沈 崴 黃迦樂 金 滔 湯 珂 張阿平 嚴國鋒
(1浙江大學制冷與低溫研究所 杭州 310027)
(2浙江大學光及電磁波研究中心,現代光學儀器國家重點實驗室 杭州 310058)
自20世紀60年代Gifford和Longsworth發(fā)明脈管制冷機以來,脈管制冷機無論在最低制冷溫度還是效率方面都取得了重要的進展[1-2],使其在與傳統(tǒng)低溫制冷機(G-M制冷機、Stirling制冷機等)的競爭中逐漸取得主動地位,已在空間探索、現代國防和科學儀器等領域的應用中嶄露頭角。目前常規(guī)的脈管制冷系統(tǒng)整體結構尺寸通常在幾十厘米乃至一米以上的量級。為了滿足空間應用、微電子器件冷卻等應用場合的小型化要求,近年來斯特林型脈管制冷機受到極大重視并獲得重要進展。與G-M型脈管制冷機相比,其最重要的特點是高頻和尺寸緊湊,利用高的工作頻率使得在給定輸入功的情況下可以縮小壓力波發(fā)生器的結構尺寸,從而縮小整個制冷機的尺寸和質量[3],因而是脈管制冷機實現小型化的主要手段。
然而,即便是百赫茲以上的高頻脈管,其核心部分的尺寸仍有幾個厘米,對于那些微電子器件來說仍然不夠微型。為此許多學者就能否利用更高頻率諸如千赫茲以上來實現脈管制冷系統(tǒng)尺寸的微型化這一問題進行了初步探索,NIST的Radebaugh分析了千赫茲頻率下回熱器的工作特征[3],法國國家科研中心的 Nika等人[4]和佐治亞理工的 Conrad等人[5]則先后對微型脈管制冷工作機理進行了探討和數值模擬,荷蘭特溫特大學的ter Brake小組則針對高頻壓力波發(fā)生器和微通道內的壓降等問題開展了相關研究工作[6-7]。從這些研究的結果來看,在機理上,實現脈管制冷機的微型化是可行的,但是其中仍然有許多問題有待進行更深入的研究工作。目前的高頻脈管制冷機中多采用高目數的絲網作為回熱材料,基于目前的工藝水平絲網目數一般不超過635目[8],這將很難更好地滿足更高頻率系統(tǒng)對回熱器填料所提出的要求,成了一個瓶頸因素。因此,在回熱器乃至其它構成部件的工藝方面都需要采取變革性的措施。
多孔光纖技術是近年來發(fā)展起來的新技術,在光電信息領域具有很大的應用潛力而受到極大關注,其對于光電信號的傳播特性是人們利用的方面。實際上,有些多孔光纖和單孔光纖本身就是一根多孔或者單孔毛細管,如果把它們的這一功能用于脈管制冷機中,來替代傳統(tǒng)脈管制冷機所采用的金屬管件,將可以借助于光纖技術來實現這些器件的微型化,進而構成微型脈管制冷機系統(tǒng),同時能夠克服電磁干擾或感應渦流等給應用場合所帶來的困擾。
本文提出了一種基于多孔光纖技術的微型脈管制冷機回熱器的設計方案。把具有微尺度通道的多孔二氧化硅材料作為脈管制冷機的回熱元件,然后對該回熱器進行數值模擬與優(yōu)化,并與不銹鋼絲網為填料的回熱器進行性能對比。
為滿足低溫制冷要求,回熱器材料必須具有傳熱面積大、軸向導熱小、壓降小、體積熱容大、空體積小等優(yōu)點[9]。光纖一般采用高純度的二氧化硅材料拉制而成,圖1和圖2分別給出了熔融石英(SiO2>99%)和304不銹鋼的熱導率和體積比熱容對比情況。
對于交變傳熱過程,為了綜合考慮體積比熱容和熱導率的作用,引入熱滲透深度δκ和表面熱容csurf(或稱為可用熱容)的概念[9],分別定義為:
其中:k為熱導率,cvol為體積比熱容,ω為聲振動的角頻率,ω=2πf(f為工作頻率)。
隨著工作頻率的升高,熱滲透深度和表面熱容相應減小。為了在回熱器中取得良好的熱交換效果,對于氣體工質而言需要滿足2rh?,rh為流道水力半徑。對于回熱器固體材料需要滿足csurf(固體)>csurf(氣體)。圖3和圖4分別表示熔融石英、304不銹鋼以及不同壓力下的氦氣在f=500 Hz時的熱滲透深度和表面熱容。
從圖3可以看出,當頻率達到500 Hz時,氦氣的熱滲透深度已經達到微米量級。然而,基于目前工藝水平的不銹鋼絲網目數一般不超過635目(rh=8 μm),而多孔光纖技術則可以拉制成孔徑小至1 μm甚至納米級的多孔管,圖5為一典型多孔光纖的徑向剖面圖。從圖4則可以看出在80—300 K的溫區(qū),熔融石英與不銹鋼兩種材料均滿足csurf(固體)>csurf(氣體)的要求。由此,提出了在高頻系統(tǒng)中采用多孔光纖技術制備回熱器材料的方案。
