• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    半剛性基層瀝青路面非連續(xù)結(jié)構(gòu)強迫振動聲效

    2011-08-16 12:03:48李志棟黃曉明岳學軍
    東南大學學報(自然科學版) 2011年6期
    關(guān)鍵詞:聲壓剛性瀝青路面

    李志棟 黃曉明 岳學軍

    (1東南大學交通學院,南京 210096)

    (2河南高遠路業(yè)集團,新鄉(xiāng) 453000)

    目前中國通車的7.41萬km高速公路中,半剛性基層瀝青路面占90%以上.裂縫是半剛性基層瀝青路面比較典型的病害之一,但實際上因施工溫度、土基固結(jié)、交通荷載及塑性變形累積等原因,半剛性基層底部出現(xiàn)的脫空、疏松等非連續(xù)病害及其次生病害越來越受到養(yǎng)護行業(yè)的重視[1-2].

    1996年,瑞典SKF公司首先發(fā)明了用振動脈沖儀來檢測軸承的早期損傷[3].1976年,日本新日鐵株式會社研制了機器檢測儀MCV-021,可分別在低頻、中頻和高頻段檢測軸承異常信號.目前國內(nèi)有河南高遠路業(yè)集團開發(fā)的連續(xù)式聲效法連續(xù)性檢測儀以及華南理工大學發(fā)明的定點式聲振法水泥路面板底脫空檢測儀[4].

    本文將在半剛性基層瀝青路面的強迫振動分析基礎(chǔ)上,建立其單自由度系統(tǒng)的強迫振動微分方程,并對其強迫振動聲效特征進行研究.

    1 路面單自由度振動體振動特性

    1.1 路面振動特征及機理

    半剛性基層瀝青路面在低溫、常溫狀態(tài)下接近彈性體,在沖擊荷載作用下將發(fā)生振動,且產(chǎn)生振動噪聲.通過對振動(噪聲)參數(shù)的拾取、測量和處理,利用信號處理的頻譜分析技術(shù)及其他信息,如溫度、壓力、變形、脹差、阻值、磁場等參數(shù)的變化,可初步判斷路面結(jié)構(gòu)健康狀況,也可進一步判定結(jié)構(gòu)非連續(xù)程度及其部位.

    瀝青路面在沖擊力作用下將產(chǎn)生振動效應,滿足

    式中,x(t)為振動位移;A為位移幅值;ω為振動圓頻率;f為振動頻率.

    采用連續(xù)和持續(xù)沖擊裝置對路面結(jié)構(gòu)形成沖擊加載,使路面結(jié)構(gòu)彈性體產(chǎn)生強迫振動,從而在瀝青混凝土這種彈性媒質(zhì)(低溫、常溫時)中以該媒質(zhì)特征速度傳播壓力、速度等綜合擾動,形成既有壓縮彈性又有剪切彈性的路面振動波,再經(jīng)過路面結(jié)構(gòu)輻射,形成空氣中的振動噪聲.

    1.2 瀝青路面層間連續(xù)性基本假設(shè)

    路面結(jié)構(gòu)是用各種混合料依路基、墊層、基層和面層不同結(jié)構(gòu)組合鋪筑而成的層狀工程結(jié)構(gòu)物[5].

    在行駛車輪的瞬時作用下,路面結(jié)構(gòu)產(chǎn)生的黏-塑性變形很小,所以對于厚度較大、強度較高的高等級瀝青路面,可將其視為線形彈性體,并應用彈性層狀體系理論進行分析.連續(xù)性假設(shè)[6]:①各層連續(xù)、完全彈性、均質(zhì)、各向同性;②層間接觸面完全連續(xù).

