperature.At different adsorption temperatures the NEPO-10 molecules possessed different conformations,and thus different adsorption behaviors were observed[33].As the surface concentration increased,the NEPO-10 molecules tended to compete with each other to adsorb on the available adsorption sites,the amounts of which depend on the pore size and the free adsorbent surface area.As a result,the adsorption on the wall of the pores became a rate-limiting step.A small pore size made the formation of double layer aggregates of surfactant unfavorable[34]. As shown in Table 1 and Fig.1,in comparison to MN-200 resin, NDA-150,which has the largest pore size,exhibited the highest adsorption capacity toward NPEO-10 at 318 K,even though its surface area is the least among the three polymers.

    As described above,the specific surface area and pore size are important factors affecting the adsorption amount.Therefore,the process of NPEO-10 adsorption on the surface of the polymer can be characterized by the interaction of the hydrophobic part of the surfactant molecule with the surface of the polymer and the formation of micelle-like aggregates on the surface of the polymer.The former interaction is exothermic in nature,whereas the latter is related to the endothermic interactions[35-36].The experimental results suggest that the adsorption mechanisms are quite similar for the studied polymers,and the adsorption capacity mainly depends on the surface area and average pore diameter of the adsorbents.High temperature is favorable to the formation of micelle-like structures,since the intermicellar interactions undergoes a change from repulsive to attractive as the temperature increases.Therefore,an increase of temperature will result in an increase of the adsorption amounts[37-38].

    2.4 Adsorption kinetics and elution

    In order to develop NU-100 as a polymeric adsorbent for the removal and recovery of nonylphenol polyethoxylates from industrial wastewater,adsorption kinetics and elution of NPEO-10 from 1000 mg·L-1aqueous solution onto NU-100 at 303 K and desorption with various contents of ethanol were tested.

    Fig.3 shows that the amount of NPEO-10 adsorbed on NU-100 adsorbent from aqueous solution increased with time.A plateau with an adsorption amount of about 250 mg·g-1was observed from 10 to 24 h.After 24 h,the adsorption amount started to increase again until 50 h.A second plateau was observed after 50 h,with the adsorption amount of about 350 mg·g-1.The above adsorption kinetics is interpreted as follows.At a low surface coverage the adsorption takes place with the hydrocarbon chain lying flat.The first plateau region corresponds to a close-packed monolayer of flat-lying surfactant.With a further increase in the adsorbed NPEO-10 molecules,the amount of the molecules is enough to form a partial bi-layer until the kinetic curve extends to the second plateau region[39].According to the above explanation of the adsorption process,we can speculate that the actual aggregate structure on the polymers tested may be intermediate between the monolayer structure and the partial bi-layer structure(Fig.2),such as 1.3 layers,1.5 layers,or 1.7 layers[40].

    In general,the high adsorption potential and the high affinity of the polymer matrix for the surfactant might render surfactant elution from the polymers very difficult.It is worthwhile to investigate the elution behavior of NPEO-10 from the polymer and the possibility of recycled use of the polymer.Fig.3 shows the influence of ethanol on the elution rate of NPEO-10 from NU-100 resin.The elution rate increased as the ethanol content in solution increased.The elution rate of solute on NU-100 polymer is greater than 98%with an ethanol concentration of 40% (volume fraction,φ).The observed high elution rate may be related to the fact that the non-ionic surfactants are mainly adsorbed physically,therefore can be desorbed easily with organic solvents.By additional distilling,both NPEO-10 and ethanol can be easily recovered.

    3 Conclusions

    The presence of non-ionic surfactants in aqueous environment has considerably increased,and there is a need to search for a suitable method to remove them from wastewater.The adsorption characteristics of nonylphenol polyethoxylates in aqueous solution on the three hypercrosslinked polymers have been examined.The following conclusions can be drawn from the present study:

    (1)The three polymers have similar structure and their contents of oxygen,carbon,and hydrogen are almost identical.Both surface area and micropore area of the MN-200 resin are bigger than those of the NU-100 resin and NDA-150 resin,whereas the average pore diameters of the polymers exhibit an opposite trend.

