劉曉燕,尹磊淼,王宇,徐玉東,魏穎,冉君,單純筱,楊永清
鈣結(jié)合蛋白S100A11生物學(xué)功能及其相關(guān)疾病研究進(jìn)展
劉曉燕,尹磊淼,王宇,徐玉東,魏穎,冉君,單純筱,楊永清
S100 家族是一個分子量在 9 ~ 14 kD 之間、以獨特的螺旋-環(huán)-螺旋(helix-loop-helix)EF 手型基序為特征的、可以形成二聚體和多聚體的多基因調(diào)控酸性鈣結(jié)合蛋白家族,主要存在于脊椎動物中[1],在細(xì)胞內(nèi)外發(fā)揮其獨特的生物學(xué)功能。S100 家族到目前為止至少包含 21 個成員,其中 16 個S100 蛋白的編碼基因位于人 1 號染色體 q21 區(qū)域[2]。S100 家族是多功能信號蛋白家族,轉(zhuǎn)導(dǎo)鈣依賴性細(xì)胞調(diào)節(jié)信號,參與調(diào)控多種生物學(xué)過程,例如調(diào)控蛋白磷酸化和去磷酸化、調(diào)節(jié)關(guān)鍵酶的活性、調(diào)節(jié)細(xì)胞骨架的組成、參與調(diào)控細(xì)胞生長、運動和分化、維持胞內(nèi)外鈣離子平衡等[3-5]。心血管疾病、中樞神經(jīng)系統(tǒng)疾病、炎癥性疾病、腫瘤等多種疾病[6]與 S100 家族蛋白表達(dá)水平改變密切相關(guān)。
S100 鈣結(jié)合蛋白 A11(S100 calcium binding protein A11,S100A11)是 S100 家族重要成員之一,又被稱為 S100鈣結(jié)合蛋白 C(S100 calcium binding protein C,S100C)、鈣平衡素(calgizzarin)、淋巴結(jié)轉(zhuǎn)移基因蛋白 70(metastatic lymph node gene 70 protein,MLN70)等,S100A11 于 1989年首次在雞砂囊平滑肌細(xì)胞中被發(fā)現(xiàn)[7],該蛋白在不同的組織中表達(dá)水平各不相同,在胎盤和皮膚中高表達(dá),肺臟、心臟和腎臟中中度表達(dá),而在肝臟和骨骼肌中表達(dá)水平較低[8]。目前認(rèn)為 S100A11 參與多種生物學(xué)過程的調(diào)節(jié),包括調(diào)節(jié)酶的活性[9]、調(diào)控炎癥反應(yīng)[10-11]、調(diào)節(jié)細(xì)胞生長[12]和凋亡[13]等。本文將對 S100A11 蛋白的生物學(xué)特性和功能及其與相關(guān)疾病的關(guān)系進(jìn)行綜述。
S100A11 單體包含 N 端和 C 端兩個 EF 手型基序,N 端 EF 手序(N-terminal EF-hand)由螺旋 I、無活性 Ca2+結(jié)合位點和螺旋 II(HI-L1-HII)組成,C 端 EF 手序(C-terminal EF-hand)由螺旋 III、Ca2+結(jié)合位點和螺旋 IV(HIII-L3-HIV)組成,兩個單體的螺旋 I/I′ 和螺旋 IV/IV′ 以反向平行的方式相互作用形成 S100A11 二聚體,對 Ca2+具有很高的親和力[14]。在 Ca2+游離狀態(tài)下,S100A11 蛋白形成一個緊密的球狀結(jié)構(gòu),功能保守;但當(dāng) Ca2+與蛋白C 端結(jié)構(gòu)域結(jié)合時,可導(dǎo)致蛋白分子空間構(gòu)象發(fā)生改變,使 S100A11 蛋白功能域暴露[15],從而能與其他靶蛋白相互作用[16]。
S100A11 也可以與 S100 蛋白家族成員 S100B 形成異型二聚體[17]。有研究提示當(dāng) S100B 蛋白 C 端延伸區(qū)上的第 87(Phe87)和 88 位(Phe88)氨基酸殘基發(fā)生突變或缺失時可以阻止 S100A11-S100B 二聚體的形成[18]。