    1.3 單自由度振動系統(tǒng)強迫振動微分方程假設(shè)

    一般物體振動形式均可簡化為弦、膜、棒和板的振動[7],而半剛性基層瀝青路面在非高溫季節(jié)行車條件下多屬于彈性體,且在板體四周及底部均受到約束,其振動也是由與板面垂直的外沖擊荷載沖擊產(chǎn)生,因此,瀝青混凝土板體振動是一種單自由度彈性體強迫振動系統(tǒng).瀝青層厚度一般為0.04~0.22 m,寬度為4~7 m,其厚寬比約為1/130~1/30.100 kN荷載下設(shè)計彎沉為0.3 mm,其位移w遠小于h/4,所以對其振動噪聲分析時可以認為:①半剛性基層瀝青路面板為彈性小撓度薄板,在厚度方向的應力為常數(shù),中面的沖擊振動位移僅為時間和平面坐標的函數(shù);②中面內(nèi)各點平行于中面的位移為零.

    1.4 瀝青路面板體強迫振動微分方程及其穩(wěn)態(tài)解

    1.4.1 單自由度系統(tǒng)振動微分方程[8]

    板體振動微分方程的建立過程就是把實際振動系統(tǒng)理想化、離散化的力學模型轉(zhuǎn)化為數(shù)學模型的過程,其等效振動微分方程通常表達為

    式中,q為激勵荷載;Me,Ce,Ke為系數(shù);w為板體振動線位移.

    1)振動微分方程及邊界條件

    根據(jù)假設(shè),路面板體為四邊簡支板,中面各點橫向位移為w(x,y,t)時,板上任意一點沿x,y,z三個方向位移分量u,v,w為

    由Hamilton原理建立強迫振動微分方程,即

    式中,q為激勵荷載;h為板厚;ρ為板的密度;D為板的彎曲剛度.其邊界條件為

    2)單自由度振動系統(tǒng)振型及固有頻率

    強迫振動微分方程的通解為

    其特解假設(shè)為w=eiwt,由其求解的振型函數(shù)和固有頻率函數(shù)為

    式中,Wm,n(x,y)為第m,n階振型函數(shù).

    系統(tǒng)的固有頻率對于一個系統(tǒng)是特有的、恒定的,但如果系統(tǒng)的質(zhì)量M和彈性系數(shù)或剛度D發(fā)生變化,則其固有頻率就將改變.

    1.4.2 強迫振動微分方程

    采用任意力沖擊荷載和周期沖擊力激勵,迫使路面板體產(chǎn)生強迫振動,而路面板體系統(tǒng)對外荷載沖擊所引起的狀態(tài)響應可通過強迫振動方程來表征.

    單自由度振動系統(tǒng)在頻率為ω0的動荷載q(x,y,t)作用下的強迫振動方程及拉普拉斯變換方程為

    其求解如下:

    振型分量Tm,n(t)、第m,n階廣義力Pm,n(t)、廣義質(zhì)量Mm,n及零初值響應Tm,n(t)滿足

    其中

    受集中正弦沖擊周期力作用時需滿足

    通過對式(9)~(12)的求解,可得到其瞬態(tài)解和穩(wěn)態(tài)解兩部分[9],但瞬態(tài)解只在系統(tǒng)振動初期起作用,然后即消失,所以僅需求穩(wěn)態(tài)解,即

    2 瀝青路面沖擊加載參數(shù)

    2.1 強迫振動沖擊參數(shù)

    沖擊加載模型采用如圖1所示的齒輪狀沖擊荷載,每一個齒與路面接觸相當于對路面一次沖擊加載,梯形加載[10]時間t1=b/v=2.3 ms.加載輪行進速度3 m/s,齒距及輪緣與地接觸寬度均為25 mm,接觸長度為7 mm,荷載為150和1 000 N.

    圖1 激勵輪模型(整個沖擊輪的1/4)

    采用移動沖擊加載和固定點持續(xù)加載,分別模擬周期性加載力和恒定加載力的沖擊作用.

    2.2 路面結(jié)構(gòu)物理參數(shù)

    采用ABAQUS的聲固耦合算法計算板體振動與聲場的耦合問題,結(jié)構(gòu)連續(xù)的路面計算模型尺寸為1 m×5 m.假定土基為彈性地基,面層、基層及底基層均為剛體,質(zhì)量為M,第1階頻率為f,K為等效彈簧剛度(滿足),取K=41.426 kN/m,3階模態(tài)頻率分別為4.477 8,5.263 9,5.263 9 Hz.

