• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Optimizing control of a two-span rotor system with magnetorheological fluid dampers

    2015-04-22 02:33:20XINGJian邢健HELidong何立東WANGKai王锎HUANGXiujin黃秀金

    XING Jian(邢健), HE Li-dong(何立東), WANG Kai(王锎), HUANG Xiu-jin(黃秀金)

    (Engineering Research Center of Chemical Technology Safety, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, China)

    ?

    Optimizing control of a two-span rotor system with magnetorheological fluid dampers

    XING Jian(邢健), HE Li-dong(何立東), WANG Kai(王锎), HUANG Xiu-jin(黃秀金)

    (Engineering Research Center of Chemical Technology Safety, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, China)

    A control system aims at vibration reduction in a two-span rotor system with two shear mode magnetorheological (MRF) dampers is designed. A finite element model of the MRF damper-rotor system is built and used to analyze the rotor vibration characteristics. Based on Hooke and Jeeves algorithm and the numerical simulation analysis, an optimal appropriate controller is proposed and designed. Experimental results show that rotor vibration caused by unbalance is well controlled (first critical speed region 37%, second critical speed region 42%). To reflect advantages of optimizing strategy presented and validate the intelligent optimization control technology, detailed experiments were developed on a two-span rotor-vibration-control platform. The influence on accuracy, rapidity and stability of optimizing control for rotor vibration are analyzed. It provides a powerful technical support for the extension and application in target and control for shafting vibration.

    magnetorheological fluid damper; two-span rotor; Hooke and Jeeves; optimizing control; vibration reduction

    Reduction of shafting vibration is very important for safe and efficient functioning of rotating machines. The common technique for vibration control is vibration damping. Magneto rheological fluid (MRF) damper[1-3]has the advantage of rapid damping and stiffness changing in the presence of an applied magnetic field, large damping force, low-power consumption, easy to control. There are mainly two MRF dampers used in rotor vibration: magnetorheological fluid squezze film damper(MRFSFD)[4]and shear mode MRF damper[5]. Compared with MRFSFD (easy to instability, limited inhibition of critical vibration and delayed responses[6]), shear mode MRF damper achieves better vibration suppression with quicker responses.

    Research literatures about shear mode MRF damper in rotor vibration reductionis mainly focus on one-span rotor system with a simple control technique called on-off method. Related studies[7-8]have shown that rotor vibration is well controlled in resonance region with on-off control technique. Furthermore, improper current may cause rotor system losing stability.

    Due to the complex dynamic behavior of a rotor system, not many studies focus on the control technology for rotor vibration with shear mode MRF damper especially in multi-span rotor system. Wang J[9]developed a dynamic model for a two-disk cantilever flexible rotor supported on a MR fluid damper. Few literature till now focus on the optimizing control for the rotor vibration especially multi-span rotor using MRF damper. For this, a two-span rotor system supported by two shear mode MRF dampers was analyzed and a vibration control system was designed in this paper. An intelligent optimization control strategy for complex rotor system with high nonlinearity and uncertainty was proposed and designed to reduce vibration dynamically and effectively. It provides a powerful technical support for the extension and application in target control for shafting vibration.

    1 System modeling and numerical analysis

    1.1 MRF damper force model

    A shear mode MRF damper was made and tested as shown in Fig.1.

    Fig.1 Testing process and geometry of the shear mode MRF damper

    The MRF damper has three moving disks and two stationary disks as shown in Fig.1b. The disks are placed uniformly and alternatively with a uniform gap of 1 mm to form six relative shear surfaces. Electric current is input to the coil to generate magnetic field. The relation betweenHandτyof MRF (SG-MRF2035) in the damper is shown in Fig.2. The damper can be described by the Bingham plastic model[10]:

    (1)

    TherelationshipbetweendamperforceFandcurrentIisasfollows[11-13]:

    Fmr(I,t)=Ssrηvmr(t)/w+Ssrτy(I)

    (2)

    whereFmris the damper force;Vmr(t) is the move speed of the MR damper ball bearing center;wis the width of the gap between parallel plates;Ssris the effective shear area;ηis the Newtonian viscosity.Fmrdepends onVmr(t) andτy.Nis turns per coil. The relationship betweenHandIcan be simplified:

    H≈NI/w

    (3)

    Fig.2 Relation between H and τy of MRF

    1.2 System modeling and analysis

    The simplified mechanical model of two-span rotor system is illustrated in Fig.3.

    Fig.3 Simplified model of rotor-MRF damper system

    According to the finite element method, the MR-rotor dynamics equation can be expressed as

    (4)

    whereMis the mass matrix;Cis the damping matrix;Kis the stiffness matrix;Fδ(t) is the unbalanced force; andfmr(·) is the nonlinear relationship between damping force and other coefficients (see Eq.(3),current, displacements etc.).

