• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    羥烷基胺功能化離子液體吸收SO2的量子化學(xué)計(jì)算

    2010-12-12 02:42:06李學(xué)良陳潔潔陳祥迎李培佩
    物理化學(xué)學(xué)報(bào) 2010年5期
    關(guān)鍵詞:王麗娜合肥工業(yè)大學(xué)建宇

    李學(xué)良 陳潔潔 羅 梅 陳祥迎 李培佩

    (合肥工業(yè)大學(xué)化學(xué)工程學(xué)院,可控化學(xué)與材料化工安徽省重點(diǎn)實(shí)驗(yàn)室,合肥 230009)

    Ionic liquids(ILs)have attracted a great deal of interest in various fields[1-10],due to their outstanding characteristics such as negligible vapor pressure and stability.One of the most important properties is that ILs could be tailored and assembled by changing and adjusting the structures of their cations and anions, offering a key way in designing functional ILs for cyclic absorbents.Therefore,ILs can be the candidate solvents to realize the particular function for absorption,desorption,and separation of sulfur dioxide(SO2).The new ILs will provide a solution to solve the pollution problem of SO2from flue gas.Some ILs have been synthesized and studied for absorbing and desorbing SO2,including guanidinium[11-12],imidazolium[13-15]and ammonium[16]systems.Wu et al.[11]found that the molar absorption ratio of SO2:TMGL reached 1.7 while tetramethylguanidium lactate (TMGL)was exposed to pure SO2gas.Anderson et al.[15]reported that 1-n-hexyl-3-methylimidazolium bis(trifluoro-methylsulfonyl)imide([hmim][Tf2N])and 1-n-hexyl-3-methylpyridinium bis-(trifluoromethyl-sulfonyl)imide([hmpy][Tf2N])dissolved large amounts(up to 85%(molar fraction,x))of SO2.Yuan and co-workers[16]synthesized and studied nine kinds of ammonium ILs with high solubility of SO2at ambient pressure.

    Owing to the interaction between ILs and SO2,the variation of IL structures and physicochemical properties occurred with the absorption,including charge transfer interaction,viscosity etc. Except for the preparation and absorption studies,some researchers have also paid attention to studying the interaction between ILs and SO2and the absorption mechanism.Ando et al.[17]reported that the Raman spectrum of 1-butyl-3-methylimidazolium bromide(BMIBr)-SO2clearly indicated a specific charge transfer interaction involving SO2and the halide.Barrosse-Antlle et al.[13]indicated that absorption of SO2caused a decrease in viscosity of 1-ethyl-3-methylimidazolium bis(trifluoromethanesufonyl)imide.Huang et al.[14]reported that the 1-butyl-3-methylimidazolium [BMIM]+and TMG cation-based ILs could physically absorb 1-2 mol SO2per mole of IL reversibly at ambient pressure and room temperature as excellent solvents.The results reported by Wu et al.[11]suggest that the TMGL can absorb SO2by both physical and chemical absorptions.Some researchers investigated novel IL for absorption/desorption in extensive fields, such as the poly(ionic liquid)[18],supported IL membranes[19],and combination with IL and porous materials[20-21],etc.

    Theoretical calculation and simulation have provided an important opportunity[22-24]to study SO2absorption.Several excellent works have been reported with theoretical calculations for guanidinium and imidazolium cations performed mostly by molecular dynamics(MD)simulations.Ando et al.[17]investigated BMIBr-SO2by MD simulations,indicating the potential application of cations with substituents like—NH2,—NHR,and—NR2groups,as an efficient gas removal agent.Siqueira et al.[25]reported the MD results that the absorption of SO2with BMIBr resulted in the phase change from crystal to liquid with relatively low viscosity and high conductivity.Wang et al.[26]used a combination of ab initio calculations and OPLS parameters for developing an all-atom force field for the TMGL IL.Then they used quantum chemical calculations to investigate the interaction between SO2and TMGL,and obtained a deeper understanding of the factors that govern the high solubility of SO2in TMGL[27].

    As analyzed above,many progresses have been made on the absorbing SO2process,and it was helpful for understanding the absorption behavior of ILs.However,some explanations about absorption mechanism[11,14]were different.Owing to few systematic studies on different ILs,further systematic and theoretical investigations are needed to understand the mechanism of absorption and desorption of SO2by choosing different cations and anions.Most kinds of ILs are in liquid state,and the physicochemical properties are different with the gas and solid.It may be difficult to exactly and reasonably explain the properties of ILs by gas state models.Therefore,we need to modify the models and construct liquid state models for quantum chemical calculation.With the development of computational chemistry,theoretical calculation and simulation will play a crucial role in absorption studies.Aswe know,the amine groupsare efficient electron donors[17]toward SO2,so we choose ammonium ILs as SO2absorbents and systematically study the effects of ILs with different cations with advanced and accurate method based on DFT.

    The present work studied the ammonium ILs(cation:hydroxyalkyl ammonium,anion:acetate)and IL-SO2systems by quantum chemical calculations,achieving optimized geometry structures,analyzing the interaction,discussing thermodynamic properties,and investigating transition state etc.The theoretical investigation was made to obtain the important data and information,such as vibration information,energy characteristics,and electronic strutures.

    1 Computational details

    1.1 Computational method

    All the calculations have been performed using the DMol3module[28-29]of the Materials Studio program.The minimumenergy geometry structures of the hydroxyalkyl ammonium ILs and IL-SO2were determined by combining generalized gradient approximations[30-31]and density functional theory(DFT)methods.Then the transition state was determined by synchronous transit method[32].Hirshfeld population analysis[33]was performed to analyze the charge transfer.Thermodynamic properties and vibrational spectrum were obtained by the nonlocal exchangecorrelation functional proposed by Perdew et al.[34].Double precision numerical basis sets combined with polarization functions were used to describe the valence electrons,while all-electron core treatment was utilized to describe the core electrons.A spinpolarized scheme was employed to deal with the open-shell systems.The transition state(TS)search was performed by linear synchronous transit(LST)/quadratic synchronous transit(QST) method,gaining the energy barrier of SO2absorption.Then the transition state was confirmed with the nudged elastic band (NEB)methods.Activation energy(Ea)and minimum energy path(MEP)of the absorption reaction can be acquired by LST/QST and NEB,respectively.Then the calculation results verified byexperiment[16]to show the validityoftheoretical calcu-lation.

    1.2 Computation principle

    The total energy(Et)of systems may be written as:

    where ρ is the density of a system,T(ρ)and U(ρ)are the kinetic energy and classical electrostatic energy due to Coulombic interactions,respectively.Exc(ρ)includes all many-body contributions to the total energy,in particular the exchange and correlation energies.

