陳 亮, 譚凱旋, 劉 江, 曾 晟
(1. 南華大學(xué) 礦業(yè)工程博士后流動(dòng)站,湖南 衡陽 421001;2. 南華大學(xué) 核資源與核燃料工程學(xué)院,湖南 衡陽 421001)
砂巖的孔隙結(jié)構(gòu)極其復(fù)雜。長期以來人們一直采用數(shù)理統(tǒng)計(jì)方法去描述砂巖的復(fù)雜微觀孔隙結(jié)構(gòu),但總不盡人意。分形幾何學(xué)是20世紀(jì)70年代后發(fā)展起來的一門新興學(xué)科,是描述復(fù)雜的、不規(guī)則現(xiàn)象和過程的有力工具。國內(nèi)外眾多學(xué)者采用分形理論研究了砂巖的孔隙結(jié)構(gòu)特征,尤其是儲(chǔ)層砂巖的孔隙結(jié)構(gòu)特征,取得了較好的研究成果。張婷等[1]利用分形理論研究了儲(chǔ)層砂巖的孔隙結(jié)構(gòu),并通過求取其分維值分析了巖樣儲(chǔ)集體的物性。李中鋒等[2]探討了砂巖儲(chǔ)層孔隙結(jié)構(gòu)的分形特征,研究結(jié)果表明其分維值可定量描述孔隙結(jié)構(gòu)的非均質(zhì)性,分維值越大,砂巖孔隙分布的非均質(zhì)性越強(qiáng)。張宸愷等[3]應(yīng)用分形理論研究了鄂爾多斯MHM油田低孔滲砂巖儲(chǔ)層的孔隙結(jié)構(gòu),結(jié)果顯示兩個(gè)主要含油氣層段的儲(chǔ)層孔隙結(jié)構(gòu)存在多重分形特征。文慧儉等[4]的研究也表明同一巖心樣品在不同孔徑范圍具有不同的分形維數(shù)。Schlueter等[5]、Radlinski等[6]及Tsakiroglou等[7]也研究了砂巖和儲(chǔ)層砂巖孔隙結(jié)構(gòu)的分形特征。
在眾多鈾礦床類型中,砂巖鈾礦床是指工業(yè)鈾礦化主要產(chǎn)于砂巖中的鈾礦床。據(jù)新近國際原子能機(jī)構(gòu)網(wǎng)站數(shù)據(jù)(IAEA-TECDOC-1629報(bào)告),全球1 352個(gè)已知鈾礦床中,有530個(gè)為砂巖鈾礦,占全球已探明總儲(chǔ)量的27.9%,數(shù)量和儲(chǔ)量均位居第一。我國近年在北方中新生代沉積盆地發(fā)現(xiàn)和探明了6種新的大型、特大型砂巖型鈾礦[8],大大提高了砂巖鈾礦在鈾資源中的地位,已成為我國4大鈾礦主要工業(yè)類型之一。目前國內(nèi)外的砂巖鈾礦已廣泛采用地浸技術(shù)開采[9-10]。含礦層的滲透性是地浸采鈾的一個(gè)主要影響因素,而其滲透性與孔隙結(jié)構(gòu)特征密切相關(guān)。故開展砂巖鈾礦含礦層孔隙結(jié)構(gòu)特征的分形研究顯得非常必要,而目前國內(nèi)外在這方面的研究還很少。為此,本文以新疆某砂巖鈾礦含礦層為研究對象,利用壓汞實(shí)驗(yàn)數(shù)據(jù),采用分形理論研究含礦層孔隙結(jié)構(gòu)特征,并探討其與滲透性的關(guān)系及成因。