    路面結(jié)構(gòu)組合及參數(shù)如圖2所示(Hi為土層厚度,Ei為彈性模量,μ為泊松比),路面縱向取10 m,瀝青路面、基層、底基層及土基的密度分別為2.4×103,2.3×103,1.9×103,1.8×103kg/m3.

    圖2 路面結(jié)構(gòu)層及參數(shù)

    3 路面對荷載的響應

    3.1 瀝青路面強迫振動噪聲機理

    路面是一個由結(jié)構(gòu)阻尼、黏性阻尼及摩擦阻尼共同作用的單自由度振動系統(tǒng),在沖擊荷載作用下,由于力、位置、速度、加速度等突然變化,路面系統(tǒng)將產(chǎn)生瞬態(tài)變化,即發(fā)生過渡性的沖擊現(xiàn)象,屬于非周期運動.而路面系統(tǒng)在強迫振動過程中產(chǎn)生的噪聲是一種隨機過程.

    聲壓指介質(zhì)中有聲波傳播與無聲波傳播時相比,介質(zhì)內(nèi)最大的壓力變化,與聲強的關(guān)系為

    式中,I為聲強;c為聲音在介質(zhì)中傳播速度;T為積分時間;P(t)為介質(zhì)內(nèi)壓力變化值.

    3.2 聲壓對沖擊力的敏感性

    路面強迫振動應該選擇合理的沖擊力,本文選擇150和1 000 N兩種沖擊荷載對正常的路面進行沖擊振動,噪聲響應頻譜圖如圖3所示.

    圖3 2種荷載產(chǎn)生噪聲響應頻譜圖

    由圖3可知,2種荷載產(chǎn)生的振動頻率均集中在100~500 Hz的頻帶間,1 000 N沖擊荷載較150 N的聲壓級高20%,為了增加識別性,采用1 000 N沖擊荷載.

    3.3 振動噪聲聲壓對持續(xù)沖擊力的敏感性

    在t=0.002 5,0.554,1.003 s時對5個點進行觀測,但因無法識別與各頻率處聲壓規(guī)律不同的聲場整體,加之人耳對高頻敏感、低頻不敏感,需要對檢測噪聲聲壓進行SPL處理,即

    式中,PSPL為經(jīng)處理后噪聲的總聲壓級,dB;i為頻率數(shù);Pi為在第i個頻率上的待測聲壓有效值,dB;Pref為參考聲壓,空氣中取20μPa.

    3.4 振動噪聲聲壓對移動荷載沖擊力的敏感性

    同3.3節(jié)中取同樣位置的5個點的PSPL分別為36.85,31.23,35.54,33.27,30.05 dB,比固定點沖擊聲壓級平均降低6.5%,但仍集中在800 Hz頻帶.

    4 不同連續(xù)性瀝青路面強迫振動

    4.1 半剛性基層瀝青路面結(jié)構(gòu)非連續(xù)病害機理

    目前,高等級公路瀝青路面以“強基薄面”為主要設(shè)計理念,基層基本上是水泥穩(wěn)定碎(礫)石等半剛性材料,剛度大、強度高,隨著水泥水化的發(fā)生,后期強度可以達到水泥混凝土強度,但因其干縮、溫縮等缺點,容易導致反射裂縫的出現(xiàn).特別在使用一段時間后由于動水沖刷、溫度、濕度、荷載、材料、路基固結(jié)及不均勻沉降等因素存在,易產(chǎn)生結(jié)構(gòu)層層間脫空或水穩(wěn)層疏松等結(jié)構(gòu)非連續(xù)現(xiàn)象,引發(fā)或加重路面裂縫、唧漿、坑槽、車轍、泛油、擁包等功能性病害和結(jié)構(gòu)性病害[11-14].這將改變設(shè)計時的完全連續(xù)成為理想狀態(tài),從層間連續(xù)到出現(xiàn)局部滑動的變化導致能夠承受極限軸載降低40%[15].