    The results of a vibration analysis or Hessian evaluation can be used to compute enthalpy(H),entropy(S),free energy(G),and heat capacity(Cp)as functions of temperature[35].

    For deeply exploring the absorption reaction,gas state and liquid state models were constructed for hydroxyalkyl ammonium ILs and IL-SO2systems.The amorphous structure has been constructed as the liquid state model by Amorphous Cell(a module of Materials Studio)which is versatile suite of computational tools used to develop an understanding of molecular properties and behavior,especially for liquids and amorphous polymers.By observing the relationship between system structure and properties,we can obtain a more thorough understanding of the important molecular features,allowing us to better design new compounds or new formulations.The representative structures used in this study are optimized and presented in Fig.1.

    Starting from reactants(ammonium ILs and SO2)and products(IL-SO2systems and acetic acid),the synchronous transit methods interpolate the pathway to find the transition state of absorption reaction.The LST and QST tools locate a maximum energy structure,but this maximum may not be the correct transition state.TS confirmation tool can be used to confirm that the transition state of absorption reaction does indeed connect the presumed reactant(R)and product(P).Byusing the LST method, an estimate of the transition state is generated by finding the highest point along the shortest line connecting‘R’and‘P’.The QST method further extends this by subsequently searching for a minimum along a line perpendicular to the previous one.The transition state structure was optimized to achieve the refined activation energy.By guessing the absorption MEP which connects two stable structures(‘R’and‘P’),the NEB method works to confirm the transition state and find the additional minima on the MEP.

    2 Results and discussion

    2.1 Molecule structure change after absorption

    Scheme 1 shows the schematic structure of ILs for reacting with SO2.A variety of substitutent groups can be connected to the nitrogen atom,obtaining many kinds of ILs with different absorbing properties.

    Scheme 1 Schematic structure of the ammonium ionic liquid

    In this work,the substituent group on cation is hydroxyethyl, and all the anion is the acetate.The—NH2,—NHR,and—NR2groups of ammonium ILs,which are efficient electron donors toward SO2.The reversible absorption/desorption reactions of ILs with SO2can be expressed as the following reaction(x=1,2,3):

    The structures of IL-SO2systems are fully optimized,obtaining stable structures and structural parameters.The representative optimized structure of absorption product in liquid state model,hydroxyalkyl ammonium-SO2[(HOCH2CH2)xNH(3-x)SO2] (x=1),was given in Fig.1,including the IL and acetic acid.

    Fig.1 The representative optimized structures and charge distribution in SO2(A)primary ammonium acetate ionic liquid(a=0.600 nm,b=0.665 nm,c=0.665 nm,α=β=γ=90°); (B)HOCH2CH2NH2-SO2+CH3COOH(a=0.615 nm,b=0.695 nm,c=0.725 nm,α=β=γ=90°)

    The charge distribution,average bond distances,and vibration spectrum data were computed and analyzed.In IL-SO2systems, the charge distribution has changed during the absorption reac-tion.The S—N bond forms between atom S and N with the average bond distance of 0.240 nm both in gas state and liquid state models.The S—N bond tends to be chemical combination, for its distance is between chemical bond length(0.184 nm)and the sum of van der Waals radius(0.334 nm).

    The charge distribution of IL?SO2systems indicate that absorption reaction results in the transfer of negative charge from ILs to SO2both in gas and liquid state models.The geometry parameter of SO2and net charge transfer amount are exhibited in Table 1.Compared with isolated SO2molecule,the average distance ofS—O bond(lengthsoftwo S—O bondshave few difference)increases and the bond angle of O—S—O decreases in IL?SO2systems,which means that SO2molecules are absorbed on ILs and the nitrogen atom becomes the important active site.

    From Table 1,in gas state model,it can be found that the average bond distance of S—O expands from 0.1490 to 0.1495 nm and the bond angle of O—S—O diminishes from 117.435°to 116.903°,with the number of substitutes on the N atom increasing.Meanwhile,the increase of substitute number results in much charge transfer from ILs to SO2.Therefore,the sequence of interaction intensity between ILs and SO2can be deduced as: (HO(CH2)2)3N?SO2>(HO(CH2)2)2NH?SO2>HO(CH2)2NH2?SO2.In liquid state model,the variation trend of geometry parameter is not the same as the results calculated from gas state model, while the interaction intensity is stronger for longer bond distance of S—O,smaller angle of O—S—O,and more charge transfer from ILs to SO2than the results in gas state model.

    2.2 Thermodynamic properties

    According to vibrational analysis and calculation,important thermodynamic properties of IL?SO2systems can be obtained. More information about the absorption reaction will be predicted and verified by analyzing the thermodynamic properties of these systems.In this study,we analyzed standard free energy change (ΔG?)and equilibrium constant of the absorption reaction.

    The free energy of ammonium ILs is displayed in Fig.2 as the function of temperature.The ILs were investigated in gas state and liquid state models,while SO2was calculated only in gas state model.The free energy of all the ILs decreases with increasing the temperature.In general,it is found that the free energies of these ILs increase with the number of substitute groups on the nitrogen atom increasing at the same temperature both in gas state model and liquid state one,which follows the sequence:HO(CH2)2N+H3<(HO(CH2)2)2N+H2<(HO(CH2)2)3N+H(anion:acetate).However,in gas state model,the free energy ofammonium IL with primary amine group is larger than secondary ammonium IL when the temperature exceeds 900 K. Each IL in liquid state model has larger free energy than in gas state model,and the difference increases with increasing the temperature.

    Table 1 Average distance of S—O bond(l),bond angle of O—S—O(θ),and net charge transfer amount of SO2

    The free energies of IL?SO2systems(products)and acetic acid with finite temperature correction are presented in Fig.3.In order to reflect the interaction of condensed state,the acetic acid in liquid state was included in the amorphous cell structure of the absorption products,while in gas state model the geometry structure of acetic acid was optimized separately.The values of all the materials decrease with increasing the temperature.At the same temperature,the high molecular weight results in the large free energy in gas state model and liquid state one,except the primary ammonium IL?SO2system in liquid state when the temperature exceeding 900 K.

    Based on the total energy at 0 K and the temperature correction values presented in Fig.2 and Fig.3,ΔG?of the absorption reaction can be calculated at different temperatures,where the total energy presented in the Supporting Information(available free of charge at http://www.whxb.pku.edu.cn)is the total electronic energy at 0 K.The thermodynamic parameters of hydroxyalkyl ammonium IL-SO2with gas state and liquid state models at 298.15 K are listed in Table 2.