S100A11 在細(xì)胞中的分布取決于環(huán)境條件和細(xì)胞類型,其可分布于細(xì)胞核、細(xì)胞質(zhì)甚至是細(xì)胞邊緣。S100A11與胞質(zhì)中的微管蛋白、中間波形絲和肌動蛋白絲相互作用參與細(xì)胞骨架介導(dǎo)的細(xì)胞活動[19-20]。在鱗癌等腫瘤細(xì)胞中,S100A11 亦分布于細(xì)胞質(zhì)中[21]。
與其他 S100 家族蛋白不同,S100A11 可分布于細(xì)胞核中。環(huán)境中 Ca2+和 TGF-β濃度升高時,S100A11 與核仁蛋白結(jié)合,易位到細(xì)胞核中參與調(diào)控正常人角蛋白細(xì)胞(NHK)生長[22]。正常人成纖維細(xì)胞中,S100A11 位于細(xì)胞質(zhì)中,但成纖維細(xì)胞生長發(fā)生變異時,可以在細(xì)胞核內(nèi)發(fā)現(xiàn) S100A11[23]。
S100A11 的受體包括晚期糖基化終產(chǎn)物受體(receptor for advanced glycation endproducts,RAGE)、CD36 等。S100A11 與 RAGE 結(jié)合,激活 P38 絲裂原活化蛋白激酶(P38 mitogen-activated protein kinases,P38 MAPK)信號通路,參與調(diào)控骨關(guān)節(jié)炎軟骨細(xì)胞肥大[24]。Cecil 等[25]研究發(fā)現(xiàn),模式受體 CD36 從功能上作為 S100A11 的受體,轉(zhuǎn)染到人關(guān)節(jié)軟骨細(xì)胞中具有抑制 S100A11 誘導(dǎo)軟骨肥大和促進(jìn)基質(zhì)代謝的能力,阻斷 RAGE 依賴性 P38 MAPK磷酸化過程,促進(jìn) S100A11 誘導(dǎo)蛋白多糖合成。這種多配體-受體網(wǎng)絡(luò)關(guān)系有待進(jìn)一步研究。
Olsen 等[26]首次在研究中發(fā)現(xiàn)高濃度條件下正常人角蛋白細(xì)胞中 S100A11 表達(dá)上調(diào),隨后 Sakaguchi 等[22]的研究表明,細(xì)胞外 Ca2+和 TGF-β1 高濃度時,S100A11 可通過蛋白激酶 Ca(protein kinases Ca,PKCa)磷酸化進(jìn)入細(xì)胞核抑制細(xì)胞生長。胞外 Ca2+和 TGF-β1 濃度升高的信號轉(zhuǎn)導(dǎo)入胞質(zhì)內(nèi),使 S100A11 在 PKCa 的作用下磷酸化,與核仁蛋白結(jié)合從胞質(zhì)易位到胞核中,通過激活 Sp1 誘導(dǎo)P21WAF1/CIP1和 P15INK48途徑抑制 DNA 合成。抑制S100A11 和 PKCa 活性能明顯抑制 TGF-β1 誘導(dǎo)的細(xì)胞生長。在正常人成纖維細(xì)胞[27]、人子宮頸癌傳代細(xì)胞(HeLa cells)[27]和人肝癌細(xì)胞[28]中同樣可發(fā)現(xiàn)這種現(xiàn)象。DNA 損傷可誘導(dǎo) S100A11 易位到細(xì)胞核中[29],通過與 DNA 依賴性 ATP 激酶 Rad45B 作用重組修復(fù) DNA 損傷,參與P21WAF1/CIP1途徑調(diào)控細(xì)胞生長[30]。低密度永生化細(xì)胞和瘤細(xì)胞中的 S100A11 低表達(dá),不會被磷酸化而游離于細(xì)胞質(zhì)中,因此無法通過相關(guān)途徑抑制細(xì)胞的生長[27]。
研究發(fā)現(xiàn),S100A11 與 Annexin I 的 N 端肽段結(jié)合,使 Annexin I 與胞漿磷脂酶A2(cytosolic phosphlipase A2,cPLA2)結(jié)合并抑制其活性,從而抑制正常人角蛋白細(xì)胞(normal human keratinocytes,NHK)的生長[12]。高濃度表皮生長因子(epidermal growth factor,EGF)和通道酶 7(transient receptor potential melastatin 7,TRPM7)能抑制Annexin I 與 S100A11 結(jié)合[31]。在一些人鱗癌細(xì)胞株上也可以發(fā)現(xiàn) Annexin I 結(jié)構(gòu)殘缺并且失去與 S100A11 結(jié)合的能力[32]。S100A11 的這一作用可能為臨床上研究治療腫瘤和其他細(xì)胞生長異常提供新的靶點。