    The basic structure parameters of the rotor system are shown in Tab.1.

    The vibration modes of double shafts have been calculated through the rotor dynamics software DyRoBeS, in which MRF dampers were simplified with damping and stiffness as to simulate the shafting vibration with the MRF damper switched on current during the operation, and the simulation results as shown in Fig.4a and Fig.4b.

    Tab.1 Basic parameters of two-span rotor system

    Fig.4 Comparison of unbalanced response of two-span rotor with and without MRF dampers

    The simulation results in Fig.4 indicated that the first order critical speed of the double shafts system is 2 900 r/min and the second order critical speed is 4 200 r/min without MR dampers. During the run-up process, rotor resonance occurred in shaft 2 about 2 900 r/min, which in turn raising the vibration of shaft 1 (Fig.4b). The resonance of shaft 1 occurred about 4 200 r/min. The rotor vibration is well controlled in resonance region with MRF dampers. With the increasing of the current, the damping effect is better. However, the rising current may also cause instability to the rotor system. Because MRF dampers will increase largely the support stiffness, which may cause rotor system losing stability. It is necessary to control the current properly to get better performance.

    2 Optimizing controller design based on Hooke and Jeeves algorithms

    Due to the complex dynamic behavior of the two-span rotor and multidiscipline interaction of MRF damper, it is hard to obtain optimal control parameter with traditional control methods based on an accurate mathematical model. Based on the modeling and numerical analysis, an optimizing control strategy to find appropriate control parameters (current) for the desired vibration amplitude is proposed and designed.

    Hooke and Jeeves algorithm[14](step acceleration method or Pattern search method) was proposed in 1961,which is a family of numerical optimization methods. Pattern search methods are gradient related methods. They do not rely on the evaluation of derivatives, which is especially desirable for the cases where derivatives are either unavailable or unreliable. It is straightforward and easy to use for control parameter tuning when used in properly.

    Two parameters are needed in Hooke and Jeeves algorithm, search patternPkto accelerate search process and an exploratory movesk, which varied one theoretical parameter at a time by steps of the same magnitude, and when no such increase or decrease in any one parameter further improved the fit to the experimental data, they halved the step size and repeated the process until the steps were deemed sufficiently small. The pattern Pkis a matrix as follows:

    Pk=B×Ck

    (6)

    Ck=[ΓkLk]

    (7)

    where B∈Rn×nis a basis matrix fixed in every iteration, assumed normally B=I. The direction of experiment search is decided by Ck, which is a generating matrix that can vary from iteration to iteration.Γk∈Zn×rkbelongs to a finite set of matricesΓwith certain geometrical properties. Lk∈Zn×(pk-rk)contains at least a column of zeros, that means a zero step.

    sk∈Δkpk≡Δk[ΓkLk]

    (8)

    If min {f(xk+y)|y∈ΔkΓkand (xk+y)∈Ω}

    f(xk+sk)

    (9)

    If expressions (8) and (9) are valid,xk+1=xk+skwherexkis the current iterate.Ωis feasible region forx.Γk∈Zn×rkbelongs to a finite set of matricesΓwith certain geometrical properties. Lk∈Zn×(pk-rk)contains at least a column of zeros, which means a zero step. R,Q, and N represent the sets of real, rational, integer, and natural numbers respectively.

    A parallel and independent control strategy based on Hooke and Jeeves algorithm for a two-span rotor system was developed, which controlled each span non-interfering and respectively. The control scheme for optimizing controller is illustrated in Fig.5.

    As shown in Fig.5, the input of the designed controller is the vibration amplitudef(u) of the rotor, which was measured by a sensor. The desired valuef*for the control of rotor vibration was settled by simulations with DyroBes and experiments. The initial control currentu0∈Ωfor each rotor was chosen andΔ0>0 be settled independently. The output of the controller was the optimized currentuk. The controller is designed and accomplished in Labview platform.

    Fig.5 Control scheme of optimizing controller

    Once Pksettled to accelerate moving process andskdetermined with a linearly constrained exploratory moves algorithm,f(uk) was computed. Iff(uk+sk)

    3 System design and experimental result analysis

    The schematic diagram of the control system and the sketch of two-span rotor system with two MR dampers are shown in Fig.8. The control platform is designed and developed in Labview.The Labview control platform includes five modules,as shown in Fig.6a.

    The rotor system is outfitted with eddy-current type non-contact displacement sensor that measures the displacements of the flexible rotor. A real time control and data acquisition system is designed to collect the vibration data and regulate the input current to the MR damper.