    Table 2 Thermodynamic parameters(298.15 K)of the SO2 absorption reaction with hydroxyalkyl ammonium acetate ionic liquids

    It can be found that the absorption reaction in gas state model can occur spontaneously at 298.15 K,except the IL with secondary amine group,whose ΔG?is 16.15 kJ·mol-1.The reaction between SO2and secondary ammonium IL(gas state)may spontaneously occur in the lower temperature.However,in the liquid state,the difference of ΔG?value is not significant for the reactions of these ILs with SO2molecule.And it is relatively easy for primary ammonium IL to react with SO2,and ΔG?is 1.63 kJ· mol-1in Table 2.The enthalpy change(ΔH)indicates that these absorption reactions are exothermic processes.Whether in gas state model or in liquid state one,the secondary ammonium IL absorbs SO2and generates the least thermal energy.Tertiary ammonium IL-SO2system in gas state exhibits the significant difference of thermodynamic properties among the systems,which may result from the complex molecular structure of the IL or the gas state model not fitted to show the properties of absorption reaction in the theoretical calculation.

    According to the entire calculation data in Fig.4,it is found that the low temperature is good for absorption reaction.The absorption reaction occurs at low temperature.The temperature corresponding ΔG?=0 kJ·mol-1are 743.42,35.26,281.58, 220.00,and 281.57 K for primary(g),secondary(g),primary(l), secondary(l)and tertiary(l),respectively.Exceeding these temperatures,the hydroxyalkyl ammonium IL systems will tend to occur the desorption reaction,indicating that ammonium ILs can be used as recyclable solvent for absorbing SO2.But the desorption temperature of the secondary ammonium IL-SO2system (g)is too low to fit for desulfurization.Although the ΔG?of tertiary ammonium IL in gas state is the lowest at the same temperature,SO2molecule is difficult to escape from IL with increasing the temperature.Maybe SO2will be released in the vacuum environment,which is not very suitable for the industrial application.Therefore,the secondary ammonium IL is not the good one as regenerable SO2absorbent.It is revealed that the structures of ILs play an important role in determining the absorption properties of SO2.

    Naturally,the experimental data can directly examine the validity and correctness of theoretical analysis about the absorption reaction of SO2.We choose primary ammonium acetate IL(2-hydroxyethylammonium acetate)as an example to examine the calculated results.The experiment data of 2-hydroxyethylammonium acetate can be found in Fig.3 of Ref.[16],presenting the equilibrium molar fraction of SO2in absorption reaction at 293.2,298.2,303.2,313.2,and 323.2 K[16].For comparing conveniently,theoretical equilibrium constant(K)was computed from ΔG?by the equation displayed as follows:

    Then the equilibrium constants were converted to theoretical molar fraction of SO2(XSO2)by the following formulas based on the chemical equation (Scheme 1).The pressure of SO2keeps 101.3 kPa in the experiment,so pSO2/p?equals 1(p?is chosen as 101.3 kPa,which is consistent with the pressure in the exported results from software).

    Fig.4 Standard Gibbs free energy changes of the reversible absorption/desorption reactionsY:(HOCH2CH2)x,A:NH(3-x),x=1,2,3

    Fig.5 Comparison of molar fraction of SO2obtained in experiment and theoretical calculation in liquid state and gas state models for HO(CH2)2NH2-SO2system

    Experiment data and theoretical values of XSO2are presented in Fig.5 at different temperatures.In order to conveniently verify the theoretical results,the activity coefficient for the substances in these absorption reactions are considered as‘1’.We found that the values of theoretical calculation with liquid state model were in good agreement with the experiment results,indicating the validity of theoretical analysis.The experimental molar fraction of SO2is a little higher than the theoretical value,which may be resulted from partial physical adsorption besides the chemical absorption.From the results mentioned above,it is concluded that the DFT functional and numerical basis set se-lected in the calculation was appropriate for calculating the absorption reaction of ammonium ILs with SO2in liquid state model,and the theoretical molar fraction of SO2at equilibrium state calculated in this work is successfully verified by experiment results.

    Table 3 Thermodynamic parameters(298.15 K)and the imaginary frequency of hydroxyalkyl ammonium IL-SO2systems

    The differences between results from gas state model and experiment are also displayed in Fig.5.The molar fraction of SO2calculated with gas state model is much higher than the valuesobtained from liquid state model and experiment,and the difference becomes more obvious in relatively high temperature area.

    Fig.6 MEP-1 curve with the HO(CH2)2NH2-SO2system structure of the saddle point(a)and minimum energy points(b-e)based on reactant,1 Ha=2625.50 kJ·mol-1

    Fig.7 MEP-2 curve and the transition state structure (saddle point)of(HO(CH2)2)2NH-SO2systembased on product,minimum energy structures on MEP-2 presented in Supporting Information

    Compared with the model of gas state,liquid state model is much fit for calculating the reaction of ammonium ILs with SO2. Liquid state model could well present the interaction between SO2and ammonium IL.The theoretical calculation depends on the model construction,and the reasonable model will achieve the valuable conclusion.

    The values computed by DFT in this work are successfully verified by experiment results[16],and it indicates that the parameters and quality sets fit the absorption reaction of SO2with ammonium ILs,and computer simulation can be applied to predict the properties of new compounds and analyze the experimental results.The appropriate functional groups will be worked out for other series of ILs by computer simulation.

    2.3 Transition state and reaction pathway

    The energy barrier,thermodynamic parameters(298.15 K) and the imaginary frequency of the SO2absorption reaction are presented in Table 3.Owing to the stable structure of the cation in primary ammonium IL,the energy barrier of the absorption reaction is 162.76 kJ·mol-1.The absorption rate is determined by the activation energy,and it will take a long time to reach the equilibrium status for primary ammonium IL-SO2.

    In order to confirm the reaction pathway,the MEP was worked out by NEB.For primary ammonium IL-SO2system,the MEP curve with the absorption structure of the saddle point(TS) and the structures with minimum energy(M)are shown in Fig.6. The results for secondary and tertiary ammonium IL-SO2systems are displayed in Figs.7 and 8.The structures with minimum energy on MEP-2 and MEP-3 can be found in Supporting Information file.