S100A11 對細(xì)胞生長的調(diào)節(jié)具有雙向性,在不同的條件下能刺激細(xì)胞生長。有研究者發(fā)現(xiàn) S100A11 調(diào)節(jié)人角蛋白細(xì)胞生長時在胞內(nèi)抑制細(xì)胞生長,在胞外促進(jìn)細(xì)胞生長[33]。S100A11 可以由角蛋白細(xì)胞分泌到胞外與 RAGE 結(jié)合,轉(zhuǎn)導(dǎo)信號誘導(dǎo) AKt 的磷酸化,促使環(huán)磷酸腺苷反應(yīng)元件結(jié)合蛋白(cyclic AMP response element binding protein,CREB)磷酸化并從表皮生長因子啟動子的 AP-1 位點分離出來,使 AP-1 與其位點結(jié)合,激活表皮生長因子的轉(zhuǎn)錄,刺激細(xì)胞生長[12]。
此外,S100A11 與細(xì)胞凋亡密切相關(guān)。有研究報道S100A11 蛋白 N 端 19 個氨基酸殘基在調(diào)控細(xì)胞凋亡過程中起作用,其途徑可能與 P53 和 P21WAF1/CIP1有關(guān)[13]。
S100A11 本身不具有酶活性,但它通過與酶的底物結(jié)合調(diào)節(jié)酶活性,從而發(fā)揮生物學(xué)作用。研究表明,細(xì)胞質(zhì)中S100A11 可能通過與肌動蛋白之間鈣依賴性相互作用來抑制肌動蛋白激活的肌球蛋白 Mg2+-ATP 酶活性,從而調(diào)節(jié)肌動蛋白絲的活動[9],推測 S100A11 抑制肌動蛋白激活的肌球蛋白 Mg2+-ATP 酶活性的機(jī)制可能與 S100A11 占據(jù)肌球蛋白在肌動蛋白上的結(jié)合位點有關(guān)。S100A11 作為谷氨酰胺轉(zhuǎn)移酶(transglutaminase)的底物,能與其中的谷氨酸和賴氨酸殘基反應(yīng),改變其空間構(gòu)象,參與催化生物學(xué)活動[34]。
編碼 S100A11 的 1 號染色體 q21 區(qū)易發(fā)生重排,提示 S100 蛋白與腫瘤的發(fā)生和轉(zhuǎn)移密切相關(guān)[35]。研究顯示,S100A11 對腫瘤細(xì)胞的調(diào)節(jié)具有雙向性。S100A11 在胰腺癌[36]、大腸癌[37]和間變性大細(xì)胞淋巴瘤[38]中高表達(dá),而在食管鱗狀細(xì)胞癌[39]和膀胱癌[40]中表達(dá)水平明顯下調(diào)。在對胰腺癌的研究中發(fā)現(xiàn),在胰腺癌早期 S100A11 表達(dá)上調(diào),但隨著癌癥的發(fā)展,S100A11 的表達(dá)下調(diào)[41],胰腺癌患者體內(nèi) S100A11 高表達(dá)提示預(yù)后不良[42]。在膀胱癌中隨著疾病的發(fā)展,S100A11 的表達(dá)也逐漸被抑制[40]。對不同類型肺癌的研究中發(fā)現(xiàn),S100A11 在腺癌和鱗狀細(xì)胞癌中表達(dá)上調(diào),在小細(xì)胞癌中表達(dá)下調(diào),阻斷其表達(dá)能明顯抑制腺癌細(xì)胞的增殖[43]。
S100A11 作為腫瘤抑制因子,在腫瘤細(xì)胞中從細(xì)胞核易位到細(xì)胞質(zhì),限制 Sp1 與Smads 結(jié)合誘導(dǎo)表達(dá) P21,抑制細(xì)胞生長。同時它也可以與 P53 四聚功能區(qū)(TET domain)結(jié)合,參與腫瘤抑制過程[44]。但 S100A11 又是腫瘤促進(jìn)因子,它可以維持人鱗癌細(xì)胞株的增殖[45]。此外,有研究表明,S100A11 是一種新的乳腺癌診斷標(biāo)志物,與患者預(yù)后密切相關(guān)[46-47]。因此,對 S100A11 在腫瘤細(xì)胞中雙重作用的研究,有助于在臨床上診斷和防治癌癥。