    (2)The adsorption isotherm can fit the Langmuir model and double Langmuir model better than the Freundlich model;the adsorption isotherms on a lg-lg scale nearly have the same shape and consist of three main regions,which can be interpreted by the molecule arrangement on the adsorbent surface.The specific surface area,pore size,and temperature are fundamental factors affecting adsorption amount.The temperature dependence of intermicellar interactions results in the increase of the adsorption amounts at elevated temperatures.

    (3)The investigation on adsorption dynamic indicates that the adsorption process involves two plateaus which are related to the formation of the monolayer and bi-layer.The elution process shows that the non-ionic surfactants are mainly adsorbed physically and can be desorbed easily with organic solvent.

    1 Hou,S.G.;Sun,H.W.;Gao,Y.Chemosphere,2006,63:31

    2 Gioiaa,D.D.;Sciubbaa,L.;Bertina,L.Water Res.,2009,43: 2977

    3 Hu,J.Y.;Chen,X.;Tao,G.Environ.Sci.Technol.,2007,41: 4097

    4 Ike,M.;Asano,M.;Belkada,F.D.Water Sci.Technol.,2002,46: 127

    5 John,D.M.;House,W.A.;White,G.F.Environ.Toxicol.Chem., 2000,19:293

    6 Misra,K.P.;Dash,U.;Somasundaran,P.Ind.Eng.Chem.Res., 2009,48:3403

    7 Caruso,F.;Serizawa,T.;Furlong,D.N.Langmuir,1995,11:1546

    8 Espantaleón,A.G.;Nieto,J.A.;Fernández,M.Appl.Clay Sci., 2003,24:105

    9 Nevskaia,D.M.;Sepulveda-Escribano,A.;Guerrero-Ruiz,A. Phys.Chem.Chem.Phys.,2001,3:463

    10 Streat,M.;Sweetland,L.A.React.Funct.Polym.,1997,35:99

    11 Penner,N.A.;Nesterenko,P.N.J.Chromatogr.A,2000,884:41

    12 Valderrama,C.;Cortina,J.L.;Farran,A.J.Colloid Interface Sci., 2007,310:35

    13 Tsyurupa,M.P.;Davankov,V.A.React.Funct.Polym.,2002,53: 193

    14 Ahn,J.H.;Jang,J.E.;Oh,C.G.Macromolecules,2006,39:627

    15 Yang,W.B.;Li,A.M.;Fan,J.Chemosphere,2006,64:984

    16 Valderrama,C.;Gamisans,X.;de las Heras,F.X.React.Funct. Polym.,2007,67:1515

    17 Streat,M.;Sweetland,L.A.Trans IChemE B,1998,76:115

    18 Per,W.;Bengt,J.Langmuir,1994,10:3268

    19 Misra,P.K.;Mishra,B.K.;Somasunduran,P.J.Colloid Interface Sci.,2003,265:1

    20 Shalaby,M.N.Polym.Adv.Technol.,2004,15:533

    21 Marcel,R.B.;Luuk,K.K.Langmuir,1992,8:2649

