李亞瓊,谷 峰
(杭州師范大學(xué)理學(xué)院,浙江 杭州 310036)
Hilbert空間中的平衡問(wèn)題與不動(dòng)點(diǎn)問(wèn)題的復(fù)合迭代方法
李亞瓊,谷 峰*
(杭州師范大學(xué)理學(xué)院,浙江 杭州 310036)
在Hilbert空間中引進(jìn)并研究一種新的復(fù)合迭代算法,借以尋求平衡問(wèn)題的解集、非擴(kuò)張映像不動(dòng)點(diǎn)集和變分不等式解集的一個(gè)公共元素.所得結(jié)果改進(jìn)并推廣了最近一些人的最新結(jié)果.
平衡問(wèn)題;非擴(kuò)張映像;α-逆-強(qiáng)單調(diào)映像;不動(dòng)點(diǎn);復(fù)合迭代算法
對(duì)于變分不等式問(wèn)題,有u∈VI(C,A)?u=PC(u-λAu),?λ>0.
稱集值映像T:H →2H是單調(diào)的,如果 ?x,y∈H,f∈Tx,g∈Ty,有〈x-y,f-g〉≥0.稱單調(diào)映像T:H→2H是極大的,如果T的圖G(T)={(x,y):y∈Tx}不是任何另外單調(diào)映像的圖的真子圖.易知,單調(diào)映像T是極大的當(dāng)且僅當(dāng)對(duì)于(x,f)∈H×H,〈x-y,f-g〉≥0,?(y,g)∈G(T)?f∈Tx.
設(shè)A是C到H的α-逆 -強(qiáng)單調(diào)映像,NCv表示C在點(diǎn)v∈C的正規(guī)錐,即NCv={w∈H:〈v-u,w〉≥0,?u∈C}.定義
眾所周知,在實(shí)Hilbert空間H 中,對(duì) ?x,y∈H 和λ∈ [0,1],有
則有下式成立:
1)Tr是單值的;
2)Tr是強(qiáng)非擴(kuò)張的,即 ‖Trx-Try‖2≤ 〈Trx-Try,x-y〉,?x,y∈H;
3)F(Tr)=EP(F);
4)EP(F)是閉凸的.
定理1 設(shè)C是實(shí)Hilbert空間H的非空閉凸子集,F(xiàn)是C×C到R的二元函數(shù),滿足條件(A1)-(A4),設(shè)S是C到H 的非擴(kuò)張映像,A是C到H 的α-逆 -強(qiáng)單調(diào)映像,使得F(S)∩VI(C,A)∩EP(F)≠ ?,設(shè)f是H 到自身的壓縮映像,{xn},{un},{wn}是由下式定義的序列:
證明 下面將分5步來(lái)完成本定理的證明.
[1]Rockafellar R T.On the maximality of sums of nonlinear monotone operators[J].Trans Amer Math Soc,1970,149:75-88.
[2]Rockafellar R T.Monotone operators and proximal point algorithm[J].SIAM J Control Pptim,1976,14:877-898.
[3]Xu Hongkun.Iterative algorithms for nonlinear operators[J].London Math Soc,2002,66:240-256.
[4]Blum E,Oettli W.From optimization and variational inequalities to equilibrium problems[J].Math Student,1994,63:123-145.
[5]Flam S D,Antipin A S.Equilibrium programming using proximal-like algorithms[J].Math Program,1997,78:29-41.
[6]Opial Z.Weak convergence of the sequence of successive approximations for nonexpansive mappings[J].Bull Amer Math Soc,1967,73:595-597.
[7]Su Yongfu,Shang Meijuan,Qin Xiaolong.An iterative method of solution for equilibrium and optimization problems[J].Nonlinear Anal,2008,69(8):2709-2719.
Abstract:This paper introduced and studied on a new composite iterative algorithm in Hilbert space to find a common element among the set of solutions for equilibrium problems,the set of fixed point of nonexpansive mappings and the set of variational inequalities.The results presented can extend and improve the corresponding results announced by many others.
Key words:equilibrium problem;nonexpansive mapping;α-inverse-strongly monotone mapping;fixed point;composite iterative algorithm
Composite Iterative Methods for Equilibrium Problems and Fixed Point Problems in Hilbert Spaces
LI Ya-qiong,GU Feng
(College of Science,Hangzhou Normal University,Hangzhou 310036,China)
O177.91 MSC2010:47H09;47H10;47H17
A
1674-232X(2011)01-0034-08
10.3969/j.issn.1674-232X.2011.01.007
2010-03-28
國(guó)家自然科學(xué)基金項(xiàng)目(10771141);浙江省自然科學(xué)基金項(xiàng)目(Y605191);杭州師范大學(xué)研究生創(chuàng)新基金項(xiàng)目;杭州師范大學(xué)研究生教改項(xiàng)目.
李亞瓊(1984—),女,安徽定遠(yuǎn)人,應(yīng)用數(shù)學(xué)專業(yè)碩士研究生,主要從事非線性泛函分析研究.
*通信作者:谷 峰(1960—),男,遼寧沈陽(yáng)人,教授,主要從事非線性泛函分析研究.E-mail:gufeng99@sohu.com