研究者對 S100A11 在人表皮中的定位存在不同觀點。Sakaguchi 等[27]認(rèn)為 S100A11 定位于皮膚上層細(xì)胞的細(xì)胞核。而 Broome 等[48]的研究則顯示 S100A11 定位于正常人表皮基底細(xì)胞的細(xì)胞核和細(xì)胞質(zhì)中,在棘層細(xì)胞的細(xì)胞膜上亦可以檢測到。S100A11 雙向調(diào)節(jié)人角蛋白細(xì)胞的生長,在永生化細(xì)胞中無法磷酸化,胞外高濃度蛋白能改變永生化細(xì)胞的細(xì)胞形態(tài)。
S100A11 是角質(zhì)化包膜的重要組成部分,參與形成抵御病原體和過敏原入侵的第一道皮膚防御屏障。研究表明,特異性皮炎患者表皮細(xì)胞中 S100A11 表達(dá)下調(diào),Th2 類細(xì)胞因子 IL-4 和 IL-13 能明顯下調(diào) S100A11 的表達(dá)水平。利用 siRNA 技術(shù)阻斷 S100A11 基因轉(zhuǎn)錄,則培養(yǎng)基中人β 防御素 3(hBD-3)和聚角蛋白微絲(FLG)的表達(dá)被明顯抑制[49]。有研究證實 FLG 的缺乏與重癥 AD 和哮喘病進(jìn)展密切相關(guān)[50]。這一研究為增強角質(zhì)細(xì)胞分化和皮膚先天免疫反應(yīng)提供新的研究目標(biāo)。
此外,抑制 S100A11 的表達(dá)會降低角質(zhì)形成細(xì)胞抵抗牛痘病毒的水平,這一過程與干擾素-γ(IFN-γ)受體 IL-10受體 2 鏈(IL-10R2)的下調(diào)有關(guān)[51]。
研究發(fā)現(xiàn),S100A11 和 RAGE 在骨關(guān)節(jié)炎軟骨中表達(dá)上調(diào)[10]。在人關(guān)節(jié)軟骨細(xì)胞體外培養(yǎng)實驗中發(fā)現(xiàn),IL-8 和TNF-α 可誘導(dǎo)軟骨細(xì)胞表達(dá) S100A11,使其在轉(zhuǎn)谷氨酰胺酶 2(transglutaminase 2,TG2)作用下形成共價鍵二聚體,從而結(jié)合 RAGE,激活 p38 MAPK 通路,誘導(dǎo) X-膠原表達(dá)上調(diào)[52-53],此過程能被 RAGE 特異性阻斷劑 Abs 阻斷。但在 CD36 轉(zhuǎn)染的正常人膝蓋永生軟骨細(xì)胞(CH-8 cell)中,S100A11 和 TNF-α 表達(dá)水平均下調(diào),提示模式受體CD36 可能具有抑制 S100A11 誘導(dǎo)軟骨細(xì)胞肥大的能力[54]。目前 S100A11 和 RAGE 結(jié)合的區(qū)域以及信號轉(zhuǎn)導(dǎo)入 p38 MAPK 磷酸化通路的途徑尚不明確,有待進(jìn)一步研究。
S100A11 能誘導(dǎo)膠原蛋白 IX/XI 的表達(dá),通過與RAGE 的結(jié)合誘導(dǎo)鼠大動脈硬化,此作用可以被外源性sRAGE 阻斷[55]。在異丙腎上腺素(ISP)誘導(dǎo)的大鼠心肌損傷模型中,S100A11 和 S100A4 的表達(dá)水平增高[56]。此外,通過作用于卵丘細(xì)胞,S100A11 能抑制小鼠的受精過程[57]。
S10011 參與調(diào)控支氣管哮喘等疾病。有研究表明,S100A11 作為缺氧誘導(dǎo)有絲分裂因子(hypoxia-induced mitogenic factor,HIFM)下游信號蛋白在過敏性哮喘小鼠平滑肌細(xì)胞(smooth muscle cells,SMCs)中低表達(dá),其參與調(diào)控 HIFM 誘導(dǎo) SMCs 遷移,但對 SMCs 增殖調(diào)控作用不明顯[58]。Xu 等[59]利用蛋白質(zhì)組學(xué)技術(shù)發(fā)現(xiàn) S100A11 和S100A8 可能是針刺抗哮喘的差異蛋白,其作用途徑有待進(jìn)一步研究。