    22 Li,B.Q.;Eli,R.Langmuir,1996,12:5052

    23 González-García,C.M.;González-Martín,M.L.;Gómez-Serrano, V.;Bruque,J.M.;Labajos-Broncano,L.Langmuir,2000,16: 3950

    24 Drach,M.;Narkiewicz-Micha?ek,J.;Rudziński,W.Phys.Chem. Chem.Phys.,2002,4:2307

    25 Calvoa,E.;Bravoa,R.;Amigoa,A.Fluid Phase Equilib.,2009, 282:14

    26 Zhang,R.;Somasundaran,P.Langmuir,2004,20:8552

    27 Edwards,D.A.;Adeel,Z.;Luthy,R.G.Environ.Sci.Technol., 1994,28:1550

    28 Adeel,Z.;Luthy,R.G.Environ.Sci.Technol.,1995,29:1032

    29 Paria,S.;Yuet,P.K.Ind.Eng.Chem.Res.,2007,46:108

    30 Liu,Y.J.Chem.Eng.Data,2009,54:1981

    31 Urbina-Villalba,G.;Reif,I.;Márquez,M.L.Colloids Surf.A, 1995,99:207

    32 Levitz,P.E.C.R.Geoscience,2002,334:665

    33 Muller,N.Langmuir,1993,9:96

    34 Kibbey,T.C.G.;Hayes,K.Environ.Sci.Technol.,1997,31:1171

    35 Wesemeyer,H.;Muller,B.W.;Muller,R.H.Int.J.Pharm.,1993, 89:33

    36 Ghiaci,M.;Kalbasi,R.J.;Abbaspour,A.Colloids Surf.A,2007, 297:105

    37 Lindheimer,M.;Keh,E.;Zaini,S.;Partyka,S.J.Colloid Interface Sci.,1990,138:83

    38 Winnik,M.A.;Bystryak,S.M.;Odrobina,E.Langmuir,2000,16: 6118

    39 Mishra,S.K.;Kanungo,S.B.;Rajeev.J.Colloid Interface Sci., 2003,267:42

    40 Gallardo-Moreno,A.M.;González-García,C.M.;González-Martín,M.L.;Bruque,J.M.Colloids Surf.A,2004,249:57

    超高交聯(lián)樹(shù)脂對(duì)壬基酚聚氧乙烯醚的吸附機(jī)理

    楊維本*任 麗

    (南京師范大學(xué)化學(xué)與環(huán)境科學(xué)學(xué)院,南京 210097)

    研究了壬基酚聚氧乙烯醚(NPEO-10)在3種具有不同比表面積和孔徑大小的超高交聯(lián)樹(shù)脂上的吸附行為與機(jī)理.3種超高交聯(lián)樹(shù)脂對(duì)壬基酚聚氧乙烯醚的吸附量受它們的比表面積和孔徑大小以及溶液溫度的影響.壬基酚聚氧乙烯醚在3種超高交聯(lián)樹(shù)脂上的吸附等溫線可以用Langmuir和雙Langmuir模型很好地?cái)M合,而用Freundlich模型擬合則效果不好,但這些擬合曲線都具有相似的形狀.熱力學(xué)分析表明吸附過(guò)程主要表現(xiàn)為吸附質(zhì)分子的疏水部分和吸附劑表面的作用以及吸附質(zhì)分子在其表面形成膠束狀的聚集體,即分散的、單層及雙層聚集體的混合分布.吸附動(dòng)力學(xué)曲線中的兩個(gè)平臺(tái)也證明了吸附過(guò)程存在單層和雙層聚集體.脫附研究為實(shí)現(xiàn)超高交聯(lián)樹(shù)脂吸附分離水溶液中的壬基酚聚氧乙烯醚提供了合適的操作條件.

    脫附;壬基酚聚氧乙烯醚;等溫線;樹(shù)脂;溫度

    O642

    Received:February 22,2010;Revised:April 1,2010;Published on Web:June 7,2010.

    *Corresponding author.Email:yangwb007@njnu.edu.cn;Tel:+86-25-85560233;Fax:+86-25-85572627.

    The project was supported by the National Natural Science Foundation of China(50978137)and Natural Science Foundation of Jiangsu Province,China(BK2008436).