    According to the structures of typical points on the MEP-1 in Fig.6,the marked distances of S—N and H—O decrease,and the bond angle of O—S—O declines during the absorption.The distances of S—N and H—O are 0.3383 and 0.1328 nm,respectively,and the bond angle of O—S—O is 117.970°in transition state structure with the highest energy on the MEP curve.The structural information of the minimum points is displayed below the MEP-1 plot.The distance of S—N changes from 0.4041 nm to 0.2398 nm,meanwhile,the distance of H—O changes from 0.2397 nm to 0.0990 nm,forming the chemical bonds.

    Fig.8 MEP-3 curve and the transition state structure (saddle point)of(HO(CH2)2)3N-SO2systembased on product,minimum energy structures on MEP-3 presented in Supporting Information

    The activation energy(Ea)and Δ≠G?of absorption reaction with secondary ammonium IL are listed in Table 3.For Δ≠G?reaches -446.01 kJ·mol-1and Eais the lowest(43.18 kJ·mol-1)of these systems at 298.15 K,the absorption reaction can spontaneously occur and easily arrive at equilibrium state.But the ΔG?of the absorption reaction with this IL is the highest among three ILs in liquid state model.

    Table 4 The distance of H—O bond(l(H—O)),S—N bond (l(S—N))and bond angle of S—O—S(θ)of minimum energy structures and transition state structures on MEP curves

    In Table 4,the distances between S and N in TS structures on the MEPs follow this sequence:TS-3>TS-2>TS-1.On the contrary,the distances between H and O follow the sequence:TS-1>TS-2>TS-3.The possible reason of two sequences is that the steric effect prevents SO2from absorbing.It is easy for the H ion to leave the N atom,but hard for N atom to bond with the S atom.The distance change of S—N in minimum energy structure on MEP-2 follows the same regular with that on MEP-1,diminishing from M1(0.2431 nm)to M8(0.0990 nm),while the distance change of H—O is fluctuation.

    The distance changes of S—N and H—O in minimum energy structure on MEP-3 present relatively complexity in Table 4. The energy barrier of 74.43 kJ·mol-1results in relatively fast absorption through the reaction path.The structural parameters of the transition state are shown in Fig.8.The tertiary ammonium IL can desorb SO2with the temperature increasing as presented in Fig.4,and the ΔG?(2.34 kJ·mol-1,Table 2)and Δ≠G?(-506.10 kJ·mol-1,Table 3)indicate that this reaction can be easy to occur at the room temperature and ambient SO2pressure.Therefore,the calculated results demonstrate ammonium ILs should be the good candidate for regenerable SO2absorbent,and the one with tertiary amine group would be the best.

    3 Conclusions

    Quantum chemical calculations were performed for acquiring the information of the reversible reaction for absorbing/desorbing SO2,obtaining optimized geometry structures,charge distribution and energy characteristics,etc.

    The hydroxyalkyl ammonium ILs react with SO2to form S—N bond and show the charge transfer from ILs to SO2.The absorption reaction results in the increase of S—O bond length and the decrease of O—S—O bond angle.The absorption mainly presents chemical action,proved by the charge distribution and the results of geometry analyses.The nitrogen atom of ammonium ILs plays a key role in the absorption reaction.

    In general,the free energies of all the materials decrease with the increase of temperature and the decrease of molecular weight both in gas state and liquid state models.The absorption reaction occurs at low temperature.The temperature corresponding ΔG?= 0 kJ·mol-1are 281.58,220.00,and 281.57 K for primary(l),secondary(l),and tertiary(l),respectively.The hydroxyalkyl ammonium ILs can be used as regenerable solvents for absorbing SO2.Tertiary ammonium IL-SO2system in gas state model has the lowest ΔG?of all the systems.Furthermore,the theoretical results of XSO2(molar fraction of SO2)calculated in this work are in accord with experiment data.

    The activation energy of the systems follows the sequence: Ea(secondary)<Ea(tertiary)<Ea(primary),exhibiting the effect of IL structure in the absorption reaction.The calculated results with liquid model demonstrate hydroxyalkyl ammonium ILs should be the good candidate for absorbing and recycling SO2. The study may provide a good method in designing novel IL system for regenerable absorbing SO2.

    Supporting Information available: The detailed results of standard Gibbs free energy change calculation,geometry optimization,thermodynamic properties,and transition state calculation have been included.This information is available free of charge via the internet at http://www.whxb.pku.edu.cn.

    1 Lin,Q.;Fu,H.Y.;Yuan,M.L.;Chen,H.;Li,X.J.Acta Phys.-Chim.Sin.,2006,22:1272 [林 棋,付海燕,袁茂林,陳 華,李賢均.物理化學(xué)學(xué)報(bào),2006,22:1272]

    2 Gao,L.X.;Wang,L.N.;Qi,T.;Li,Y.P.;Chu,J.L.;Qu,J.K.Acta Phys.-Chim.Sin.,2008,24:939 [高麗霞,王麗娜,齊 濤,李玉平,初景龍,曲景奎.物理化學(xué)學(xué)報(bào),2008,24:939]

    3 Zhang,X.Z.;Jiao,K.Acta Phys.-Chim.Sin.,2008,24:1439 [張旭志,焦 奎.物理化學(xué)學(xué)報(bào),2008,24:1439]

    4 Izgorodina,E.I.;Forsyth,M.;MacFarlane,D.R.Physical Chemistry Chemical Physics,2009,11:2452

    5 Imanishi,A.;Tamura,M.;Kuwabata,S.Chem.Commun.,2009: 1775

    6 Wasserscheid,P.;Welton,T.Ionic liquids in synthesis.Weinheim: Wiley-VCH,2003:1-355

    7 Sheldon,R.Chem.Commun.,2001:2399

    8 Wasserscheid,P.;Keim,W.Angewandte Chemie-International Edition,2000,39:3772

    9 Sun,G.H.;Li,K.X.;Fan,H.;Gu,J.Y.;Li,Q.;Liu,Y.Acta Phys.-Chim.Sin.,2008,24:103 [孫國(guó)華,李開喜,范 慧,谷建宇,李 強(qiáng),劉 越.物理化學(xué)學(xué)報(bào),2008,24:103]

    10 Yang,P.X.;An,M.Z.;Su,C.N.;Wang,F.P.Acta Phys.-Chim. Sin.,2008,24:2032 [楊培霞,安茂忠,蘇彩娜,王福平.物理化學(xué)學(xué)報(bào),2008,24:2032]