    4.1.1 路基不均勻沉降及路基土的固結(jié)

    當路基受不同地質(zhì)、地貌條件影響時將產(chǎn)生不均勻沉降,當路基為深挖路塹或高填方路堤時,路基土失水固結(jié)時將產(chǎn)生一定收縮,在沉降與固結(jié)共同作用下,將引起半剛性基層瀝青路面結(jié)構(gòu)非連續(xù)的產(chǎn)生.

    4.1.2 路基的壓實度不足

    由于施工受實際條件限制、趕工期、不滿足最佳含水量、路基邊緣碾壓不到位等原因,路基壓實度難以滿足設(shè)計要求.

    4.1.3 溫度應力引起的半剛性基層拱起

    在秋末冬初低溫季節(jié)進行水穩(wěn)基層施工時,材料均處于冷縮狀態(tài).成型后遇夏季高溫時,基層受熱將膨脹,當結(jié)構(gòu)內(nèi)產(chǎn)生并蓄積的溫度應力超過臨界值時,頂面約束較小的水穩(wěn)基層將向上拱起,底部產(chǎn)生非連續(xù).

    4.1.4 土基的塑性變形累積

    當車輛加載時,面層、基層、路基同時產(chǎn)生豎向變形,車輛通過后,由于半剛性基層剛性大,其產(chǎn)生變形完全回彈,而土基有部分殘留變形,經(jīng)過長期的作用,將在基層與土基間形成一個結(jié)構(gòu)非連續(xù)區(qū).

    4.2 強迫振動噪聲聲壓對結(jié)構(gòu)連續(xù)狀態(tài)的敏感性

    半剛性基層瀝青路面結(jié)構(gòu)層分別為連續(xù)及非連續(xù)時,5個觀測點的PSPL響應頻譜如圖4所示.

    圖4 觀測點1~5連續(xù)與非連續(xù)區(qū)域噪聲特征比較

    由圖4可知,瀝青路面非連續(xù)時振動聲壓級超過連續(xù)時的10%~25%,盡管在800~1 000 Hz之間仍有分布,但主要能量集中在0~800Hz頻帶.其主要原因是瀝青混凝土屬多孔介質(zhì)材料,其內(nèi)部顆?;ハ嗲稊D形成不規(guī)則孔隙,由于顆粒的摩擦將對振動產(chǎn)生的聲波能量傳遞起到一定的阻礙作用,使得振動聲效能量產(chǎn)生一定的衰減,而當層間和結(jié)構(gòu)內(nèi)部出現(xiàn)非連續(xù)區(qū),其黏性阻尼、摩擦阻尼以及結(jié)構(gòu)阻尼均減?。?6],振動能量耗散減小,能夠返回的聲音能量將更多.

    4.3 振動噪聲聲壓對非連續(xù)區(qū)域面積的敏感性

    假定在上述路面有限元計算模型中設(shè)置面積分別為1 m×4 m,2 m×4 m,3 m×4 m,4 m×4 m的4個非連續(xù)區(qū),2個觀測點處的聲壓對比如圖5所示.

    圖5 觀測點1,2處振動噪聲聲壓對比

    由圖5可知,隨著不連續(xù)面積的增加,2個觀測點的振動噪聲聲壓隨之增加,但面積增加到3 m×4 m時,噪聲聲壓增加幅度減小.

    4.4 振動噪聲聲壓對瀝青路面板體尺寸的敏感性

    由振型分量、板體振動方程穩(wěn)態(tài)解以及頻率函數(shù)的式(12)~(14)可知:①沖擊振動噪聲PSPL與板的尺寸有關(guān),在其他參數(shù)相同的情況下,在一定尺寸范圍內(nèi)板越大,振動響應越大;②沖擊振動噪聲受板厚h影響,在其他參數(shù)相同的情況下,h越大,振動響應越小;③當沖擊加載頻率接近板體固有頻率時,振動響應趨向最大,這是固有特性決定的.