    國(guó)家自然科學(xué)基金(50978137)和江蘇省自然科學(xué)基金(BK2008436)資助項(xiàng)目

    ?Editorial office of Acta Physico-Chimica Sinica

    猜你喜歡
    壬基聚氧乙烯醚聚集體
    銅納米簇聚集體的合成、發(fā)光與胞內(nèi)溫度傳感
    一種新型聚集誘導(dǎo)發(fā)光的片狀銀納米簇聚集體的合成
    類胡蘿卜素聚集體的研究進(jìn)展
    抗氧劑壬基二苯胺的合成及其熱穩(wěn)定性
    內(nèi)墻涂料中烷基酚聚氧乙烯醚的高效液相色譜-質(zhì)譜測(cè)定
    壬基酚聚氧乙烯醚在反相液相色譜上的保留行為
    歐盟將在可洗滌紡織品中限制使用壬基酚聚氧乙烯醚
    高效液相色譜法測(cè)定羽絨制品中烷基粉聚氧乙烯醚
    水合物聚集體受力分析及臨界聚集體粒徑的計(jì)算
    石油化工(2014年1期)2014-06-07 05:57:08
    化學(xué)分析計(jì)量(2013年5期)2013-04-10 09:31:53
    亚洲成国产人片在线观看| 男人添女人高潮全过程视频| 黑人巨大精品欧美一区二区mp4| 大片免费播放器 马上看| 久久久久视频综合| 多毛熟女@视频| 男男h啪啪无遮挡| 国产精品1区2区在线观看. | 夫妻午夜视频| 亚洲精品久久午夜乱码| 亚洲熟女毛片儿| av在线老鸭窝| 欧美激情极品国产一区二区三区| 91麻豆精品激情在线观看国产 | 亚洲国产精品一区三区| 国产成人av激情在线播放| 99久久综合免费| 看免费av毛片| 国产精品久久久久成人av| 亚洲熟女毛片儿| 日韩电影二区| 中文字幕另类日韩欧美亚洲嫩草| 日本撒尿小便嘘嘘汇集6| 黄片播放在线免费| 丰满饥渴人妻一区二区三| 国产成人系列免费观看| 香蕉丝袜av| 日韩有码中文字幕| 丁香六月欧美| 狂野欧美激情性bbbbbb| 在线观看免费视频网站a站| 亚洲性夜色夜夜综合| 两性夫妻黄色片| 午夜激情久久久久久久| 久久久久网色| 国产亚洲av片在线观看秒播厂| 国产一区二区三区综合在线观看| 制服诱惑二区| 久久影院123| 大片免费播放器 马上看| 久久热在线av| 99国产精品免费福利视频| 岛国毛片在线播放| av有码第一页| 女人久久www免费人成看片| 久久国产精品大桥未久av| 女性生殖器流出的白浆| 日韩视频一区二区在线观看| 美女脱内裤让男人舔精品视频| 男女下面插进去视频免费观看| 18在线观看网站| 日韩欧美免费精品| cao死你这个sao货| 欧美亚洲 丝袜 人妻 在线| tocl精华| 日韩制服骚丝袜av| 久久久久国产一级毛片高清牌| 国产男女内射视频| 精品国产乱子伦一区二区三区 | 午夜福利乱码中文字幕| 91麻豆精品激情在线观看国产 | 性少妇av在线| 亚洲精品av麻豆狂野| 黄网站色视频无遮挡免费观看| 久久亚洲精品不卡| 欧美亚洲 丝袜 人妻 在线| 黑人猛操日本美女一级片| 岛国在线观看网站| 两个人免费观看高清视频| 久久精品国产亚洲av高清一级| 国产成人免费观看mmmm| 免费在线观看视频国产中文字幕亚洲 | 国产精品一区二区精品视频观看| 正在播放国产对白刺激| 涩涩av久久男人的天堂| 男女午夜视频在线观看| 老汉色∧v一级毛片| 午夜精品国产一区二区电影| 精品国产超薄肉色丝袜足j| 亚洲精品中文字幕在线视频| 欧美av亚洲av综合av国产av| 国产亚洲精品第一综合不卡| 亚洲欧美色中文字幕在线| 蜜桃国产av成人99| 嫩草影视91久久| 欧美精品高潮呻吟av久久| 亚洲精品一二三| 视频区欧美日本亚洲| 国产成人精品久久二区二区91| 日本av免费视频播放| 