新疆某砂巖型鈾礦床產(chǎn)于伊犁盆地南緣西部,含礦地層為中下侏羅統(tǒng)水西溝群。中下侏羅統(tǒng)水西溝群為一套陸相含煤碎屑巖建造,由下而上劃分為3個(gè)巖組(即八道灣組、三工河組、西山窯組)、8個(gè)沉積旋回。每個(gè)旋回中都發(fā)育層間氧化帶,鈾礦化與氧化帶密切相關(guān),所有氧化帶都有鈾礦化,其中三工河組Ⅴ旋回發(fā)育區(qū)域性層間氧化帶,為主要含礦層。含礦層為中粗粒砂巖,滲透性低,頂、底板為泥巖或泥巖與粉砂巖互層構(gòu)成。礦體位于氧化帶與還原帶過渡位置。在礦體及其附近圍巖共取6個(gè)樣品用于含礦層孔隙結(jié)構(gòu)的壓汞實(shí)驗(yàn)分析。壓汞實(shí)驗(yàn)使用全自動(dòng)壓汞儀(Autopore IV 9510),完成于清華大學(xué)熱能工程實(shí)驗(yàn)室。由壓汞實(shí)驗(yàn)數(shù)據(jù)計(jì)算的含礦層孔隙結(jié)構(gòu)參數(shù)見表1。
表1 含礦層的孔隙結(jié)構(gòu)參數(shù)
依據(jù)分形原理,具有相同尺度物體數(shù)量與其測量的線性尺度之間滿足冪律關(guān)系,即
N(r)∝r-D
(1)
式中:N(r)為分形物體容納標(biāo)尺特征體的數(shù)目;D為分形物體的分形維數(shù)。
根據(jù)毛細(xì)管模型,有
N(r)=VHg/(πr2l)
(2)
式中:VHg為水銀流經(jīng)半徑為r的毛細(xì)管所對應(yīng)的水銀累積體積;l為毛細(xì)管的長度。
由式(1)和式(2)得
VHg/(πr2l)∝r-D
(3)
VHg∝r2-D
(4)
據(jù)Laplace方程可得
Pc=(2σcosθ)/r
(5)
式中,Pc為毛細(xì)管壓力;σ為界面張力;θ為接觸角。
由式(4)和式(5)可得
VHg∝P-(2-D)
(6)
由巖樣中水銀飽和度的定義有
SHg=VHg/Vp
(7)
式中,SHg為水銀飽和度;Vp為樣品的孔隙體積。
由式(6)和式(7)可得
表3顯示的是特級(jí)教師和普通教師心理健康的差異,從健康均分可以看出,特級(jí)教師和普通教師心理健康水平有顯著差異(P<0.001)。從各因子得分看,除軀體化因子差異不明顯外(P>0.05),其它8個(gè)因子都有明顯差異。其中,在強(qiáng)迫癥狀因子上的差異明顯(P<0.01),其余7個(gè)因子的差異均是極其顯著(P<0.001),均是普通教師得分明顯高于特級(jí)教師。
(8)
式中α為常數(shù)。
以上分析表明巖樣中汞飽和度與毛細(xì)管壓力之間滿足冪律關(guān)系,在雙對數(shù)坐標(biāo)下二者為一直線,根據(jù)直線的斜率可求取巖樣的分維值(D=b+2)。樣品lgPc-lgSHg關(guān)系圖見圖1。
圖1 lgPc-lgSHg關(guān)系圖
設(shè)孔隙某一孔徑r,半徑大于等于r的孔隙數(shù)為N(r),如果巖層孔徑分布符合分形結(jié)構(gòu),則有
∝r-D
(9)
式中,P(r)為孔徑分布密度函數(shù);D為分維值。
設(shè)V(r)為半徑不小于r的孔隙體積,V0為系統(tǒng)孔隙總體積,b為常數(shù),如果
V(≥r)/V0∝rb
(10)
對式(10)兩邊求導(dǎo)得
dV(≥r)∝rb-1dr
(11)
對式(9)兩邊求導(dǎo)得
dN(≥r)∝r-D-1dr
(12)
假設(shè)巖層孔隙為近似球形,則
dV(≥r)∝r3dN(≥r)
(13)
rb-1dr∝r3r-D-1dr
(14)
由式(13)可得
b=3-D或D=3-b
由式(10)和式(14)可知,測量體積V與半徑r存在以下關(guān)系
V(≥r)/V0=K1r3-D
(15)
式中K1為常數(shù)。對式(15)兩邊取對數(shù)可得
lgV(≥r)=lg(V0K1)+(3-D)lgr
(16)