    總之,從理論上證明沖擊振動聲效與板體的尺寸(面積、厚度)有關(guān),面積越大、厚度越小,其噪聲特征越明顯,反之越弱.

    4.5 板體模量的影響

    為了分析瀝青路面在冬季寒冷或氣溫較低時勁度模量增加對其沖擊振動噪聲特征的影響,將面層彈性模量由原來的1.2 GPa提高到1.4 GPa,并分別采用如表1所示的加載方式加載.

    由表1可知,當瀝青路面面層彈性模量提高時,噪聲聲壓級也將提高.同時,固定持續(xù)加載時產(chǎn)生的振動噪聲特征較移動沖擊加載時更為顯著.

    5 結(jié)論

    1)在對半剛性基層瀝青路面的沖擊作用下,通過強迫振動噪聲特征分析,可以定性地識別結(jié)構(gòu)內(nèi)部及層間的不連續(xù)程度.

    2)半剛性基層瀝青路面板體在低溫、常溫下屬于單自由度振動系統(tǒng),通過求解其強迫振動微分方程,證明瀝青路面沖擊振動噪聲的PSPL對混凝土板體幾何尺寸、模量、固有頻率等最為敏感.

    3)沖擊荷載對瀝青路面板體產(chǎn)生的振動噪聲聲壓對非連續(xù)區(qū)域面積呈非線性增長關(guān)系,當非連續(xù)面積達到4 m×4 m時,振動聲壓的增加不顯著.

    4)半剛性基層瀝青路面處于非連續(xù)狀態(tài)時的強迫振動噪聲能量很少超過800 Hz頻帶.

    References)

    [1]沈金安,李福普,陳景.高速公路瀝青路面早期損壞分析與防治對策[M].北京:人民交通出版社,2004.

    [2]巴桑頓珠,黃曉明.西藏瀝青路面裂縫溫度疲勞擴展壽命分析[J].東南大學學報:自然科學版,2006,36(6):1013-1017.

    Basang Dunzhu,Huang Xiaoming.Analysis for fatigue life of asphalt pavement temperature crack in Tibet[J].Journal of Southeast University:Natural Science Edition,2006,36(6):1013-1017.(in Chinese)

    [3]劉瑞揚,王毓民.鐵路貨車滾動軸承早期故障軌邊聲學診斷系統(tǒng)(TADS)原理及應用[M].北京:中國鐵道出版社,2005.

    [4]彭永恒,陳靜云,潘寶峰,等.聲振法對剛性路面板脫空狀況檢測應用的研究[J].公路交通科技,2005,22(3):54-57.

    Peng Yongheng,Chen Jingyun,Pan Baofeng,et al.Application study of acoustic-vibration in detection of rigid pavement slab cavern[J].Journal of Highway and Transportation Research and Development,2005,22(3):54-57.(in Chinese)

    [5]郭乃勝,石峰,趙穎華,等.瀝青路面層間粘結(jié)性能的

    黏彈性有限元分析[J].大連海事大學學報,2009,35(4):81-85.

    Guo Naisheng,Shi Feng,Zhao Yinghua,et al.Viscoelasticity finite element analysis of interface bonding behaviors of asphalt pavement[J].Journal of Dalian Maritime University,2009,35(4):81-85.(in Chinese)

    [6]鄧學鈞,張登良,許志鴻.路基路面工程[M].3版.北京:人民交通出版社,2008.

    [7]杜功煥,朱哲民,龔秀芬.聲學基礎(chǔ)(上冊)[M].南京:南京大學出版社,1981.

    [8]Meada D J,Markus S.The forced vibration of a threelayer,damped sandwich beam with arbitrary boundary conditions[J].Journal of Sound and Vibration,1968,10(2):163-175.