老司机午夜十八禁免费视频| 多毛熟女@视频| 久久 成人 亚洲| 欧美激情久久久久久爽电影 | 99精品欧美一区二区三区四区| 亚洲综合色网址| 菩萨蛮人人尽说江南好唐韦庄| 18在线观看网站| 成人黄色视频免费在线看| 狂野欧美激情性xxxx| 国产高清国产精品国产三级| 午夜日韩欧美国产| 97人妻天天添夜夜摸| 久久久久久人人人人人| 国产成+人综合+亚洲专区| 亚洲va日本ⅴa欧美va伊人久久 | 久久精品国产综合久久久| 一本大道久久a久久精品| av天堂在线播放| 90打野战视频偷拍视频| 一级片'在线观看视频| 在线十欧美十亚洲十日本专区| 欧美在线黄色| 免费日韩欧美在线观看| 亚洲全国av大片| 成人免费观看视频高清| 欧美一级毛片孕妇| 建设人人有责人人尽责人人享有的| 久久中文看片网| 两性夫妻黄色片| 免费在线观看日本一区| 精品亚洲成国产av| 香蕉丝袜av| 久久久久视频综合| 亚洲欧美激情在线| 性高湖久久久久久久久免费观看| 日韩一卡2卡3卡4卡2021年| netflix在线观看网站| 十八禁高潮呻吟视频| 久久人妻福利社区极品人妻图片| 伦理电影免费视频| 欧美+亚洲+日韩+国产| 老汉色av国产亚洲站长工具| 国产欧美日韩综合在线一区二区| 我要看黄色一级片免费的| 国产又爽黄色视频| 久久久久国内视频| 日日摸夜夜添夜夜添小说| 日韩制服丝袜自拍偷拍| 欧美精品一区二区大全| 天堂8中文在线网| 飞空精品影院首页| 狠狠狠狠99中文字幕| 欧美日韩亚洲国产一区二区在线观看 | 欧美激情极品国产一区二区三区| 可以免费在线观看a视频的电影网站| 日日夜夜操网爽| 一边摸一边做爽爽视频免费| 国产精品二区激情视频| 亚洲国产av影院在线观看| 午夜91福利影院| 亚洲欧美色中文字幕在线| 啪啪无遮挡十八禁网站| av在线播放精品| 老熟女久久久| 亚洲欧美一区二区三区黑人| 丰满迷人的少妇在线观看| 亚洲精品中文字幕在线视频| 国产亚洲精品久久久久5区| 欧美一级毛片孕妇| 欧美日韩黄片免| 性高湖久久久久久久久免费观看| 亚洲avbb在线观看| 美女视频免费永久观看网站| 美女脱内裤让男人舔精品视频| 精品久久蜜臀av无| 激情视频va一区二区三区| 黄色视频不卡| 国产97色在线日韩免费| 欧美成人午夜精品| 亚洲人成77777在线视频| 一本色道久久久久久精品综合| 国产老妇伦熟女老妇高清| 久久毛片免费看一区二区三区| 成年人黄色毛片网站| 精品少妇久久久久久888优播| 自线自在国产av| 国产有黄有色有爽视频| 国产日韩一区二区三区精品不卡| 亚洲伊人色综图| 亚洲精品中文字幕一二三四区 | 久久久久网色| 欧美黄色片欧美黄色片| 日韩制服骚丝袜av| 亚洲欧美激情在线| 99re6热这里在线精品视频| 久久久久久久久久久久大奶| 国产成人a∨麻豆精品| 国产成人系列免费观看| 亚洲熟女精品中文字幕| a级毛片黄视频| 亚洲第一青青草原| 十分钟在线观看高清视频www| 国产精品99久久99久久久不卡| 高清视频免费观看一区二区| 少妇的丰满在线观看| 国产精品一区二区精品视频观看| 亚洲av电影在线进入| 婷婷丁香在线五月| 日韩 亚洲 欧美在线| 男女床上黄色一级片免费看| 老司机午夜十八禁免费视频| 天堂俺去俺来也www色官网| 久久久水蜜桃国产精品网| e午夜精品久久久久久久| 国产精品久久久久久精品电影小说| 美女高潮喷水抽搐中文字幕| 人妻久久中文字幕网| 国产亚洲av高清不卡| 欧美激情极品国产一区二区三区| 大片电影免费在线观看免费| 国产欧美日韩一区二区三区在线| av网站免费在线观看视频| 91老司机精品| 国产精品麻豆人妻色哟哟久久| 久久精品成人免费网站| 夜夜骑夜夜射夜夜干| 少妇被粗大的猛进出69影院| 一区二区av电影网| 99热全是精品| 午夜福利在线免费观看网站| 久久ye,这里只有精品| 999久久久国产精品视频| 亚洲精品中文字幕一二三四区 | 久久久精品区二区三区| 亚洲av日韩在线播放| 亚洲欧美日韩高清在线视频 | 91av网站免费观看| av在线播放精品| 日韩 欧美 亚洲 中文字幕| 亚洲美女黄色视频免费看| 又黄又粗又硬又大视频| 欧美激情极品国产一区二区三区| 熟女少妇亚洲综合色aaa.