    Experiments were done firstly to verify the simulation of rotor-MR damper system and analyze the feasibility of vibration reduction with MR

    damper. According to the experiments, the first order critical speed of the double shafts system is about 3 000 r/min with the maximum vibration amplitude 160 μm, and the second order critical speed is 4 800 r/min with the maximum vibration amplitude 525 μm. As showed in Fig.7, rotor vibration caused by unbalance is well controlled in two-span rotor system(first critical speed region 37%, second critical speed region 42%) with appropriate current which obtained by optimal current approximate controller.

    Fig.6 Schematic diagram and component of the control system

    To reflect advantages of optimizing control strategy and to validate the intelligent optimization control for complex rotor system with high nonlinearity and uncertainty, detailed experiments about the performance of optimizing control strategy were developed on a two-span rotor-vibration-control platform. The influence on accuracy, rapidity and stability of optimizing control for rotor vibration are analyzed through different control parameters(different desired values and different tolerances).

    ① Experiments with different desired values

    Vibration amplitudes for each shaft: shaft

    1 (150 μm, 140 μm and 130 μm) and shaft 2 (90 μm, 80 μm, 70 μm): When the rotor is accelerating across two critical speeds, according to the optimizing strategy, the control current is applied. The frequency response of rotor system with MR dampers and without MR dampers are illustrated in Fig.8.

    Note that the experimental results in Fig.8 show the effectiveness of the control strategy. With three different desired control target values for each shaft, the control strategy is effective in the vibration suppressing. It indicated that rotor vibration caused by unbalance is well controlled both in resonance region and in non-resonance region with optimizing control strategy.

    It is shown in Fig.9 that the current varying with the changing vibration amplitude. The smaller the rotor vibration changes, the smoother the current curve appears. That is,the current regulating follows vibration amplitude change quickly and effectively.

    ②Experiments with different desired tolerances

    Experimental results in the rotor run-up process under the same desired vibration amplitude but with four different tolerances for each shaft were shown in Fig.10.

    From Fig.10, current seeking process with larger tolerance is smoother and more stable than with smaller tolerance. The smaller the tolerance is, the stricter the control requirement for optimizing process it to find an appropriate coefficient, which means the more instable curve for the current optimization.

    Fig.11 is the comparison of the frequency response in different tolerances. The current approximating process and the frequency response in different tolerances show the accuracy and response speed of MR dampers. The transient response with larger tolerance is more rapid but less steady than with smaller tolerance.

    Fig.7 Comparison of two-span rotor with and without MRF dampers

    Fig 8 Comparison of rotor with damper (in three desired amplitude) and without damper

    Fig.9 Amplitude-speed-current of two span rotor with optimizing control in different desired value

    Fig.10 Vibration response and current approximating process in different tolerances

    Fig.11 Frequency response with different tolerances

    4 Conclusions

    ①Experiment results show that rotor vibration caused by unbalance is well controlled in two-span rotor system(first critical speed region 37%, second critical speed region 42%).

    ②This optimizing controller for current is regulated independently for each shaft, which is especially meaningful in a multi-span rotor system. It can be extended to a multi-span (more than three or four span) rotor system and provides a powerful technical support for the extension and application in target and control for shafting vibration.

    ③The stability and rapidity of transient response and efficiency of optimal approximate technique for rotor system depends on coefficients, such as tolerance, target value etc.

    The rapidity of optimizing control is better with longer current search step, but longer search step may affect the accuracy and stability of optimizing control. It is necessary to balance these control performance requirements (accuracy, rapidity and stability). In the premise of vibration control stability, rapidity and accuracy of control are maximized.

    A fixed search step is used in this paper. Further research on search step varying with different vibration amplitudes can be done to improve the efficiency, smoothness and rapidity of transient vibration response.

    [1] Yang G, Spencer B F, Carlson J D, et al. Large scale MR fluid dampers: modeling and dynamic performance consider-ations[J]. Engineering Structures,2002.

    [2] Carlson J D, Catanzarite D M, Clair K A. Commercial magnetorheological fluid devices[J].International Journal of Modern Physics B, 1996,10:2857-2865.

    [3] Andrzej Milecki. Investigation and control of magnetor- heological fluid dampers[J]. International Journal of Machine Tools & Manufacture,2001,41:379-391.

    [4] Masoud Hemmatian, Abdolreza Ohadi. Sliding mode control of flexible rotor based on estimated model of magnetorheological squeeze flim damper[J].Journal of Vibration and Acoustics,2013,135(5):1-11.

    [5] Wang J, Meng G. Experimental study on stability of an MR fluid damper-rotor journal bearing system[J].Journal of Sound and Vibration,2003, 262:999-1007.