    [9]黃傳志.多維太沙基固結(jié)微分方程求解[J].巖土工程學報,1991,13(1):34-45.

    Huang Chuanzhi.A solution to Terzaghi's multidimensional consolidation differential equation[J].Chinese Journal of Geotechnical Engineering,1991,13(1):34-45.(in Chinese)

    [10]盧正,姚海林,駱行文.矩形移動荷載作用下路面-雙層地基系統(tǒng)三維振動分析[J].巖土力學,2009,30(11):3493-3499.

    Lu Zheng,Yao Hailin,Luo Xingwen.3D vibration of pavement and double-layered subgrade coupled system subjected to a rectangular moving load[J].Rock and Soil Mechanics,2009,30(11):3493-3499.(in Chinese)

    [11]Strategic Highway Research Program National Research Council.Materials and procedures for sealing and filling cracks in asphalt-surfaced pavements manual of practice,F(xiàn)HWA-RD-99-147[R].Washington DC:Strategic Highway Research Program National Research Council,1999.

    [12]Scholz T V,Terrel R L,AI-Joaib A,et al.Water sensitivity:binder validation,SHRP-A-402[R].Washington DC:Strategic Highway Research Program National Research Council,1994.

    [13]Sousa JB,Craus J,Monismith C L.Summary report on permanent deformation in asphalt concrete,SHRPA/IR-91-104[R].Washington DC:Institute of Transportation Studies, University of California Berkeley,1991.

    [14]Strategic Highway Research Program National Research Council.Distress identification manual for the longterm pavement performance project,SHRP-P-338[R].Washington DC:Strategic Highway Research Program National Research Council,1993.

    [15]曾夢瀾,馬正軍,龔平,等.面-基層間接觸條件對半剛性瀝青混凝土路面極限軸載的影響[J].公路,2005(1):79-83.

    Zeng Menglan,Ma Zhengjun,Gong Ping,et al.Effects of base-surface inter-layer contact conditions of semi-rigid asphalt pavement on ultimate axle load[J].Highway,2005(1):79-83.(in Chinese)

    [16]陳端石,趙玫,周海亭.動力機械振動與噪聲學[M].上海:上海交通大學出版社,1996.

    猜你喜歡
    聲壓剛性瀝青路面
    基于嘴唇處的聲壓數(shù)據(jù)確定人體聲道半徑
    自我革命需要“剛性推進”
    當代陜西(2022年5期)2022-04-19 12:10:46
    加權(quán)p-Laplace型方程的剛性
    河南科學(2020年3期)2020-06-02 08:30:10
    瀝青路面養(yǎng)護的新工藝新方法探討
    車輛結(jié)構(gòu)噪聲傳遞特性及其峰值噪聲成因的分析
    汽車工程(2018年12期)2019-01-29 06:46:36
    剛性兌付的法律治理
    金融法苑(2018年2期)2018-12-07 00:59:52
    基于GIS內(nèi)部放電聲壓特性進行閃絡定位的研究
    電測與儀表(2016年9期)2016-04-12 00:30:02
    一線定位 彰顯監(jiān)督剛性
    浙江人大(2014年1期)2014-03-20 16:19:55
    基于聲壓原理的柴油發(fā)動機檢測室噪聲的測量、分析與治理
    基于Matlab的瀝青路面力學響應分析
    河南科技(2014年11期)2014-02-27 14:09:53
    花莲县| 尉犁县| 夹江县| 象山县| 景宁| 长白| 旬阳县| 广昌县| 大厂| 安阳县| 白朗县| 赣榆县| 浠水县| 阿瓦提县| 颍上县| 德庆县| 冕宁县| 丹东市| 会理县| 广平县| 锦屏县| 合阳县| 曲阳县| 衡阳市| 海口市| 朝阳县| 泽库县| 朝阳市| 普宁市| 江口县| 石楼县| 邳州市| 明光市| 苏州市| 信阳市| 新营市| 乾安县| 波密县| 和平县| 芜湖市| 建水县|