    11 Wu,W.Z.;Han,B.X.;Gao,H.X.;Liu,Z.M.;Jiang,T.;Huang,J. Angewandte Chemie-International Edition,2004,43:2415

    12 Huang,J.;Riisager,A.;Berg,R.W.;Fehrmann,R.Journal of Molecular Catalysis A:Chemical,2008,279:170

    13 Barrosse-Antlle,L.E.;Hardacre,C.;Compton,R.G.Journal of Physical Chemistry B,2009,113:1007

    14 Huang,J.;Riisager,A.;Wasserscheid,P.;Fehrmann,R.Chem. Commun.,2006:4027

    15 Anderson,J.L.;Dixon,J.K.;Maginn,E.J.;Brennecke,J.F. Journal of Physical Chemistry B,2006,110:15059

    16 Yuan,X.L.;Zhang,S.J.;Lu,X.M.Journal of Chemical and Engineering Data,2007,52:596

    17 Ando,R.A.;Siqueira,L.J.A.;Bazito,F.C.;Torresi,R.M.; Santos,P.S.Journal of Physical Chemistry B,2007,111:8717

    18 An,D.;Wu,L.B.;Li,B.G.;Zhu,S.P.Macromolecules,2007,40: 3388

    19 Jiang,Y.Y.;Zhou,Z.;Jiao,Z.;Li,L.;Wu,Y.T.;Zhang,Z.B. Journal of Physical Chemistry B,2007,111:5058

    20 Zhang,Z.M.;Wu,L.B.;Dong,J.;Li,B.G.;Zhu,S.P.Industrial &Engineering Chemistry Research,2009,48:2142

    21 Zhou,C.G.;Yao,S.J.;Wu,J.P.;Forrey,R.C.;Chen,L.; Tachibana,A.;Cheng,H.S.Physical Chemistry Chemical Physics, 2008,10:5445

    22 Liu,J.X.;Wei,X.;Zhang,X.G.;Wang,G.X.;Han,E.S.;Wang, J.G.Acta Phys.-Chim.Sin.,2009,25:91 [劉潔翔,魏 賢,張曉光,王桂香,韓恩山,王建國(guó).物理化學(xué)學(xué)報(bào),2009,25:91]

    23 Zhou,D.H.;Wang,Y.Q.;He,N.;Yang,G.Acta Phys.-Chim.Sin., 2006,22:542 [周丹紅,王玉清,賀 寧,楊 剛.物理化學(xué)學(xué)報(bào),2006,22:542]

    24 Jiang,S.Y.;Teng,B.T.;Yuan,J.H.;Guo,X.W.;Luo,M.F.Acta Phys.-Chim.Sin.,2009,25:1629 [蔣仕宇,滕波濤,袁金煥,郭曉偉,羅孟飛.物理化學(xué)學(xué)報(bào),2009,25:1629]

    25 Siqueira,L.J.A.;Ando,R.A.;Bazito,F.F.C.;Torresi,R.M.; Santos,P.S.;Ribeiro,M.C.C.Journal of Physical Chemistry B, 2008,112:6430

    26 Wang,Y.;Pan,H.;Li,H.;Wang,C.Journal of Physical Chemistry B,2007,111:10461

    27 Wang,Y.;Wang,C.M.;Zhang,L.Q.;Li,H.R.Physical Chemistry Chemical Physics,2008,10:5976

    28 Delley,B.Journal of Physical Chemistry,1996,100:6107

    29 Delley,B.Journal of Chemical Physics,2000,113:7756

    30 Perdew,J.P.;Wang,Y.Physical Review B,1992,45:13244

    31 Perdew,J.P.;Chevary,J.A.;Vosko,S.H.;Jackson,K.A.; Pederson,M.R.;Singh,D.J.;Fiolhais,C.Physical Review B, 1992,46:6671

    32 Halgren,T.A.;Lipscomb,W.N.Chemical Physics Letters,1977, 49:225

    33 Hirshfeld,F.L.Theoretica Chimica Acta,1977,44:129

    34 Perdew,J.P.;Burke,K.;Ernzerhof,M.Physical Review Letters, 1996,77:3865

    35 Hirano,T.A note on thermochemistry//MOPAC Manual.7th ed. Stewart,J.J.P.Ed.Stewart Computatinal Chemistry,Colrado Springs,1993:77-81.http://openmopac.net/