    [6] Zhu Changsheng. Experiment investigation into the dynamic behaviors of a flexible rotor on magnetorheological fluid squeeze film dampers[J]. Journal of Functional Materials, 2006,5(37):750-753.

    [7] Wang J X, Meng G. Experimental study on rotor system vibration control of a squeeze MR fluid damper[J]. Journal of Aerospace Power, 2005,20(3):424-428.

    [8] Wang J, Meng G. Experimental study on stability of a rotor supported on a MR fluid damper and sliding bearing[J]. Journal of Vibration Engineering, 2003, 16(1):71-74.

    [9] Wang J, Meng G. Dynamic model of flexible rotors supported on an MR fluid damper (Ⅱ) : Cantilever rotor with two disks[J]. Journal of Foshan University:Natural Science Edition, 2003,21(1):15-18.

    [10] Stanway R, Sposton J L, Stevens N G. Non-linear modeling of an electrorheological vibration damper[J]. J Electrostatics, 1987,20:167-184.

    [11] Yang G.Large-scale magnetorheological fluid damper for vibration mitigation:modeling,esting and control[D].Indiana,USA: University of Notre Dame, 2001.

    [12] Winslow W M. Method and means for translating electrical impulses into mechanical forces,U.S.Patent 2417850[P]. 1947-03-25.

    [13] Shtarkman E M. Fluid response to magnetic field,U.S. Patent 4992190[P].1991-02-12.

    [14] Hooke R, Jeeves T A. Direct search solution of numerical and statistical problems[J]. J Assoc Comput Mach, 1961, 8(2): 212-229.

    (Edited by Wang Yuxia)

    10.15918/j.jbit1004-0579.201524.0420

    TP 273.1 Document code: A Article ID: 1004- 0579(2015)04- 0558- 08

    Received 2014- 01- 20

    Supported by the National Program on Key Basic Research Project (973 Program)(2012CB026000); Ph.D Programs Foundation of Ministry of Education of China(20110010110009)