大量的研究顯示,S100A11 具有調(diào)節(jié)細(xì)胞生長、調(diào)節(jié)酶活性、調(diào)控炎癥反應(yīng)等生物學(xué)功能,參與腫瘤和炎癥相關(guān)疾病調(diào)控過程。軟骨細(xì)胞肥大誘導(dǎo)劑 IL-8 和 TNF-α 能上調(diào) S100A11 的表達(dá),通過 TG2 的轉(zhuǎn)氨基作用,S100A11與其受體 RAGE 相結(jié)合促進(jìn)骨關(guān)節(jié)炎的發(fā)展。S100A11 在腫瘤疾病過程中起到腫瘤促進(jìn)和腫瘤抑制的雙向調(diào)節(jié)作用。但 IL-8 和 TNF-α 通過何種途徑誘導(dǎo) S100A11 表達(dá)并使其從軟骨中釋放,S100A11 與 RAGE 相互作用的區(qū)域以及信號如何轉(zhuǎn)導(dǎo)至 P38 磷酸化通路,CD36 與 S100A11 相互作用的分子機(jī)制等諸多問題仍未得到解答。由STRING9.0 數(shù)據(jù)庫分析可知(圖 1):S100A11 與膜聯(lián)蛋白家族中 annexin I、annexin II 和 annexin IV 密切相關(guān);與 IL-8、TNF、RAGE、甲殼質(zhì)酶(CHIA)、核仁蛋白(NCL)等存在直接或間接的關(guān)聯(lián)性。因此,應(yīng)用現(xiàn)代生物學(xué)和信息學(xué)技術(shù)對 S100A11 與相關(guān)蛋白和相關(guān)因子之間相互作用關(guān)系進(jìn)行深入研究,揭示其內(nèi)在細(xì)胞信號轉(zhuǎn)導(dǎo)途徑,以期有助于相關(guān)疾病在臨床上的診斷、預(yù)防和治療,這是未來研究的主要方向。
[1]Sch?fer BW, Heizmann CW.The S100 family of EF-hand calcium-binding proteins: functions and pathology.Trends Biochem Sci, 1996, 21(4):134-140.
[2]Leclerc E, Fritz G, Vetter SW, et al.Binding of S100 proteins to RAGE: an update.Biochim Biophys Acta, 2009, 1793(6):993-1007.
[3]Donato R.S100: a multigenic family of calcium-modulated proteins of the EF-hand type with intracellular and extracellular functional roles.Int J Biochem Cell Biol, 2001, 33(7):637-668.
[4]Donato R.Intracellular and extracellular roles of S100 proteins.Microsc Res Tech, 2003, 60(6):540-551.
[5]Santamaria-Kisiel L, Rintala-Dempsey AC, Shaw GS.Calcium-dependent and -independent interactions of the S100 protein family.Biochem J,2006, 396(2):201-214.
[6]Marenholz I, Heizmann CW, Fritz G.S100 proteins in mouse and man:from evolution to function and pathology (including an update of the nomenclature).Biochem Biophys Res Commun, 2004, 322(4):1111-1122.