如果在雙對數(shù)坐標(biāo)下V-r存在線性關(guān)系,表明巖層孔隙結(jié)構(gòu)具分形特征。樣品lgr-lgv關(guān)系圖見圖2。
由上述兩種方法求取的樣品分維值見表2。
表2 含礦層孔隙結(jié)構(gòu)的分維值
含礦層平均孔徑在68.8~25.9 nm之間變化,均值為144.6 nm,平均孔徑總體較小??紫抖茸兓?1.54%~34.92%之間,均值為27.30%。空隙總面積在2.581~6.275 m2/g之間波動(dòng),均值為4.357 m2/g。中值體積孔徑的變化范圍為304.6~9 178.5 nm,均值為3 252.3 nm。中值面積孔徑在19.4~31.4 nm之間變化,均值為24.7 nm。
圖1和圖2的散點(diǎn)均大致分布在二段直線上,即具雙分形特征,此時(shí)采用分段擬合。其分界點(diǎn)的確定參照申維[11],并考慮線性擬合程度。Ds1在2.717 5~2.998 0之間變化,均值為2.820 5。Ds2在2.089 9~2.190 8之間波動(dòng),均值為2.146 6。Dv1變化于3.093 9~3.200 5之間,均值為3.152 3。Dv2在3.748 5~3.998 0之間變化,均值為3.851 5。Ds1和Ds2的波動(dòng)范圍均不大,表明含礦層孔隙結(jié)構(gòu)總體上具類似的分形特征和形成機(jī)理[12]。Ds1明顯大于Ds2,說明大孔隙結(jié)構(gòu)的分維值明顯大于小孔隙結(jié)構(gòu)的分維值。Dv1和Dv2的變化規(guī)律也反映了每個(gè)樣品總體上的孔隙結(jié)構(gòu)的分形特征差異不大,僅在不同類型孔隙結(jié)構(gòu)之間存在差異,即顆粒間孔隙結(jié)構(gòu)的分維值顯著大于顆粒內(nèi)部孔隙結(jié)構(gòu)的分維值[13]。一般認(rèn)為顆粒間孔隙要遠(yuǎn)大于顆粒內(nèi)部孔隙,因而支持大孔隙結(jié)構(gòu)的分維值大于小孔隙結(jié)構(gòu)分維值的結(jié)論。含礦層孔隙度隨大孔隙結(jié)構(gòu)分維值的增加而升高,隨小孔隙結(jié)構(gòu)分維值的升高而降低(圖3)。
砂巖的滲透性能除與孔隙度相關(guān)外,還受孔隙結(jié)構(gòu)復(fù)雜程度的影響,包括孔隙表面粗糙程度、分布與形狀及連通性等。在三維歐氏空間中砂巖孔隙結(jié)構(gòu)的分維值在2~3之間變化[1]??紫督Y(jié)構(gòu)的分維值可指示其復(fù)雜程度,分維值越高,表明孔隙結(jié)構(gòu)越復(fù)雜,分維值的低值則說明孔隙結(jié)構(gòu)的復(fù)雜程度低[12]。Ds1接近3,表明大孔隙結(jié)構(gòu)的復(fù)雜程度高,孔隙表面粗糙程度、分布不均性、形狀的不規(guī)則程度均高,孔隙連通性差。Ds2接近2,表征小孔隙結(jié)構(gòu)的復(fù)雜程度低,明顯低于大孔隙結(jié)構(gòu)的復(fù)雜程度,孔隙表面粗糙程度、分布不均性、形狀的不規(guī)則程度均低,孔隙連通性好。Dv1和Dv2的波動(dòng)規(guī)律也表明大孔隙結(jié)構(gòu)的復(fù)雜程度明顯大于小孔隙結(jié)構(gòu)的復(fù)雜程度。Dv1和Dv2在3~4之間變化,而Ds1和Ds2在2~3之間波動(dòng),這是由于采用不同的方法求取分維值所致[13]。