    E-mail: he63@263.net

    嫩草影院精品99| 免费看美女性在线毛片视频| 日本一二三区视频观看| 老女人水多毛片| 国产探花极品一区二区| 日本色播在线视频| 欧美激情在线99| 久久精品夜色国产| kizo精华| 两个人的视频大全免费| 有码 亚洲区| 禁无遮挡网站| 日韩大尺度精品在线看网址| 精品熟女少妇av免费看| 99热只有精品国产| av卡一久久| 国产精品伦人一区二区| 在线播放无遮挡| 国产高潮美女av| 日韩欧美一区二区三区在线观看| 有码 亚洲区| 国产一区二区三区在线臀色熟女| 国产亚洲精品久久久久久毛片| 2021天堂中文幕一二区在线观| 国产精品一及| 成人漫画全彩无遮挡| 国产精品精品国产色婷婷| 最后的刺客免费高清国语| 精品一区二区三区视频在线| 久久精品国产99精品国产亚洲性色| 国产色婷婷99| 久久久久国产网址| 91久久精品电影网| 久久久成人免费电影| 少妇裸体淫交视频免费看高清| 免费人成视频x8x8入口观看| 六月丁香七月| 干丝袜人妻中文字幕| 97超碰精品成人国产| 国产高潮美女av| АⅤ资源中文在线天堂| 麻豆国产av国片精品| 又黄又爽又刺激的免费视频.| 国产熟女欧美一区二区| 国产国拍精品亚洲av在线观看| 禁无遮挡网站| 久久这里有精品视频免费| 亚洲欧美精品自产自拍| 精品久久久久久久久av| 美女 人体艺术 gogo| 中文字幕久久专区| 国产乱人视频| av在线天堂中文字幕| 久99久视频精品免费| 日韩大尺度精品在线看网址| 神马国产精品三级电影在线观看| 亚洲内射少妇av| 精品欧美国产一区二区三| 十八禁国产超污无遮挡网站| 一进一出抽搐gif免费好疼| 国产一区亚洲一区在线观看| 午夜免费激情av| 久久精品国产鲁丝片午夜精品| 99久久九九国产精品国产免费| 婷婷色综合大香蕉| 免费搜索国产男女视频| av黄色大香蕉| .国产精品久久| 亚洲色图av天堂| 国产亚洲精品久久久久久毛片| 亚洲精品日韩在线中文字幕 | 综合色av麻豆| 亚洲aⅴ乱码一区二区在线播放| 能在线免费看毛片的网站| 哪个播放器可以免费观看大片| 在线观看一区二区三区| 久久久久久伊人网av| 丰满乱子伦码专区| 欧美zozozo另类| 日韩欧美精品免费久久| 午夜老司机福利剧场| 一夜夜www| 国产精品久久视频播放| 久久久色成人| 麻豆av噜噜一区二区三区| 国产乱人偷精品视频| 国产精品电影一区二区三区| 日本熟妇午夜| 高清午夜精品一区二区三区 | 在线免费十八禁| 成人性生交大片免费视频hd| 国产69精品久久久久777片| 中文字幕人妻熟人妻熟丝袜美| 亚洲精华国产精华液的使用体验 | 能在线免费看毛片的网站| 国产麻豆成人av免费视频| 老女人水多毛片| 身体一侧抽搐| 青春草亚洲视频在线观看| 久久久国产成人精品二区| 熟妇人妻久久中文字幕3abv| 亚洲综合色惰| 日本一二三区视频观看| 又黄又爽又刺激的免费视频.| 两个人的视频大全免费| 黄色视频,在线免费观看| 夜夜夜夜夜久久久久| 日日摸夜夜添夜夜添av毛片| 国产精品av视频在线免费观看| 好男人视频免费观看在线| 亚洲国产精品久久男人天堂| 悠悠久久av| 一级毛片电影观看 | 亚洲不卡免费看| 在线观看免费视频日本深夜| 久久久久久国产a免费观看| 久久人人爽人人片av| 精品少妇黑人巨大在线播放 | 欧美zozozo另类| 国产在视频线在精品| 欧美三级亚洲精品| 国产精品精品国产色婷婷| 99久国产av精品| 亚洲经典国产精华液单| 99热只有精品国产| 婷婷色av中文字幕| 人人妻人人澡人人爽人人夜夜 | 国产一级毛片七仙女欲春2| 少妇的逼好多水| 日韩一区二区三区影片| 一级黄色大片毛片| 一级毛片电影观看 | 久久久a久久爽久久v久久| 男的添女的下面高潮视频| 亚洲无线在线观看| 欧美高清性xxxxhd video| 亚洲中文字幕一区二区三区有码在线看| 九色成人免费人妻av| 午夜激情福利司机影院| 国产老妇女一区| 精品午夜福利在线看| 熟女人妻精品中文字幕| 成年版毛片免费区| 91久久精品国产一区二区三区| 欧美色欧美亚洲另类二区| av在线亚洲专区| 男女做爰动态图高潮gif福利片| 在现免费观看毛片| 久久精品国产亚洲av涩爱 | 联通29元200g的流量卡| 精品久久久久久久久亚洲| 国模一区二区三区四区视频| 免费av观看视频| 精华霜和精华液先用哪个| 六月丁香七月| 