    猜你喜歡
    王麗娜合肥工業(yè)大學(xué)建宇
    Formation of honeycomb-Kagome hexagonal superlattice pattern with dark discharges in dielectric barrier discharge
    第一次的離別
    合肥工業(yè)大學(xué)學(xué)報(bào)(社會(huì)科學(xué)版)投稿須知
    《合肥工業(yè)大學(xué)學(xué)報(bào)》(自然科學(xué)版)征稿簡(jiǎn)則
    A study of response of thermocline in the South China Sea to ENSO events*
    Analysis of monthly variability of thermocline in the South China Sea*
    大學(xué)有機(jī)化學(xué)教學(xué)中學(xué)案的作用探討
    跳高比賽中的意外
    《合肥工業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版)》重要啟事
    王麗娜近作
    詩(shī)潮(2014年7期)2014-02-28 14:11:39
    欧美人与性动交α欧美精品济南到| 久久久久久免费高清国产稀缺| 午夜福利影视在线免费观看| 国产高清国产精品国产三级| 婷婷丁香在线五月| 免费久久久久久久精品成人欧美视频| 亚洲专区字幕在线| videos熟女内射| 日韩熟女老妇一区二区性免费视频| 香蕉国产在线看| 免费久久久久久久精品成人欧美视频| 欧美日韩精品网址| 啦啦啦免费观看视频1| 女人久久www免费人成看片| 国产精品成人在线| 中文字幕最新亚洲高清| 中文亚洲av片在线观看爽 | 精品人妻1区二区| 国产午夜精品久久久久久| 国产精品偷伦视频观看了| 夫妻午夜视频| 亚洲专区国产一区二区| 蜜桃在线观看..| 老鸭窝网址在线观看| 成人国产av品久久久| 精品一品国产午夜福利视频| av免费在线观看网站| 一区二区日韩欧美中文字幕| 日本五十路高清| 搡老岳熟女国产| 久久狼人影院| 人妻一区二区av| 成在线人永久免费视频| 99久久精品国产亚洲精品| 91精品国产国语对白视频| 欧美亚洲日本最大视频资源| 欧美日韩中文字幕国产精品一区二区三区 | 一个人免费在线观看的高清视频| 99久久精品国产亚洲精品| 99久久99久久久精品蜜桃| 亚洲 国产 在线| 精品少妇黑人巨大在线播放| 别揉我奶头~嗯~啊~动态视频| 正在播放国产对白刺激| 一区二区三区激情视频| 国产在线视频一区二区| 国产国语露脸激情在线看| 日日摸夜夜添夜夜添小说| 蜜桃国产av成人99| 黄色视频不卡| 亚洲人成伊人成综合网2020| 一本大道久久a久久精品| 国产男靠女视频免费网站| 99在线人妻在线中文字幕 | 97人妻天天添夜夜摸| 青草久久国产| 国产成人一区二区三区免费视频网站| 精品少妇久久久久久888优播| 精品高清国产在线一区| 国产精品久久久久久精品电影小说| 男人舔女人的私密视频| 亚洲国产毛片av蜜桃av| 丁香欧美五月| 一二三四社区在线视频社区8| 中国美女看黄片| 亚洲性夜色夜夜综合| 夜夜爽天天搞| 国产免费福利视频在线观看| 国产97色在线日韩免费| 波多野结衣一区麻豆| 在线av久久热| 真人做人爱边吃奶动态| 午夜日韩欧美国产| 麻豆乱淫一区二区| 午夜福利视频在线观看免费| 在线亚洲精品国产二区图片欧美| 亚洲第一青青草原| 免费看十八禁软件| 国产国语露脸激情在线看| 亚洲一卡2卡3卡4卡5卡精品中文| 精品熟女少妇八av免费久了| 一级片'在线观看视频| 在线 av 中文字幕| 久久久欧美国产精品| 桃红色精品国产亚洲av| 真人做人爱边吃奶动态| 国产真人三级小视频在线观看| 中文字幕人妻丝袜制服| 最新在线观看一区二区三区| 黄色视频在线播放观看不卡| 亚洲视频免费观看视频| 美女主播在线视频| 国产成人免费无遮挡视频| 国产一区二区三区视频了| 欧美激情极品国产一区二区三区| e午夜精品久久久久久久| 欧美性长视频在线观看| 国产一卡二卡三卡精品| 人人妻人人澡人人看| 女人爽到高潮嗷嗷叫在线视频| 久久精品亚洲熟妇少妇任你| 久久人人97超碰香蕉20202| kizo精华| 国产91精品成人一区二区三区 | 麻豆av在线久日| 18禁裸乳无遮挡动漫免费视频| 久久久久久久久免费视频了| 丰满人妻熟妇乱又伦精品不卡| 亚洲avbb在线观看| 国产精品久久电影中文字幕 | 亚洲第一欧美日韩一区二区三区 | 国产精品影院久久| kizo精华| 99久久精品国产亚洲精品| 亚洲va日本ⅴa欧美va伊人久久| 国产又爽黄色视频| 国产成人精品久久二区二区91| 黑人猛操日本美女一级片| 欧美成人午夜精品| 亚洲中文av在线| 午夜老司机福利片| 色老头精品视频在线观看| 日韩欧美一区二区三区在线观看 | 国产麻豆69| 日韩免费高清中文字幕av| 欧美在线黄色| 如日韩欧美国产精品一区二区三区| 国产99久久九九免费精品| 欧美+亚洲+日韩+国产| 国产有黄有色有爽视频| 国产精品一区二区免费欧美| 欧美精品高潮呻吟av久久| cao死你这个sao货| 高潮久久久久久久久久久不卡| 另类精品久久| 黄频高清免费视频| 黄色a级毛片大全视频| 每晚都被弄得嗷嗷叫到高潮| 久久久国产精品麻豆| 十八禁人妻一区二区| 日本av免费视频播放| 国产男靠女视频免费网站| 久久狼人影院| 国产亚洲精品久久久久5区| 亚洲人成电影免费在线| 欧美大码av| 久久精品国产综合久久久| 伊人久久大香线蕉亚洲五| 亚洲精品国产精品久久久不卡| 99精品久久久久人妻精品| 啦啦啦中文免费视频观看日本| 成年人午夜在线观看视频| 国产主播在线观看一区二区| 免费高清在线观看日韩| bbb黄色大片| 国产99久久九九免费精品| 亚洲国产成人一精品久久久| 人人妻人人爽人人添夜夜欢视频| 中文欧美无线码| 国产精品一区二区免费欧美| a级毛片黄视频| 丝袜在线中文字幕| 精品乱码久久久久久99久播| 性色av乱码一区二区三区2| 精品少妇黑人巨大在线播放| 老鸭窝网址在线观看| 别揉我奶头~嗯~啊~动态视频| 久久久国产一区二区| 午夜日韩欧美国产| 纯流量卡能插随身wifi吗| 一本一本久久a久久精品综合妖精| 