在大多情況下,孔隙結(jié)構(gòu)的復(fù)雜程度與滲透性呈負(fù)相關(guān)關(guān)系,即孔隙結(jié)構(gòu)越復(fù)雜,滲透性越低,孔隙結(jié)構(gòu)復(fù)雜程度變低,滲透性變高[12, 14]。如根據(jù)小孔隙結(jié)構(gòu)的復(fù)雜程度,推測含礦層的滲透性高,而這與實(shí)際情況不相符。如依據(jù)大孔隙結(jié)構(gòu)的復(fù)雜程度,推測含礦層的滲透性低,與實(shí)際情況吻合。因此,大孔隙結(jié)構(gòu)的分維值可判定含礦層的滲透性,并且其高值指示滲透性低,而小孔隙結(jié)構(gòu)的分維值不能判定含礦層的滲透性。
圖2 lgr-lgv關(guān)系圖
張宸愷等[3]的研究表明流體對不同孔徑孔隙結(jié)構(gòu)的改造程度存在差異可導(dǎo)致砂巖孔隙結(jié)構(gòu)具多重分形特征。對于大孔隙,由于毛細(xì)管壓力較小,流體易進(jìn)入,流體對大孔隙結(jié)構(gòu)的影響相對較大,可導(dǎo)致其復(fù)雜程度增加,具較高的分維值;而在小孔隙區(qū),毛細(xì)管壓力較大,流體不易進(jìn)入,流體對小孔隙結(jié)構(gòu)的改造作用相對較弱,分維值較低。因而認(rèn)為流體對不同孔徑孔隙結(jié)構(gòu)的改造程度存在差異可能是導(dǎo)致本砂巖鈾礦含礦層孔隙結(jié)構(gòu)具雙分形特征的一個(gè)重要因素。
含礦層平均孔徑在68.8~225.9 nm之間變化,均值為144.6 nm,平均孔徑總體較小??紫抖茸兓?1.54%~34.92%之間,均值為27.30%??障犊偯娣e在2.581~6.275 m2/g之間波動(dòng),均值為4.357 m2/g。中值體積孔徑的變化范圍為304.6~9 178.5 nm,均值為3 252.3 nm。中值面積孔徑在19.4~31.4 nm之間變化,均值為24.7 nm。根據(jù)汞飽和度與毛細(xì)管壓力計(jì)算方法,大孔隙結(jié)構(gòu)分維值在2.717 5~2.998 0之間變化,均值為2.820 5,小孔隙結(jié)構(gòu)分維值在2.089 9~2.190 8之間波動(dòng),均值為2.146 6。依據(jù)孔隙累積體積與孔徑計(jì)算方法,大孔隙結(jié)構(gòu)分維值在3.748 5~3.998 0之間變化,均值為3.851 5,小孔隙結(jié)構(gòu)分維值變化于3.093 9~3.200 5之間,均值為3.152 3。含礦層孔隙結(jié)構(gòu)總體上具類似的分形特征和形成機(jī)理。大孔隙結(jié)構(gòu)的分維值明顯大于小孔隙結(jié)構(gòu)的分維值,表明大孔隙結(jié)構(gòu)的復(fù)雜程度明顯大于小孔隙結(jié)構(gòu)的復(fù)雜程度。含礦層孔隙度隨大孔隙結(jié)構(gòu)分維值的增加而升高,隨小孔隙結(jié)構(gòu)分維值的升高而降低。大孔隙結(jié)構(gòu)的分維值可判定含礦層的滲透性,并且其高值指示滲透性低,而小孔隙結(jié)構(gòu)的分維值不能判定含礦層的滲透性。流體對不同孔徑孔隙結(jié)構(gòu)的改造程度存在差異可能是導(dǎo)致本砂巖鈾礦含礦層孔隙結(jié)構(gòu)具雙分形特征的一個(gè)重要因素。
參考文獻(xiàn):
[1] 張婷, 徐守余, 楊珂. 儲(chǔ)層微觀孔隙結(jié)構(gòu)分形維數(shù)應(yīng)用 [J]. 大慶石油學(xué)院學(xué)報(bào), 2010, 34 (3) : 44-47.