中国美白少妇内射xxxbb| 国产高清激情床上av| 亚洲精品久久国产高清桃花| 午夜精品国产一区二区电影 | 91久久精品电影网| 搡女人真爽免费视频火全软件| 一级毛片电影观看 | 亚洲国产欧洲综合997久久,| 一区二区三区四区激情视频 | 自拍偷自拍亚洲精品老妇| 久久久欧美国产精品| av天堂中文字幕网| 亚洲乱码一区二区免费版| 亚洲aⅴ乱码一区二区在线播放| 观看免费一级毛片| 此物有八面人人有两片| 一区二区三区免费毛片| 日韩欧美在线乱码| 亚洲综合色惰| 如何舔出高潮| 99久久久亚洲精品蜜臀av| 色综合站精品国产| 精品欧美国产一区二区三| 国产精品三级大全| 国产蜜桃级精品一区二区三区| 91麻豆精品激情在线观看国产| 国产精品精品国产色婷婷| 日本欧美国产在线视频| 特大巨黑吊av在线直播| 亚洲精华国产精华液的使用体验 | 免费观看人在逋| 亚洲成人久久爱视频| 午夜久久久久精精品| 婷婷精品国产亚洲av| 最新中文字幕久久久久| 最近视频中文字幕2019在线8| 两性午夜刺激爽爽歪歪视频在线观看| 一进一出抽搐动态| 久久久久久大精品| 午夜免费激情av| 精品久久久久久久久久久久久| 少妇的逼水好多| 亚洲第一区二区三区不卡| 久久精品国产清高在天天线| 精品免费久久久久久久清纯| 一进一出抽搐动态| 小蜜桃在线观看免费完整版高清| 神马国产精品三级电影在线观看| 久久午夜亚洲精品久久| 欧美不卡视频在线免费观看| 久久久久久大精品| 午夜精品一区二区三区免费看| 中文欧美无线码| 男插女下体视频免费在线播放| 麻豆一二三区av精品| 婷婷色综合大香蕉| 人妻系列 视频| 精品不卡国产一区二区三区| 免费观看人在逋| 成人美女网站在线观看视频| eeuss影院久久| 99在线视频只有这里精品首页| 伦精品一区二区三区| 高清日韩中文字幕在线| 男人狂女人下面高潮的视频| 日本黄大片高清| 天美传媒精品一区二区| 午夜视频国产福利| 99久久中文字幕三级久久日本| 麻豆乱淫一区二区| 两个人的视频大全免费| 99久久无色码亚洲精品果冻| 日韩成人伦理影院| АⅤ资源中文在线天堂| 老女人水多毛片| 美女大奶头视频| 日韩亚洲欧美综合| 欧美区成人在线视频| 舔av片在线| 中文在线观看免费www的网站| 国产午夜精品久久久久久一区二区三区| 亚洲精品久久国产高清桃花| 国产精品一区二区三区四区免费观看| 九九热线精品视视频播放| 天堂影院成人在线观看| 国产一区二区在线观看日韩| 成人av在线播放网站| 久久久久久久久中文| 亚洲精品乱码久久久v下载方式| 内地一区二区视频在线| 国产精品人妻久久久久久| 全区人妻精品视频| 久久久久久伊人网av| 18禁裸乳无遮挡免费网站照片| 尤物成人国产欧美一区二区三区| 成人高潮视频无遮挡免费网站| 日本色播在线视频| 欧美在线一区亚洲| 亚洲精品乱码久久久v下载方式| 变态另类成人亚洲欧美熟女| av免费在线看不卡| 国产老妇伦熟女老妇高清| 国内精品久久久久精免费| 日韩精品青青久久久久久| 校园人妻丝袜中文字幕| 亚洲图色成人| 精品一区二区三区人妻视频| 亚洲av第一区精品v没综合| av专区在线播放| 亚洲av男天堂| 欧美高清性xxxxhd video| 国产亚洲5aaaaa淫片| 春色校园在线视频观看| 亚洲经典国产精华液单| 色播亚洲综合网| 看黄色毛片网站| 爱豆传媒免费全集在线观看| 亚洲人成网站在线播| 神马国产精品三级电影在线观看| 最近2019中文字幕mv第一页| 国产极品精品免费视频能看的| 欧美zozozo另类| 国产亚洲精品av在线| 长腿黑丝高跟| 别揉我奶头 嗯啊视频| 国产av在哪里看| 麻豆成人午夜福利视频| 色哟哟哟哟哟哟| 毛片一级片免费看久久久久| 色综合色国产| 18禁在线播放成人免费| 亚洲成av人片在线播放无| 国产一区亚洲一区在线观看| 国产高清三级在线| 免费电影在线观看免费观看| 亚洲av电影不卡..