最近最新免费中文字幕在线| 夜夜夜夜夜久久久久| 成年版毛片免费区| 国产一区二区三区在线臀色熟女 | 免费观看av网站的网址| 精品一区二区三区av网在线观看 | 欧美日韩视频精品一区| 亚洲午夜精品一区,二区,三区| 99re6热这里在线精品视频| 精品一区二区三区四区五区乱码| 亚洲五月色婷婷综合| 美女高潮到喷水免费观看| 操美女的视频在线观看| 热re99久久国产66热| 日日摸夜夜添夜夜添小说| 操美女的视频在线观看| 欧美日韩国产mv在线观看视频| 国产深夜福利视频在线观看| 国产av精品麻豆| 无人区码免费观看不卡 | 成年人午夜在线观看视频| 天天躁狠狠躁夜夜躁狠狠躁| 大香蕉久久网| 99热国产这里只有精品6| 国产免费视频播放在线视频| 18禁国产床啪视频网站| e午夜精品久久久久久久| 亚洲欧美日韩另类电影网站| 亚洲欧美一区二区三区黑人| 少妇猛男粗大的猛烈进出视频| 巨乳人妻的诱惑在线观看| 在线观看免费日韩欧美大片| 激情在线观看视频在线高清 | 久久香蕉激情| 97人妻天天添夜夜摸| 性高湖久久久久久久久免费观看| 国产男女内射视频| 18禁观看日本| 岛国毛片在线播放| 夜夜爽天天搞| 国产成人免费无遮挡视频| 一区福利在线观看| 国产成人免费观看mmmm| 午夜精品国产一区二区电影| 亚洲五月婷婷丁香| 国产精品国产高清国产av | 99热国产这里只有精品6| 欧美日韩精品网址| 9191精品国产免费久久| a级片在线免费高清观看视频| 亚洲国产av影院在线观看| 国产精品国产高清国产av | 日韩视频一区二区在线观看| 国产精品一区二区免费欧美| 男人舔女人的私密视频| 肉色欧美久久久久久久蜜桃| 脱女人内裤的视频| 一区福利在线观看| 夜夜夜夜夜久久久久| 欧美成人午夜精品| 老鸭窝网址在线观看| 色播在线永久视频| 另类亚洲欧美激情| 桃花免费在线播放| 嫩草影视91久久| 又大又爽又粗| 成人永久免费在线观看视频 | 搡老熟女国产l中国老女人| 宅男免费午夜| 欧美另类亚洲清纯唯美| 老熟女久久久| 在线观看免费日韩欧美大片| 国产精品1区2区在线观看. | 超色免费av| 免费在线观看视频国产中文字幕亚洲| 性高湖久久久久久久久免费观看| 精品第一国产精品| 午夜福利乱码中文字幕| 亚洲成国产人片在线观看| 12—13女人毛片做爰片一| 国产精品 国内视频| 香蕉久久夜色| 人人妻人人澡人人爽人人夜夜| av天堂久久9| 欧美精品高潮呻吟av久久| 在线观看免费午夜福利视频| 亚洲精品在线美女| 十八禁人妻一区二区| 欧美国产精品va在线观看不卡| av有码第一页| xxxhd国产人妻xxx| 亚洲,欧美精品.| 精品久久蜜臀av无| 极品少妇高潮喷水抽搐| bbb黄色大片| 日本黄色视频三级网站网址 | 国产精品 欧美亚洲| 乱人伦中国视频| 成年人黄色毛片网站| 亚洲色图av天堂| 99国产综合亚洲精品| √禁漫天堂资源中文www| 妹子高潮喷水视频| 丁香六月欧美| 一本综合久久免费| 人人妻,人人澡人人爽秒播| 日韩熟女老妇一区二区性免费视频| 日本vs欧美在线观看视频| 亚洲欧美一区二区三区久久| 免费少妇av软件| 久久天躁狠狠躁夜夜2o2o| 看免费av毛片| 丁香六月天网| 精品国产乱码久久久久久小说| 国产日韩欧美视频二区| 母亲3免费完整高清在线观看| av电影中文网址| 五月开心婷婷网| 中文字幕最新亚洲高清| 久久久欧美国产精品| 亚洲综合色网址| 精品亚洲成a人片在线观看| 免费观看a级毛片全部| 在线观看免费视频日本深夜| 夜夜爽天天搞| 成年版毛片免费区| 天天操日日干夜夜撸| 91九色精品人成在线观看| 亚洲精品美女久久久久99蜜臀| av一本久久久久| 啦啦啦免费观看视频1| 免费不卡黄色视频| 免费看a级黄色片| 精品国产乱码久久久久久小说| 成人特级黄色片久久久久久久 | 国产精品一区二区在线不卡| 午夜福利一区二区在线看| 婷婷丁香在线五月| 日本欧美视频一区| 老司机福利观看| 免费看a级黄色片| 视频区图区小说| 久久婷婷成人综合色麻豆| 久久精品成人免费网站| 在线观看免费视频日本深夜| a在线观看视频网站| 老司机在亚洲福利影院| 日韩人妻精品一区2区三区| 一本大道久久a久久精品| 人人妻人人澡人人爽人人夜夜| 久久青草综合色| 亚洲,欧美精品.| 在线播放国产精品三级| 少妇被粗大的猛进出69影院| √禁漫天堂资源中文www| 美女午夜性视频免费| 国产97色在线日韩免费| 波多野结衣av一区二区av| 操美女的视频在线观看| 午夜福利视频在线观看免费| 狂野欧美激情性xxxx| 亚洲伊人色综图| 在线观看免费午夜福利视频| 大型黄色视频在线免费观看| 精品国产一区二区久久| 亚洲精品在线观看二区| 成人国产av品久久久| 人人妻人人澡人人看| 少妇粗大呻吟视频| 无人区码免费观看不卡 | 国产亚洲欧美精品永久| 久久国产精品男人的天堂亚洲| 国产精品亚洲av一区麻豆| 亚洲伊人色综图| 精品国产一区二区久久| 极品少妇高潮喷水抽搐| 国产单亲对白刺激| 国产不卡一卡二| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲全国av大片| 日韩大码丰满熟妇| 天天躁日日躁夜夜躁夜夜| 亚洲国产毛片av蜜桃av| 纵有疾风起免费观看全集完整版| 在线播放国产精品三级| 国产深夜福利视频在线观看| tocl精华| 一级a爱视频在线免费观看| 91av网站免费观看| 日日夜夜操网爽| 亚洲视频免费观看视频| 日韩大片免费观看网站| 黄色成人免费大全| 啦啦啦 在线观看视频| 日本wwww免费看| 亚洲精品一卡2卡三卡4卡5卡| 欧美精品一区二区大全| 亚洲欧美日韩另类电影网站| 久久精品亚洲av国产电影网| 飞空精品影院首页| 女警被强在线播放| 亚洲伊人色综图| 日本撒尿小便嘘嘘汇集6| 国产男靠女视频免费网站| av片东京热男人的天堂| 丝袜喷水一区| 婷婷丁香在线五月| 国产免费av片在线观看野外av| 丰满人妻熟妇乱又伦精品不卡| 一进一出好大好爽视频| 我的亚洲天堂| videosex国产| 中文字幕精品免费在线观看视频| 天天操日日干夜夜撸| 97人妻天天添夜夜摸| 久久天躁狠狠躁夜夜2o2o| 精品少妇一区二区三区视频日本电影| 999久久久国产精品视频| 两性夫妻黄色片| 国产精品久久久久久精品古装| 波多野结衣一区麻豆| 午夜视频精品福利| 日本撒尿小便嘘嘘汇集6| 国产亚洲精品第一综合不卡| 