[7]DeVries G, McDonald JR, Walsh MP.Calmodulin- like Ca2+-binding proteins of smooth muscle//Fiskum G.Cell calcium metabolism:physiology, biochemistry, pharmacology, and clinical implications.New York: Plenum Press, 1989:427-437.
[8]Inada H, Naka M, Tanaka T, et al.Human S100A11 exhibits differential steady-state RNA levels in various tissues and a distinct subcellular localization.Biochem Biophys Res Commun, 1999,263(1):135-138.
[9]Zhao XQ, Naka M, Muneyuki M, et al.Ca(2+)-dependent inhibition of actin-activated myosin ATPase activity by S100C (S100A11), a novel member of the S100 protein family.Biochem Biophys Res Commun, 2000, 267(1):77-79.
[10]Cecil DL, Johnson K, Rediske J, et al.Inflammation-induced chondrocyte hypertrophy is driven by receptor for advanced glycation end products.J Immunol, 2005, 175(12):8296-8302.
[11]Thuny F, Textoris J, Amara AB, et al.The gene expression analysis of blood reveals S100A11 and AQP9 as potential biomarkers of infective endocarditis.PLoS One, 2012, 7(2):e31490.
[12]Sakaguchi M, Huh NH.S100A11, a dual growth regulator of epidermal keratinocytes.Amino Acids, 2011, 41(4):797-807.
[13]Makino E, Sakaguchi M, Iwatsuki K, et al.Introduction of an N-terminal peptide of S100C/A11 into human cells induces apoptotic cell death.J Mol Med (Berl), 2004, 82(9):612-620.
[14]Réty S, Osterloh D, Arié JP, et al.Structural basis of the Ca(2+)-dependent association between S100C (S100A11) and its target, the N-terminal part of annexin I.Structure, 2000, 8(2):175-184.
[15]Dempsey AC, Walsh MP, Shaw GS.Unmasking the annexin I interaction from the structure of Apo-S100A11.Structure, 2003,11(7):887-897.
[16]Rintala-Dempsey AC, Rezvanpour A, Shaw GS.S100-annexin complexes--structural insights.FEBS J, 2008, 275(20):4956-4966.
[17]Deloulme JC, Assard N, Mbele GO, et al.S100A6 and S100A11 are specific targets of the calcium- and zinc-binding S100B protein in vivo.J Biol Chem, 2000, 275(45):35302-35310.
[18]Otterbein LR, Kordowska J, Witte-Hoffmann C, et al.Crystal structures of S100A6 in the Ca(2+)-free and Ca(2+)-bound states: the calcium sensor mechanism of S100 proteins revealed at atomic resolution.Structure, 2002, 10(4):557-567.
[19]Broome AM, Eckert RL.Microtubule-dependent redistribution of a cytoplasmic cornified envelope precursor.J Invest Dermatol, 2004,122(1):29-38.
[20]Bianchi R, Giambanco I, Arcuri C, et al.Subcellular localization of S100A11 (S100C) in LLC-PK1 renal cells: Calcium- and protein kinase c-dependent association of S100A11 with S100B and vimentin intermediate filaments.Microsc Res Tech, 2003, 60(6):639-651.
[21]Sonegawa H, Nukui T, Li DW, et al.Involvement of deterioration in S100C/A11-mediated pathway in resistance of human squamous cancer cell lines to TGFbeta-induced growth suppression.J Mol Med,2007, 85(7):753-762.
[22]Sakaguchi M, Miyazaki M, Sonegawa H, et al.PKCalpha mediates TGFbeta-induced growth inhibition of human keratinocytes via phosphorylation of S100C/A11.J Cell Biol, 2004, 164(7):979-984.
[23]Sakaguchi M, Miyazaki M, Inoue Y, et al.Relationship between contact inhibition and intranuclear S100C of normal human fibroblasts.J Cell Biol, 2000, 149(6):1193-1206.
[24]Cecil DL, Johnson K, Rediske J, et al.Inflammation-induced chondrocyte hypertrophy is driven by receptor for advanced glycation end products.J Immunol, 2005, 175(12):8296-8302.