| 国产成+人综合+亚洲专区| 黄片小视频在线播放| 日本vs欧美在线观看视频| 九色亚洲精品在线播放| 国产精品自产拍在线观看55亚洲 | 亚洲av男天堂| 黄网站色视频无遮挡免费观看| 黄色视频,在线免费观看| 熟女少妇亚洲综合色aaa.| 国产欧美日韩一区二区三区在线| 十八禁人妻一区二区| 亚洲成人手机| 午夜福利一区二区在线看| 国产精品秋霞免费鲁丝片| 色婷婷久久久亚洲欧美| 性高湖久久久久久久久免费观看| 久久国产精品人妻蜜桃| 欧美黑人精品巨大| 亚洲成国产人片在线观看| 妹子高潮喷水视频| 天天操日日干夜夜撸| 久久久久视频综合| 国产在视频线精品| 日韩 欧美 亚洲 中文字幕| 国产亚洲精品久久久久5区| 免费不卡黄色视频| 国产在视频线精品| 亚洲 国产 在线| 日本91视频免费播放| 国产精品偷伦视频观看了| 欧美+亚洲+日韩+国产| 国产高清视频在线播放一区 | 久久久精品区二区三区| 又紧又爽又黄一区二区| 亚洲精品成人av观看孕妇| 欧美成人午夜精品| 国产欧美日韩一区二区三区在线| 97在线人人人人妻| 美女午夜性视频免费| 久久久欧美国产精品| 欧美日本中文国产一区发布| 老司机影院毛片| 黄色片一级片一级黄色片| 91精品伊人久久大香线蕉| 狠狠精品人妻久久久久久综合| 亚洲精品国产精品久久久不卡| 后天国语完整版免费观看| 久久 成人 亚洲| 国产精品麻豆人妻色哟哟久久| 久久精品国产亚洲av高清一级| 中国国产av一级| 欧美精品高潮呻吟av久久| 免费观看a级毛片全部| 超碰成人久久| 久久女婷五月综合色啪小说| 窝窝影院91人妻| 久久精品熟女亚洲av麻豆精品| 99久久国产精品久久久| 每晚都被弄得嗷嗷叫到高潮| 老鸭窝网址在线观看| 国产成人精品久久二区二区免费| 亚洲精品美女久久久久99蜜臀| www.精华液| 亚洲av成人不卡在线观看播放网 | 三上悠亚av全集在线观看| 麻豆av在线久日| 咕卡用的链子| 日韩三级视频一区二区三区| 国产精品一区二区免费欧美 | 黑人欧美特级aaaaaa片| 他把我摸到了高潮在线观看 | 人妻人人澡人人爽人人| 成人亚洲精品一区在线观看| 高潮久久久久久久久久久不卡| 精品视频人人做人人爽| 欧美一级毛片孕妇| 免费黄频网站在线观看国产| 日本撒尿小便嘘嘘汇集6| 另类精品久久| 亚洲精华国产精华精| 国产成+人综合+亚洲专区| 国产在线免费精品| 青青草视频在线视频观看| av欧美777| 精品一区二区三区四区五区乱码| 999久久久国产精品视频| 亚洲人成电影观看| 亚洲五月色婷婷综合| 亚洲七黄色美女视频| 真人做人爱边吃奶动态| 宅男免费午夜| 国产精品欧美亚洲77777| 欧美av亚洲av综合av国产av| 十分钟在线观看高清视频www| 国产欧美日韩一区二区三区在线| 久9热在线精品视频| 一二三四在线观看免费中文在| 男女之事视频高清在线观看| 国产在视频线精品| 久久中文字幕一级| 亚洲av成人一区二区三| www.av在线官网国产| √禁漫天堂资源中文www| 丁香六月天网| 精品一区二区三区四区五区乱码| 女人被躁到高潮嗷嗷叫费观| 国产黄色免费在线视频| 国产精品一区二区精品视频观看| 肉色欧美久久久久久久蜜桃| 在线观看舔阴道视频| 亚洲精品粉嫩美女一区| 亚洲精品av麻豆狂野| 久久av网站| 欧美国产精品一级二级三级| 人妻 亚洲 