亚洲国产欧美在线一区| 久久人人97超碰香蕉20202| 色精品久久人妻99蜜桃| 黄网站色视频无遮挡免费观看| 老鸭窝网址在线观看| 欧美日韩国产mv在线观看视频| 亚洲男人天堂网一区| 久久香蕉激情| 老司机午夜十八禁免费视频| 成年人午夜在线观看视频| 热99久久久久精品小说推荐| 色婷婷av一区二区三区视频| 丝袜在线中文字幕| 国产成人影院久久av| 老司机在亚洲福利影院| 一夜夜www| 国产1区2区3区精品| 国产91精品成人一区二区三区 | 曰老女人黄片| 女人精品久久久久毛片| 一本—道久久a久久精品蜜桃钙片| 国产无遮挡羞羞视频在线观看| 嫁个100分男人电影在线观看| 国产成人精品久久二区二区免费| 精品少妇黑人巨大在线播放| 欧美另类亚洲清纯唯美| 999久久久国产精品视频| av福利片在线| 不卡一级毛片| 后天国语完整版免费观看| 国产精品1区2区在线观看. | 一区福利在线观看| 亚洲成国产人片在线观看| videos熟女内射| 午夜免费鲁丝| 国产精品国产av在线观看| 久久久国产一区二区| 午夜福利视频在线观看免费| 欧美精品一区二区免费开放| 欧美日韩精品网址| 久久亚洲真实| 成年人午夜在线观看视频| 亚洲av日韩在线播放| 香蕉久久夜色| 国产精品一区二区在线观看99| 丁香六月欧美| 99精品欧美一区二区三区四区| 老司机午夜福利在线观看视频 | 亚洲av电影在线进入| 在线观看一区二区三区激情| 国产欧美日韩综合在线一区二区| 国产亚洲精品第一综合不卡| svipshipincom国产片| 欧美黄色片欧美黄色片| 色播在线永久视频| 交换朋友夫妻互换小说| 久久久精品区二区三区| 亚洲国产av影院在线观看| 啦啦啦免费观看视频1| 欧美另类亚洲清纯唯美| 国产精品二区激情视频| 精品卡一卡二卡四卡免费| 男女之事视频高清在线观看| 国产精品98久久久久久宅男小说| 国产熟女午夜一区二区三区| 在线观看人妻少妇| 高清在线国产一区| av有码第一页| 色老头精品视频在线观看| 嫁个100分男人电影在线观看| 在线观看www视频免费| 后天国语完整版免费观看| 精品亚洲乱码少妇综合久久| 国产亚洲午夜精品一区二区久久| 高清视频免费观看一区二区| 女人爽到高潮嗷嗷叫在线视频| 啪啪无遮挡十八禁网站| 悠悠久久av| 在线av久久热| 亚洲第一青青草原| 午夜91福利影院| 高清黄色对白视频在线免费看| 日韩中文字幕欧美一区二区| 日韩一卡2卡3卡4卡2021年| 成年动漫av网址| 桃花免费在线播放| kizo精华| 精品国产国语对白av| 最近最新中文字幕大全免费视频| 999久久久精品免费观看国产| 日韩一卡2卡3卡4卡2021年| 精品一品国产午夜福利视频| 高潮久久久久久久久久久不卡| 99精国产麻豆久久婷婷| 黑人巨大精品欧美一区二区mp4| 免费在线观看黄色视频的| 天天躁狠狠躁夜夜躁狠狠躁| 欧美久久黑人一区二区| 亚洲九九香蕉| 亚洲中文字幕日韩| 国产麻豆69| 日韩欧美一区视频在线观看| 99精品在免费线老司机午夜| 在线看a的网站| 国产亚洲一区二区精品| 国产97色在线日韩免费| 国产精品免费一区二区三区在线 | 9热在线视频观看99| 日本av免费视频播放| 在线观看人妻少妇| 丰满迷人的少妇在线观看| 大陆偷拍与自拍| 国产精品1区2区在线观看. | 多毛熟女@视频| 一二三四社区在线视频社区8| 一本久久精品| 国产黄频视频在线观看| 丁香六月天网| 9色porny在线观看| 免费观看av网站的网址| 不卡一级毛片| 亚洲国产欧美在线一区| 国产免费现黄频在线看| 久久精品亚洲熟妇少妇任你| a级毛片在线看网站| 亚洲全国av大片| 免费久久久久久久精品成人欧美视频| 亚洲熟妇熟女久久| 美女国产高潮福利片在线看| 亚洲色图 男人天堂 中文字幕| 免费黄频网站在线观看国产| 91大片在线观看| 老司机影院毛片| 在线观看66精品国产| 视频区图区小说| 人妻 亚洲 视频| 免费一级毛片在线播放高清视频 | 国产高清视频在线播放一区| 欧美日韩亚洲国产一区二区在线观看 | 国产一区二区三区视频了| 少妇的丰满在线观看| 欧美黄色片欧美黄色片| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲av欧美aⅴ国产| 国产老妇伦熟女老妇高清| 免费女性裸体啪啪无遮挡网站| 国产aⅴ精品一区二区三区波| 婷婷成人精品国产| 中国美女看黄片| 欧美国产精品va在线观看不卡| 叶爱在线成人免费视频播放| 亚洲一区中文字幕在线| 亚洲人成电影免费在线| 两个人免费观看高清视频| 国产成人精品久久二区二区免费| 又大又爽又粗| 一个人免费看片子| 免费在线观看日本一区| 久久亚洲真实| 亚洲伊人色综图| 久久影院123| 免费女性裸体啪啪无遮挡网站| 超碰97精品在线观看| 久久久久国产一级毛片高清牌| 精品少妇黑人巨大在线播放| a级毛片黄视频| 黄色片一级片一级黄色片| 午夜福利一区二区在线看| 亚洲欧美一区二区三区久久| 国产精品成人在线| 99re在线观看精品视频| 美女福利国产在线| 亚洲精品自拍成人| 色在线成人网| 国产99久久九九免费精品| 啪啪无遮挡十八禁网站| av天堂在线播放| 久久国产精品人妻蜜桃| 狠狠狠狠99中文字幕| 999久久久国产精品视频| 丰满人妻熟妇乱又伦精品不卡| 俄罗斯特黄特色一大片| 国产亚洲一区二区精品| 午夜激情久久久久久久| 人人妻人人澡人人爽人人夜夜| 亚洲成人免费电影在线观看| 大码成人一级视频| 岛国毛片在线播放| 精品少妇一区二区三区视频日本电影| 成人国语在线视频| 捣出白浆h1v1| a级毛片黄视频| 国产一区二区在线观看av| kizo精华| 在线十欧美十亚洲十日本专区| bbb黄色大片| 国产精品免费一区二区三区在线 | 建设人人有责人人尽责人人享有的| 老司机午夜福利在线观看视频 | 黑人欧美特级aaaaaa片| 18禁美女被吸乳视频| 中文字幕制服av| 久久久精品94久久精品| 肉色欧美久久久久久久蜜桃| 在线亚洲精品国产二区图片欧美| 夫妻午夜视频| 91av网站免费观看| 午夜精品国产一区二区电影| 欧美大码av| 高清黄色对白视频在线免费看| 老熟女久久久| 我的亚洲天堂| 最近最新免费中文字幕在线| 日韩成人在线观看一区二区三区| 亚洲精品av麻豆狂野| 1024视频免费在线观看| 91成人精品电影| 啦啦啦视频在线资源免费观看| 午夜福利在线观看吧| 欧美精品高潮呻吟av久久|