[25]Cecil DL, Appleton CT, Polewski MD, et al.The pattern recognition receptor CD36 is a chondrocyte hypertrophy marker associated with suppression of catabolic responses and promotion of repair responses to inflammatory stimuli.J Immunol, 2009, 182(8):5024-5031.
[26]Olsen E, Rasmussen HH, Celis JE.Identification of proteins that are abnormally regulated in differentiated cultured human keratinocytes.Electrophoresis, 1995, 16(12):2241-2248.
[27]Sakaguchi M, Miyazaki M, Inoue Y, et al.Relationship between contact inhibition and intranuclear S100C of normal human fibroblasts.J Cell Biol, 2000, 149(6):1193-1206.
[28]Miyazaki M, Sakaguchi M, Akiyama I, et al.Involvement of interferon regulatory factor 1 and S100C/A11 in growth inhibition by transforming growth factor beta 1 in human hepatocellular carcinoma cells.Cancer Res, 2004, 64(12):4155-4161.
[29]Gorsler T, Murzik U, Ulbricht T, et al.DNA damage-induced translocation of S100A11 into the nucleus regulates cell proliferation.BMC Cell Biol, 2010, 11:100.
[30]Murzik U, Hemmerich P, Weidtkamp-Peters S, et al.Rad54B targeting to DNA double-strand break repair sites requires complex formation with S100A11.Mol Biol Cell, 2008, 19(7):2926-2935.
[31]Dorovkov MV, Kostyukova AS, Ryazanov AG.Phosphorylation of annexin A1 by TRPM7 kinase: a switch regulating the induction of an alpha-helix.Biochemistry, 2011, 50(12):2187-2193.
[32]Sakaguchi M, Murata H, Sonegawa H, et al.Truncation of annexin A1 is a regulatory lever for linking epidermal growth factor signaling with cytosolic phospholipase A2 in normal and malignant squamous epithelial cells.J Biol Chem, 2007, 282(49):35679-35686.
[33]Sakaguchi M, Sonegawa H, Murata H, et al.S100A11, an dual mediator for growth regulation of human keratinocytes.Mol Biol Cell,2008, 19(1):78-85.
[34]Ruse M, Lambert A, Robinson N, et al.S100A7, S100A10, and S100A11 are transglutaminase substrates.Biochemistry, 2001, 40(10):3167-3173.
[35]Heizmann CW, Fritz G, Schafer BW.S100 proteins: structure,functions and pathology.Front Biosci, 2002, 7:d1356-d1368.
[36]Chen JH, Ni RZ, Xiao MB, et al.Comparative proteomic analysis of differentially expressed proteins in human pancreatic cancer tissue.Hepatobiliary Pancreat Dis Int, 2009, 8(2):193-200.
[37]Meding S, Balluff B, Elsner M, et al.Tissue based proteomics reveals FXYD3, S100A11 and GSTM3 as novel markers for regional lymph node metastasis in colon cancer.J Pathol, 2012.
[38]Rust R, Visser L, van der Leij J, et al.High expression of calcium-binding proteins, S100A10, S100A11 and CALM2 in anaplastic large cell lymphoma.Br J Haematol, 2005, 131(5):596-608.[39]Ji J, Zhao L, Wang X, et al.Differential expression of S100 gene family in human esophageal squamous cell carcinoma.J Cancer Res Clin Oncol, 2004, 130(8):480-486.
[40]Memon AA, Sorensen BS, Meldgaard P, et al.Down-regulation of S100C is associated with bladder cancer progression and poor survival.Clin Cancer Res, 2005, 11(2 Pt 1):606-611.
[41]Ohuchida K, Mizumoto K, Ohhashi S, et al.S100A11, a putative tumor suppressor gene, is overexpressed in pancreatic carcinogenesis.Clin Cancer Res, 2006, 12(18):5417-5422.
[42]Xiao MB, Jiang F, Ni WK, et al.High expression of S100A11 in pancreatic adenocarcinoma is an unfavorable prognostic marker.Med Oncol, 2011.
[43]Hao J, Wang K, Yue Y, et al.Selective expression of S100A11 in lung cancer and its role in regulating proliferation of adenocarcinomas cells.Mol Cell Biochem, 2012, 359(1-2):323-332.