视频| 大码成人一级视频| 国产xxxxx性猛交| 99热网站在线观看| 午夜免费成人在线视频| 免费观看a级毛片全部| 亚洲熟女毛片儿| 一级,二级,三级黄色视频| 夜夜骑夜夜射夜夜干| 午夜福利免费观看在线| 中文字幕高清在线视频| 视频区欧美日本亚洲| 高潮久久久久久久久久久不卡| 宅男免费午夜| 国产高清国产精品国产三级| 91麻豆精品激情在线观看国产 | 午夜免费观看性视频| 一本—道久久a久久精品蜜桃钙片| 狠狠精品人妻久久久久久综合| 亚洲色图 男人天堂 中文字幕| a 毛片基地| 男女免费视频国产| 亚洲国产精品成人久久小说| 亚洲av欧美aⅴ国产| 国产亚洲精品一区二区www | 免费在线观看完整版高清| 高清在线国产一区| 亚洲视频免费观看视频| 国产日韩一区二区三区精品不卡| 亚洲av美国av| 91大片在线观看| 日韩视频在线欧美| 亚洲综合色网址| 国产日韩欧美在线精品| 大片电影免费在线观看免费| 久久精品aⅴ一区二区三区四区| 777米奇影视久久| 国产精品久久久av美女十八| 成人国产av品久久久| 亚洲国产精品999| av一本久久久久| 考比视频在线观看| 成人18禁高潮啪啪吃奶动态图| 欧美午夜高清在线| 国产精品欧美亚洲77777| 国产在线一区二区三区精| 精品少妇黑人巨大在线播放| 日本91视频免费播放| 如日韩欧美国产精品一区二区三区| 国产精品熟女久久久久浪| 午夜福利免费观看在线| 天堂8中文在线网| 免费少妇av软件| av超薄肉色丝袜交足视频| 日日夜夜操网爽| avwww免费| 久久这里只有精品19| 秋霞在线观看毛片| 国产有黄有色有爽视频| 久久人人爽av亚洲精品天堂| 国产激情久久老熟女| 999精品在线视频| 高清黄色对白视频在线免费看| 一区二区三区四区激情视频| 国产av一区二区精品久久| 三级毛片av免费| 国产亚洲av高清不卡| 亚洲九九香蕉| 久久综合国产亚洲精品| 欧美97在线视频| 国产成人一区二区三区免费视频网站| 成人国产一区最新在线观看| 精品久久久久久电影网| 男女午夜视频在线观看| 91麻豆av在线| av视频免费观看在线观看| 亚洲精品国产色婷婷电影| 宅男免费午夜| 91老司机精品| 女性生殖器流出的白浆| 国产在视频线精品| 人成视频在线观看免费观看| 午夜激情av网站| 亚洲一区二区三区欧美精品| 亚洲精品中文字幕在线视频| 三级毛片av免费| 极品少妇高潮喷水抽搐| 免费不卡黄色视频| 巨乳人妻的诱惑在线观看| 亚洲综合色网址| 久久精品aⅴ一区二区三区四区| 丰满人妻熟妇乱又伦精品不卡| 国产一卡二卡三卡精品| 国产成人av激情在线播放| 深夜精品福利| 久久久久久久精品精品| 一个人免费在线观看的高清视频 | av线在线观看网站| 中文字幕色久视频| 少妇被粗大的猛进出69影院| 黄色a级毛片大全视频| 一二三四社区在线视频社区8| 啦啦啦视频在线资源免费观看| 黄色怎么调成土黄色| 一级片'在线观看视频| 婷婷色av中文字幕| 在线看a的网站| 精品久久久久久电影网| 国产精品免费视频内射| 亚洲性夜色夜夜综合| 天堂8中文在线网| 日本91视频免费播放| 两性夫妻黄色片| 欧美日韩精品网址| 宅男免费午夜| 亚洲熟女精品中文字幕| xxxhd国产人妻xxx| 国产深夜福利视频在线观看| 美女脱内裤让男人舔精品视频| 各种免费的搞黄视频| 五月天丁香电影| 午夜福利一区二区在线看| 中国美女看黄片| 人人澡人人妻人| 婷婷色av中文字幕| videosex国产| 亚洲免费av在线视频| 欧美激情久久久久久爽电影 | 最新的欧美精品一区二区| 大片电影免费在线观看免费| 黄网站色视频无遮挡免费观看| 十八禁网站免费在线| 亚洲国产av影院在线观看| 亚洲精品一卡2卡三卡4卡5卡 | 大陆偷拍与自拍| 