• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    電泳法制備TiO2納米管/納米顆粒復(fù)合薄膜的電化學(xué)阻抗譜分析

    2010-12-12 02:42:06汪文立張羅正李建保
    物理化學(xué)學(xué)報 2010年5期
    關(guān)鍵詞:張羅工程系納米管

    汪文立 林 紅 張羅正 李 鑫 崔 柏 李建保

    (清華大學(xué)材料科學(xué)與工程系,精細(xì)陶瓷與先進(jìn)工藝國家重點實驗室,北京 100084)

    Owing to its simple preparation process,low production-cost, theoretically high conversion efficiency,and short time for the energy payback,dye-sensitized solar cells(DSCs)are attracting extensiveattention[1-5].DSCs require a photoanode to provide both a large surface area to maximize dye adsorption and efficient electron transport to deliver the electrons to the collection elec-trode.Generally,a porous film consisting of nanocrystalline TiO2particles is usually used as the photoanode.Electrons that are transported through this kind of film always involve a slow trap-limited diffusion process and experience a random walk, which leads to a limit on the overall performance of the DSC. Recently,the introduction of one-dimensional(1D)nanostructures into the photoanode is becoming a trend as they may provide a faster and direct transport pathway for the electrons[6-10].Research on films consisting of 1D nanostructures is often focused on their photovoltaic performance.However,studies on how 1D nanostructures affect the photovoltaic performance have rarely been reported[11].

    Electrochemical impedance spectroscopy(EIS)is well-known as a useful technique to investigate kinetic processes in DSCs[11-14]. EIS measurements have the advantage of obtaining numerous electrochemical parameters at the same time,including the electron transport in the nanoporous photoanode film,diffusion of the redox species in the electrolyte,and charge transfer at the counter-electrode surface and at the photoanode/electrolyte interface.DSC is a type of photoelectrochemical cell,thus the electrochemical properties of the photoanode is crucial to the cell′s performance.In this study,the electrochemical properties of 1D nanostructures were studied in order to understand the influence of 1D nanostructures on DSCs.

    In this article,a composite TiO2film consisting of nanotubes and nanoparticles was prepared through electrophoretic deposition(EPD),a method often used to fabricate TiO2films[15-17].The influence of the composition of the TiO2film on the photovoltaic performance of the DSCs was studied.EIS measurements were conducted to scrutinize the electrochemical properties of these composite TiO2films.On the basis of the data derived from the EIS analysis,the contributions of titania nanotubes(TNTs)and a kind of large TiO2particle(particle size of 100 nm)were systematically investigated.The correlation between the total resistance of the DSC and the cell′s photo-to-electricity conversion efficiency was also discussed.

    1 Experimental

    1.1 Electrophoretic deposition of TiO2film

    All chemicals are of analytical grade and used without further purification.The starting powder used in this study consisted of titanate nanotubes(TNTs),P25 particles(Degussa 99.5%,Germany,mean particle size ca 25 nm,anatase 80%,rutile 20% denoted as PPs)and TiO2particles with an average particle size of 100 nm(Degussa 99.5%,Germany,labeled as LPs,namely large particles,anatase).TNTs with outer diameter and length of 9 nm and 200-400 nm,respectively,were synthesized through hydrothermal treatment[18].The total mass of the starting powder was 0.05 g.Polyvinyl butyral(PVB,99.9%,average molecular weight:19000)was used as a dispersant;a mixture of anhydrous ethanol(49 mL)and deionized water(1 mL)was used as solvent. The suspension was treated with stirring(5 min),ultrasonication (10 min),and further stirring(5 min)in order to obtain a homogeneous dispersion.

    For electrophoretic deposition(EPD),ITO-glass(25 Ω·□-1, China Building Materials Academy)served as the substrate and cathode.The anode was a plate of stainless steel.The distance between the two electrodes was 2 cm,and the deposition was performed for 5 min at a voltage of 27.5 V.After deposition,the film was carefully drawn out of the suspension,dried in air for 10 min,and then calcined at 450℃for 0.5 h.After calcination, amorphous TNTs in the composite film were transformed into anatase TNTs[18].The film thickness(L)was 9 μm.

    1.2 Assembly of DSC

    The assembly procedure of the DSC was exactly the same as that mentioned by Li et al.[19].Briefly,the TiO2films were immersed overnight in an anhydrous ethanol solution of 5 mmol· L-1ruthenium(2,2′-bipyridyl-4,4′-dicarboxylate)2(NCS)2(N719 dye,Kojima Chemicals Corporation,Japan)and then dried at room temperature to form photoanodes.One drop of an iodinebased electrolyte solution was deposited onto the surface of the dye-adsorbed TiO2films.The electrolyte solution was composed of 50 mmol·L-1iodine(I2),500 mmol·L-1lithium iodide(LiI), and 500 mmol·L-1tert-butyl pyridine dissolved in acetonitrile. Platinized ITO-glass was used as a counter-electrode.The active area of the photoanodes was 0.235 cm2.