[44]Fernandez-Fernandez MR, Rutherford TJ, Fersht AR.Members of the S100 family bind p53 in two distinct ways.Protein Sci, 2008,17(10):1663-1670.
[45]Sakaguchi M, Murata H, Sonegawa H, et al.Truncation of annexin A1 is a regulatory lever for linking epidermal growth factor signaling with cytosolic phospholipase A2 in normal and malignant squamous epithelial cells.J Biol Chem, 2007, 282(49):35679-35686.
[46]Liu XG, Wang XP, Li WF, et al.Ca2+-binding protein S100A11: a novel diagnostic marker for breast carcinoma.Oncol Rep, 2010,23(5):1301-1308.
[47]McKiernan E, McDermott EW, Evoy D, et al.The role of S100 genes in breast cancer progression.Tumour Biol, 2011, 32(3):441-450.
[48]Broome AM, Ryan D, Eckert RL.S100 protein subcellular localization during epidermal differentiation and psoriasis.J Histochem Cytochem,2003, 51(5):675-685.
[49]Howell MD, Fairchild HR, Kim BE, et al.Th2 cytokines act on S100/A11 to downregulate keratinocyte differentiation.J Invest Dermatol, 2008, 128(9):2248-2258.
[50]Palmer CN, Ismail T, Lee SP, et al.Filaggrin null mutations are associated with increased asthma severity in children and young adults.J Allergy Clin Immunol, 2007, 120(1):64-68.
[51]Bin L, Howell MD, Kim BE, et al.Inhibition of S100A11 gene expression impairs keratinocyte response against vaccinia virus through downregulation of the IL-10 receptor 2 chain.J Allergy Clin Immunol, 2009, 124(2):270-277, 277.e1.
[52]Cecil DL, Terkeltaub R.Transamidation by transglutaminase 2 transforms S100A11 calgranulin into a procatabolic cytokine for chondrocytes.J Immunol, 2008, 180(12):8378-8385.
[53]He H, Li J, Weng S, et al.S100A11: diverse function and pathology corresponding to different target proteins.Cell Biochem Biophys,2009, 55(3):117-126.
[54]Cecil DL, Appleton CT, Polewski MD, et al.The pattern recognition receptor CD36 is a chondrocyte hypertrophy marker associated with suppression of catabolic responses and promotion of repair responses to inflammatory stimuli.J Immunol, 2009, 182(8):5024-5031.
[55]Cecil DL, Terkeltaub RA.Arterial calcification is driven by RAGE in Enpp1-/- mice.J Vasc Res, 2011, 48(3):227-235.
[56]Inamoto S, Murao S, Yokoyama M, et al.Isoproterenol-induced myocardial injury resulting in altered S100A4 and S100A11 protein expression in the rat.Pathol Int, 2000, 50(6):480-485.
[57]Hanaue M, Miwa N, Uebi T, et al.Characterization of S100A11, a suppressive factor of fertilization, in the mouse female reproductive tract.Mol Reprod Dev, 2011, 78(2):91-103.
[58]Fan C, Fu Z, Su Q, et al.S100A11 mediates hypoxia-induced mitogenic factor (HIMF)-induced smooth muscle cell migration,vesicular exocytosis, and nuclear activation.Mol Cell Proteomics,2011, 10(3):M110.000901.
[59]Xu YD, Cui JM, Wang Y, et al.The early asthmatic response is associated with glycolysis, calcium binding and mitochondria activity as revealed by proteomic analysis in rats.Respir Res, 2010, 11:107.
10.3969/cmba.j.issn.1673-713X.2012.03.009
國家自然科學(xué)基金(81001548、81173341、81173332);上海市教委和上海市教育發(fā)展基金會“晨光計劃”資助項目(10CG45);上海市衛(wèi)生局青年基金(2009Y096);國家中醫(yī)藥管理局、上海市重點學(xué)科建設(shè)項目(S30304)
200030 上海中醫(yī)藥大學(xué)上海市針灸經(jīng)絡(luò)研究所
楊永清,Email:dryqyang@163.com
2012-02-17
·協(xié)會之窗·