[2] 李中鋒, 何順利, 楊文新. 砂巖儲(chǔ)層孔隙結(jié)構(gòu)分形特征描述 [J]. 成都理工大學(xué)學(xué)報(bào):自然科學(xué)版, 2006, 33 (2) : 203-208.
[3] 張宸愷, 沈金松, 樊震. 應(yīng)用分形理論研究鄂爾多斯MHM油田低孔滲儲(chǔ)層孔隙結(jié)構(gòu) [J]. 石油與天然氣地質(zhì), 2007, 28 (1): 110-115.
[4] 文慧儉, 閆林, 姜福聰, 等. 低孔低滲儲(chǔ)層孔隙結(jié)構(gòu)分形特征 [J]. 大慶石油學(xué)院學(xué)報(bào), 2007, 31 (1): 15-18.
[5] SCHLUETER E M, ZIMMERMAN R W, WITHERSPOON P A, et al. The fractal dimension of pores in sedimentary rocks and its influence on permeability [J]. Fractals in Engineering Geology, 1997, 48: 199-215.
[6] RADLINSKI A P, IOANNIDIS M A, HINDE A L, et al. Angstrom-to-millimeter characterization of sedimentary rock microstructure [J]. Journal of Colloid and Interface Science, 2004, 274 (2): 607-612.
[7] TSAKIROGLOU C D, PAYATAKES A C. Characterization of the porestructure of reservoir rocks with the aid of serial sectioning analysis, mercury porosimetry and network simulation [J]. Advances in Water Resources, 2000, 23 (7): 773-789.
[8] 張金帶, 徐高中, 林錦榮, 等. 中國北方6種新的砂巖型鈾礦對鈾資源潛力的提示 [J]. 中國地質(zhì),2010, 37 (5): 1434-1449.
[9] 李開文. 論我國地浸采鈾技術(shù)的重大突破—新疆地浸采鈾礦床的成功應(yīng)用 [J]. 中國礦業(yè), 2005, 14 (3): 1-8.
[10] 王海峰, 闕為明, 鐘平汝, 等. 原地浸出采鈾技術(shù)與實(shí)踐 [M]. 北京: 原子能出版社, 1998: 1-182.
[11] 申維. 分形求和法及其在地球化學(xué)數(shù)據(jù)分組中的應(yīng)用 [J]. 物探化探計(jì)算技術(shù), 2007, 29 (2): 134-137.
[12] 陳程, 孫義梅. 砂巖孔隙結(jié)構(gòu)分維及其應(yīng)用 [J]. 沉積學(xué)報(bào), 1996, 14 (4): 108-113.
[13] 江東, 王建華, 鄭世書. 多孔介質(zhì)孔隙結(jié)構(gòu)的分形維數(shù):測試、解算與意義 [J]. 科技通報(bào), 1999, 15 (6): 453-456.
[14] 藺景龍, 劉爽, 趙海波. 基于分形理論預(yù)測砂巖儲(chǔ)層滲透率 [J]. 大慶石油學(xué)院學(xué)報(bào),2004,28(5):1-3.