欧美少妇被猛烈插入视频| 午夜福利乱码中文字幕| 各种免费的搞黄视频| 国产一区有黄有色的免费视频| 中文字幕色久视频| 午夜免费成人在线视频| 极品人妻少妇av视频| 精品亚洲成a人片在线观看| 日本wwww免费看| 成年av动漫网址| 99热国产这里只有精品6| 国产精品久久久久久精品古装| 大香蕉久久成人网| 亚洲五月色婷婷综合| 视频在线观看一区二区三区| 国产精品熟女久久久久浪| 免费观看人在逋| 日日摸夜夜添夜夜添小说| www.999成人在线观看| 成人18禁高潮啪啪吃奶动态图| 亚洲男人天堂网一区| 国产日韩一区二区三区精品不卡| 国产免费av片在线观看野外av| 亚洲国产欧美在线一区| 亚洲成人免费电影在线观看| 亚洲黑人精品在线| 两性午夜刺激爽爽歪歪视频在线观看 | 精品一区二区三区av网在线观看 | 性色av一级| 国产黄色免费在线视频| 国产视频一区二区在线看| 久久精品成人免费网站| 天堂俺去俺来也www色官网| 国产一区二区三区av在线| 国产老妇伦熟女老妇高清| 天天添夜夜摸| netflix在线观看网站| 黄色视频,在线免费观看| 亚洲欧美清纯卡通| 91av网站免费观看| 亚洲精品国产av成人精品| 日韩视频一区二区在线观看| netflix在线观看网站| 亚洲九九香蕉| 国产精品熟女久久久久浪| 最近最新中文字幕大全免费视频| 欧美人与性动交α欧美软件| 男女之事视频高清在线观看| 女人爽到高潮嗷嗷叫在线视频| 亚洲性夜色夜夜综合| 天天躁日日躁夜夜躁夜夜| 美女高潮到喷水免费观看| 窝窝影院91人妻| 亚洲成av片中文字幕在线观看| 少妇猛男粗大的猛烈进出视频| 日韩欧美免费精品| 日韩中文字幕欧美一区二区| 国产区一区二久久| 精品乱码久久久久久99久播| 亚洲精品国产av成人精品| 黄片大片在线免费观看| 久久久国产欧美日韩av| 亚洲情色 制服丝袜| 丝袜美腿诱惑在线| 动漫黄色视频在线观看| 国产成人欧美在线观看 | 精品亚洲成a人片在线观看| 欧美精品av麻豆av| 大陆偷拍与自拍| 亚洲欧美激情在线| 欧美黄色淫秽网站| 99精品欧美一区二区三区四区| 无限看片的www在线观看| 69av精品久久久久久 | 久久久国产欧美日韩av| 国产一区二区 视频在线| 天天添夜夜摸| 一边摸一边做爽爽视频免费| 亚洲av男天堂| 人妻 亚洲 视频| 精品一区在线观看国产| 高清视频免费观看一区二区| 国产成+人综合+亚洲专区| 青草久久国产| 丝袜在线中文字幕| 精品国产一区二区久久| tube8黄色片| 久久久久久久精品精品| 纵有疾风起免费观看全集完整版| 老熟妇仑乱视频hdxx| 国产亚洲午夜精品一区二区久久| 91成年电影在线观看| 黑人巨大精品欧美一区二区mp4| 日本撒尿小便嘘嘘汇集6| 亚洲精品一二三| 国产成+人综合+亚洲专区| 香蕉国产在线看| 欧美97在线视频| 免费一级毛片在线播放高清视频 | 中文字幕色久视频| 国产在线视频一区二区| 曰老女人黄片| 亚洲国产av新网站| 亚洲国产精品999| av不卡在线播放| 波多野结衣一区麻豆| 男人添女人高潮全过程视频| 亚洲精品av麻豆狂野| 电影成人av| 日韩欧美国产一区二区入口| 成人影院久久| 国产伦人伦偷精品视频| 每晚都被弄得嗷嗷叫到高潮| 午夜成年电影在线免费观看| 亚洲性夜色夜夜综合| 久久久久久免费高清国产稀缺| 精品久久蜜臀av无| 美女高潮到喷水免费观看| 亚洲五月色婷婷综合| 日韩大片免费观看网站| 欧美日本中文国产一区发布| 欧美精品亚洲一区二区| 亚洲av男天堂| 国产欧美日韩精品亚洲av| 黄色视频在线播放观看不卡| 少妇人妻久久综合中文| 精品乱码久久久久久99久播| 在线十欧美十亚洲十日本专区| 麻豆国产av国片精品| 午夜福利一区二区在线看| 亚洲欧美清纯卡通| 最黄视频免费看|