在线观看| 亚洲乱码一区二区免费版| 可以在线观看的亚洲视频| 99视频精品全部免费 在线| 亚洲aⅴ乱码一区二区在线播放| 尾随美女入室| 国产视频首页在线观看| 国产日韩欧美在线精品| 久久精品国产清高在天天线| 日韩欧美国产在线观看| 男女做爰动态图高潮gif福利片| 嘟嘟电影网在线观看| 国产爱豆传媒在线观看| 一本一本综合久久| 精品一区二区三区人妻视频| 久久久久九九精品影院| 夜夜看夜夜爽夜夜摸| 亚洲av熟女| 波多野结衣巨乳人妻| 亚州av有码| 精品久久久久久久久久久久久| 男人舔女人下体高潮全视频| 国产精品久久电影中文字幕| 26uuu在线亚洲综合色| 久久精品久久久久久久性| 欧美+亚洲+日韩+国产| 久久午夜亚洲精品久久| 人妻夜夜爽99麻豆av| 插阴视频在线观看视频| 亚洲国产高清在线一区二区三| 免费搜索国产男女视频| 亚洲国产精品合色在线| 最近中文字幕高清免费大全6| 亚洲国产日韩欧美精品在线观看| 日韩强制内射视频| 日韩视频在线欧美| 床上黄色一级片| 欧美一级a爱片免费观看看| 国产精品久久久久久精品电影| 中文字幕精品亚洲无线码一区| 国产午夜精品论理片| 久久中文看片网| 人妻系列 视频| 国产成人精品一,二区 | 国产男人的电影天堂91| 久久精品国产亚洲网站| 国产精品.久久久| 亚洲无线在线观看| 一级av片app| 白带黄色成豆腐渣| 色吧在线观看| 99在线人妻在线中文字幕| 超碰av人人做人人爽久久| 精品国内亚洲2022精品成人| 欧美日韩精品成人综合77777| 国产黄色视频一区二区在线观看 | 国产探花极品一区二区| 看片在线看免费视频| 中文字幕av成人在线电影| 最近中文字幕高清免费大全6| 一级毛片aaaaaa免费看小| 婷婷六月久久综合丁香| 美女 人体艺术 gogo| 变态另类成人亚洲欧美熟女| 国产一区二区三区在线臀色熟女| 尤物成人国产欧美一区二区三区| 日产精品乱码卡一卡2卡三| 亚洲精品国产av成人精品| 亚洲无线观看免费| 国产精品人妻久久久影院| 国产亚洲精品久久久com| 日本熟妇午夜| АⅤ资源中文在线天堂| 极品教师在线视频| 国产精品综合久久久久久久免费| 日本av手机在线免费观看| 亚洲在线观看片| 欧美日韩在线观看h| 日本一二三区视频观看| 一个人看视频在线观看www免费| 国产精品,欧美在线| 给我免费播放毛片高清在线观看| 国产综合懂色| 自拍偷自拍亚洲精品老妇| 成人漫画全彩无遮挡| 久久精品久久久久久久性| 午夜福利在线观看免费完整高清在 | 99久久中文字幕三级久久日本| 国产69精品久久久久777片| 麻豆久久精品国产亚洲av| 亚洲av第一区精品v没综合| 国产激情偷乱视频一区二区| 丰满的人妻完整版| 中出人妻视频一区二区| 成人毛片a级毛片在线播放| 一本一本综合久久| 中文字幕av成人在线电影| 美女 人体艺术 gogo| 日产精品乱码卡一卡2卡三| 欧美色欧美亚洲另类二区| 亚洲自拍偷在线| 国产v大片淫在线免费观看| 国产一区二区在线观看日韩| 级片在线观看| 哪里可以看免费的av片| 在线国产一区二区在线| 超碰av人人做人人爽久久| 免费看光身美女| 69人妻影院| 久久久久国产网址| 一边摸一边抽搐一进一小说| av.在线天堂| 免费观看的影片在线观看| 国产午夜福利久久久久久| 国产片特级美女逼逼视频| 日韩人妻高清精品专区| 免费看av在线观看网站| 国产精品av视频在线免费观看| 天堂影院成人在线观看| 99在线人妻在线中文字幕| 国产在线男女| 深爱激情五月婷婷| 国产白丝娇喘喷水9色精品| 亚洲精品影视一区二区三区av| 99视频精品全部免费 在线| 毛片女人毛片| 22中文网久久字幕| 夜夜夜夜夜久久久久| 婷婷色综合大香蕉| 乱码一卡2卡4卡精品| 久久人人爽人人爽人人片va| 国产午夜精品一二区理论片| 日本av手机在线免费观看| 99久久九九国产精品国产免费| 在线观看午夜福利视频| av在线蜜桃| 国产中年淑女户外野战色| 亚洲真实伦在线观看| 国产精品久久久久久久久免| 婷婷六月久久综合丁香| 成人综合一区亚洲| 成人漫画全彩无遮挡| 黄色配什么色好看| 国产成人影院久久av| 寂寞人妻少妇视频99o| 亚洲人与动物交配视频| 亚洲成人精品中文字幕电影| 亚洲久久久久久中文字幕| 丰满人妻一区二区三区视频av| 欧美一级a爱片免费观看看| 亚洲无线在线观看| 人妻制服诱惑在线中文字幕| 午夜免费激情av| 22中文网久久字幕| 国产v大片淫在线免费观看| 久久99热这里只有精品18| 国产久久久一区二区三区| 婷婷色综合大香蕉| 性欧美人与动物交配| 美女脱内裤让男人舔精品视频 | 久久婷婷人人爽人人干人人爱| 少妇人妻精品综合一区二区 | 国产精品一区二区三区四区免费观看| 久久99蜜桃精品久久| 亚洲av电影不卡..在线观看| 国产69精品久久久久777片| 日韩一本色道免费dvd| 国内精品宾馆在线| 99视频精品全部免费 在线| 嫩草影院入口| 少妇熟女aⅴ在线视频| 超碰av人人做人人爽久久| 18+在线观看网站| 一边亲一边摸免费视频| 真实男女啪啪啪动态图| www.