圖5 典型多孔光纖截面圖Fig.5 Cross section diagram of a typical holey fiber
根據線性熱聲理論[10-11],對于微元管段中的工質,動量方程、連續(xù)性方程及能量方程分別為:
式(3)—(5)中,p1表示壓力振幅,U1表示體積流速振幅,ω 為角頻率,ρm、Tm、cp、γ、K、Pr分別為工質的平均密度、溫度、比定壓熱容、比熱比、熱導率和普朗特數,fν和 fκ分別為黏滯函數和熱函數[10],A 為流道的流通面積,As和Ks分別為構成流道的固體橫截面積和熱導率為總能流,ξ為反映流道固體有限的比熱容和熱導率對工質與固體邊界換熱影響的物理量(對于無限大比熱容和熱導率的理想固體邊界其值為零),i為虛數符號,Re和Im分別表示取復數的實部和虛部,上標“~”表示取共軛復數。其中,fν、fκ以及ξ均與流道結構形式相關,針對圓管通道,其計算式如下:
式中:r0為圓管流道的半徑;l為流道固體截面與截面周長之比;ρs和cs分別為流道固體的密度和比熱容;δν和δκ分別為工質的滲透深度和熱滲透深度;δs為流道固體的熱滲透深度;J0和J1分別表示零階和一階的第一類Bessel函數。
根據上述方程,自行編寫了一個回熱器模擬計算程序,其中制冷量的計算式如下:
模擬計算分別針對不銹鋼絲網和熔融石英多孔圓管兩種幾何結構,設計了4個算例(見表1),相關工作參數如表2所列。
表1 回熱器模擬算例Table 1 Simulation cases of regenerators
表2 回熱器模擬工作參數Table 2 Operating parameters for regenerator simulation
圖6—圖9為在各算例最優(yōu)相位角的情況下,對于不同回熱器半徑和長度的COP值。取圖中的最高點即COP最大值點為優(yōu)化結果,則4個算例的模擬計算及優(yōu)化后的結果如表3所列。
圖9 算例B3(熔融石英多孔管,rh=1 μm)Fig.9 Case B3 of fused quartz for rh=1 μm
表3 模擬計算優(yōu)化結果Table 3 Results of regenerator simulation and optimization
表3中,φa(P-U)和φc(P-U)分別表示回熱器熱端與冷端的壓力波與速度波的相位差,COP為制冷量/輸入功。從表3中算例A和B1的結果可以看到,當頻率f達到500 Hz時,即使是635目的不銹鋼絲網,COP也僅能達到0.016,而具有相同水力半徑的熔融石英多孔管則能達到0.116。這一方面是因為絲網的流動阻力大于平行圓管的阻力,另一方面則是由于兩種材料在表面熱容都滿足要求的情況下,熔融石英的熱導率小于不銹鋼的熱導率從而減小了軸向漏熱所導致的。對比算例B1和B2則可以發(fā)現,同樣在頻率為500 Hz的情況下,當熔融石英多孔管的水力直徑繼續(xù)減小時,COP隨之增大。結合圖3可知,對于氦氣在80 K,7 MPa的條件下,有 B1:δκ/2rh1=0.95,B2:δκ/2rh2=1.52,B3:δκ/2rh3=7.62,因此,對于熔融石英材料并利用多孔光纖工藝技術,可以達到比不銹鋼絲網更小的水力半徑,并在高頻條件下,隨著水力半徑的減小,可以滿足2rh?δκ[3]的要求,且COP隨之增大。而從B2和B3的對比中看出,當水力半徑繼續(xù)減小時,COP有所下降,這可能是由因水力半徑減小后導致的流動阻力增大而引起的。
提出采用基于多孔光纖的回熱器結構來適應脈管制冷機的微型化要求。通過對635目不銹鋼絲網(rh=8 μm)和熔融石英多孔平行管(rh=8 μm、5 μm、1 μm)等4個算例進行了脈管制冷機性能的模擬計算與優(yōu)化分析,在相同的高頻工作環(huán)境下,采用熔融石英多孔管為回熱器的脈管制冷系統(tǒng)的COP明顯高于采用635目不銹鋼絲網系統(tǒng)的COP,并且在一定范圍內隨著石英多孔管水力半徑的減小而增高。由此認為,以借鑒多孔光纖工藝技術制成的熔融石英材料作為回熱器,對于脈管制冷機部件微型化是一條可行的思路。
1 Radebaugh R.Cryocoolers:the state of the art and recent developments[J].Journal of Physics:Condensed Matter,2009,21(16):1-9.
