沈 潔,馮玲玲,陶雁敏
(遼寧師范大學(xué) 數(shù)學(xué)學(xué)院,大連 遼寧 116029)
五階時(shí)滯差分方程解的漸近性
沈 潔,馮玲玲,陶雁敏
(遼寧師范大學(xué) 數(shù)學(xué)學(xué)院,大連 遼寧 116029)
考慮五階時(shí)滯差分方程 Δ5yn+f(n,yn,yn-r,yn-l,yn-p)=0,n∈N(n0),得出了該方程存在具有特殊漸近性的有界非振動(dòng)解的充分必要條件.
差分方程;時(shí)滯;有界解;漸近性
下面假設(shè)對(duì)給定n0和式(2),時(shí)滯差分方程(1)有唯一解{yn},方程(1)的解{yn}稱(chēng)為振動(dòng)解是指序列{yn}不永遠(yuǎn)為正也不永遠(yuǎn)為負(fù);否則,稱(chēng)其為非振動(dòng)解.
定義1設(shè)S是Banach空間B的一個(gè)子集,S中每一個(gè)序列都有一個(gè)子列收斂到B中元素,則稱(chēng)S是相對(duì)緊的.
定義2設(shè)S是l∞的子集,?ε>0,?{yn}∈S,存在整數(shù)N≥n0,當(dāng)i,j>N時(shí),有| yi-yj|<ε,則稱(chēng)S是一致柯西的.
引理1設(shè)Ω是乘積空間l∞×l∞的有界子集,若Ω是一致柯西的,則Ω是相對(duì)緊的.
引理2(Schauder不動(dòng)點(diǎn)定理)設(shè)Ω是Banach空間X的一個(gè)非空閉凸子集,設(shè)T∶Ω→Ω是一連續(xù)映射,且TΩ是X中一個(gè)相對(duì)緊子集,則T中至少有一個(gè)不動(dòng)點(diǎn).
定理1假設(shè)存在常數(shù)c≠0,使
[1]Erbe L H,Kong Q,Zhang B G.Oscillation Theory for Functional Differential Equations[M].Dekker,1995.
[2]Gyori I,Ladas G.Oscillation Theory of Delay Differential Equation with Applications[M].Oxford Clarendon Press,1991.
[3]Agarwal R P.Difference Equations and Inequalities[M].New York,Marcel Dekker,1992.
[4]Philos Ch G.Oscillations in a class of difference equations[J].Appl Math Comp,1992(48):45-57.
[5]Philos Ch G.Oscillations in linear difference equations with variable coefficients[J].J Appl Math Stoch Anal,1991(4):241-258.
[6]Cheng S S,Patula W T.An existence theorem for a non?linear difference equation[J].Nonlinear Anal,1992(20):193-203.
[7]Yan J,Liu B.Asymptotic Behavior of a Nonlinear Delay Difference Equation[M].1995.
Asymptotic Behavior of Solutions for 5-th Order Delay Difference Equations
SHEN Jie,F(xiàn)ENG Lingling,TAO Yanmin
(School of Mathematics,Liaoning Normal University,Dalian116029,China)
This paper studied a class of 5-th order delay difference equations Δ5yn+f(n,yn,yn-r,yn-l,yn-p)=0,
n∈N(n0)to give the necessary and sufficient condition for the existence of a bounded nonoscillatory solution of this equation.
difference equations;delay;bounded solution;asymptotic behavior
O 175.7
A
1674-4942(2011)03-0242-05
2011-05-07
2010年遼寧省教育廳科研項(xiàng)目(L2010235);國(guó)家自然科學(xué)基金資助項(xiàng)目(11171138)
畢和平