色视频.com| 亚洲久久久久久中文字幕| 亚洲精品成人久久久久久| 亚洲成a人片在线一区二区| 国产三级中文精品| 国产淫片久久久久久久久| 在线天堂最新版资源| 欧美成人一区二区免费高清观看| 九草在线视频观看| 搡老妇女老女人老熟妇| 欧美人与善性xxx| 18禁在线播放成人免费| 91精品一卡2卡3卡4卡| 亚洲精品国产成人久久av| 波多野结衣巨乳人妻| 丰满乱子伦码专区| a级一级毛片免费在线观看| 少妇的逼好多水| 啦啦啦韩国在线观看视频| 中文精品一卡2卡3卡4更新| 国产亚洲av片在线观看秒播厂 | 国产真实乱freesex| 亚洲成人久久性| 亚洲四区av| 美女脱内裤让男人舔精品视频 | 日本一本二区三区精品| 99久久中文字幕三级久久日本| 国产在视频线在精品| 九九久久精品国产亚洲av麻豆| 国产淫片久久久久久久久| 久久草成人影院| 2021天堂中文幕一二区在线观| 韩国av在线不卡| av在线观看视频网站免费| 国产黄色视频一区二区在线观看 | 久久精品国产亚洲av涩爱 | 午夜精品一区二区三区免费看| 国产精品国产三级国产av玫瑰| 少妇丰满av| 女的被弄到高潮叫床怎么办| 精品人妻视频免费看| 久久精品国产99精品国产亚洲性色| 欧美日韩在线观看h| 成人二区视频| 国产精品无大码| 嘟嘟电影网在线观看| 国产不卡一卡二| 蜜桃久久精品国产亚洲av| 色噜噜av男人的天堂激情| 成年av动漫网址| 久久亚洲精品不卡| 亚洲不卡免费看| 91麻豆精品激情在线观看国产| 国产综合懂色| 亚洲一级一片aⅴ在线观看| 久久久久久久久久久丰满| 国产精品日韩av在线免费观看| 大香蕉久久网| 99在线视频只有这里精品首页| av免费观看日本| 亚洲欧美日韩高清在线视频| 嫩草影院新地址| 国内精品美女久久久久久| 亚洲精品456在线播放app| 99久久中文字幕三级久久日本| 欧美日本视频| 日韩欧美精品免费久久| 只有这里有精品99| 直男gayav资源| a级毛片a级免费在线| 成年版毛片免费区| 51国产日韩欧美| 久久久成人免费电影| 日韩欧美在线乱码| 亚洲va在线va天堂va国产| 自拍偷自拍亚洲精品老妇| 国产亚洲av片在线观看秒播厂 | 日产精品乱码卡一卡2卡三| 免费看日本二区| 国产高清激情床上av| 免费大片18禁| 久久精品国产99精品国产亚洲性色| 日韩一本色道免费dvd| 能在线免费观看的黄片| 蜜臀久久99精品久久宅男| 99久国产av精品国产电影| 大香蕉久久网| 能在线免费看毛片的网站| av在线蜜桃| 青春草国产在线视频 | 18禁在线播放成人免费| 国产黄片美女视频| 久久午夜亚洲精品久久| 日本五十路高清| 人妻久久中文字幕网| 美女黄网站色视频| 久久久久久久久中文| 欧美激情在线99| 久久精品91蜜桃| 亚洲欧美中文字幕日韩二区| 神马国产精品三级电影在线观看| 一级av片app| 91麻豆精品激情在线观看国产| 99久久精品一区二区三区| 一级毛片久久久久久久久女| 久久久久久久久久久免费av| 午夜福利视频1000在线观看| 此物有八面人人有两片| 一卡2卡三卡四卡精品乱码亚洲| 久久久久久久久久黄片| 精品久久久久久久久久免费视频| 国产男人的电影天堂91| 午夜免费男女啪啪视频观看| 日本免费a在线| 在线a可以看的网站| 成人性生交大片免费视频hd| 国产精品福利在线免费观看| 久久久久久久久久久丰满| 国产精品三级大全| 日本熟妇午夜| 久久九九热精品免费| 久久99精品国语久久久| 99热这里只有精品一区| 亚洲18禁久久av| 国产亚洲精品av在线| 国模一区二区三区四区视频| 又粗又爽又猛毛片免费看| 亚洲久久久久久中文字幕| 国产av不卡久久| 免费av观看视频| 美女内射精品一级片tv| 一区二区三区高清视频在线| 干丝袜人妻中文字幕| 久久精品国产清高在天天线| 欧美变态另类bdsm刘玥| 狠狠狠狠99中文字幕| 人体艺术视频欧美日本| 亚洲人与动物交配视频| 午夜a级毛片| 亚洲丝袜综合中文字幕| 亚洲av一区综合| 国产熟女欧美一区二区| 日韩欧美精品免费久久| 男人舔奶头视频| 免费黄网站久久成人精品| 亚洲内射少妇av| 熟妇人妻久久中文字幕3abv| 亚洲va在线va天堂va国产| 欧美又色又爽又黄视频| 欧美高清性xxxxhd video|