2 Gifford W E,Longsworth R C.Pulse tube refrigeration[J].Journal of Industrial and Engineering Chemistry,Trans ASME,1964,86:264-270.
3 Radebaugh R,O’Gallagher A.Regenerator operation at very high frequencies for microcryocoolers[C].Advances in Cryogenic Engineering:Transactions of the Cryogenic Engineering Conference-CEC,2006:1919-1928.
4 Nika P,Bailly Y,De Labachelerie M.Miniature pulse tube for the cooling of electronic devices:functioning principles and practical modeling[J].Microscale Thermophysical Engineering,2004(8):301-325.
5 Conrad T J,Landrum E C,Ghiaasiaan S M,et al.CFD Modeling of meso-scale and microscale pulse tube refrigerators[C].Cryocoolers-Proceedings of the 15th International Cryocooler Conference,2009(15):241-249.
6 Vanapalli S,ter Brake H J M,Jansen H V,et al.Pressure drop of laminar gas flows in a microchannel containing various pillar matrices[J].Journal of Micromechanics and Microengineering,2007,17:1381-1386.
7 Vanapalli S,ter Brake H J M,Jansen H V,et al.High frequency pressure oscillator for microcryocoolers[J].Review of Scientific Instruments,2008,79:045103.
8 Organ A J.The regenerator and the Stirling engine[M].London and Bury St.Edmunds,UK Mechanical Engineering Publications,1997.
9 陳國邦,湯 珂.小型低溫制冷機原理[M].北京:科學出版社,2010.
10 Swift G W.Thermoacoustic engines[J].Journal of Acoustical Society of America,1988,84(4):1145-1180.
11 Swift G W.Thermoacoustics:a unifying perspective for some engines and refrigerators[M].Sewickley PA:Acoustical Society of America Publications,2002.
12 Rawlins W,Radebaugh R,Bradley P E,et al.Energy flows in an orifice pulse tube refrigerator[J].Advances in Cryogenic Engineering,1994,39:1449-1456.
13 Marquardt E D,Radebaugh R.Pulse tube oxygen liquefier[J].Advances in Cryogenic Engineering,2000,45:457-464.