    1.3 Characterization

    Photovoltaic properties were measured under AM1.5 solar condition using a 500 W metal halide lamp(CMH-250,Photovoltaic Instrument Factory of Beijing Normal University,China). Photochemical behavior was investigated using a source meter (Keithley-2400,Keithley Co.Ltd.,USA).Electrochemical impedance spectroscopy(EIS)measurement was carried out by applying a forward bias at an open-circuit-voltage(OCV)under the AM1.5 solar condition,with an ac amplitude of 10 mV over a frequency range of 0.1 to 1000 Hz using a CHI660B electrochemical analyzer(CHI604A,CH Instrument Corp.USA).Specific surface area was measured using the nitrogen adsorption method(BET method)(NOVA4000,Quantachrome Instruments Corp.USA).

    2 Results and discussion

    2.1 Influence of the mass ratio of LPs to PPs

    In order to raise the deposition speed and introduce scattering centers into the photoanode,LPs were added into the suspension[20].In this section,only two kinds of particles,LPs and PPs, were used in the starting powder.The photocurrent density(J)-voltage(V)characteristic curves of the LP-PP composite DSCs are shown in Fig.1,and the corresponding efficiencies are summarized in Table 1.It can be observed that the efficiency of the composite DSC suffers little alteration when the mass fraction of the LPs(wLP)is very low,but it drops significantly with the increasing content once the content is beyond 20%.Therefore,it can be deduced that photoanodes with LP content of no more than 20%are suitable for DSCs.

    To obtain the optimum content for LPs and to examine the contribution of the LPs to the photoanodes,EIS measurements were conducted,with the Nyquist representation displayed in Fig.2.For analyzing the Nyquist diagrams,an equivalent circuit for DSCs,as illustrated in Fig.3,is employed[21-22].In this circuit, RSis the series resistance of the sheet resistance of the ITO-glass,Pt counter-electrode and the resistance of the electrolyte; RTCOand CTCOare the resistance and capacitance of the trsnsparentconductingoxide(TCO)/TiO2/electrolyteinterface,respectively;Rt(=rtL,L is the film thickness)is the electron transport resistance;Rct(=rct/L)is the charge-transfer resistance related to the recombination of electrons at the TiO2/electrolyte interface;Cμ(=cμL)is the chemical capacitance.Zdis the Warburg element showing the Nernst diffusion of I-3in the electrolyte;RPtand CPtare the charge-transfer resistance and the capacitance at the counter electrode,respectively[14].

    Fig.1 Photocurrent density(J)-voltage(V)curves of the LP-PP composite DSCs

    The charge transport properties of the LP-PP composite photoanodes derived from the Nyquist diagrams using Zview software,based on the procedure proposed by Bisquert[23],are presented in Table 1.The lifetime(τ),diffusion coefficient(Deff),and diffusion length(Ln)could be further calculated using τ=RctCμ, Deff=L2(RtCμ)-1,Ln=(Deffτ)1/2.

    Fig.2 Nyquist plots of the LP-PP composite DSCs

    Table 1 shows that the efficiency of the DSCs with LP-PP composite films increases when the mass fraction of LPs is below 20%.However,the efficiency drops rapidly when the mass fraction of LPs rises above 20%.To understand how this trend is formed,the electrochemical properties were investigated.It is widely accepted that the diffusion of an electron within the photoanode film is in competition with the recombination process at the photoanode film/electrolyte interface.When the LP content is increased,Rctstays almost the same while Rtalters.When the mass fraction of LPs is 20%,Rtreaches a minimum of 44.97 Ω. This leads to Rct/Rtobtaining the highest value for the 20%sample when the diffusion process is faster than the recombination process,as compared with the other samples.Thus,when the mass fraction of LPs is 20%,the optimum cell performance is obtained.When the LP content is further increased,the Rct/Rtvalue decreases which is in accordance with the variation of the efficiency.

    Fig.3 Equivalent circuit used for DSCs

    Table 1 Efficiencies of the LP-PP composite DSCs based on photoanodes with different mass fractions of LPs (wLP)and corresponding electron transport properties determined by impedance analysis

    To understand how the LP-PP composite films benefit the DSC,the characteristics of the composite films are considered.It can be found from Table 1 that the diffusion coefficient Deffincreases with increasing LP content.It is known that multiple trapping/detrapping events occur within the grain boundaries during electron diffusion process.Due to a smaller number of grain boundaries,the LP-PP composite films exhibit a lower resistance to the electron transport.However,the chemical capac-itance,which is related to the surface states of the nanoparticles, achieves its maximum at LP content of 20%leading to the lifetime(τ)and diffusion length(Ln)obtaining the highest values. This explains why the diffusion process is faster than the recombination process.Another issue that should be addressed is that the crystal form of the LPs is anatase,which is demonstrated to be an ideal choice for a DSC based on TiO2films[24],while that of the PPs includes anatase and rutile.In addition,the introduction of LPs into the photoanode could increase the traveling length of light within the film,thus an augmentation on the lightharvesting,which is favorable for the increase of the incidentphoton-to-current conversion efficiency(IPCE),is achieved.All of the three factors above may contribute to the optimum performance at the LP content of 20%.

    Table 2 Specific surface area of LP-PP composite with different mass fractions of LPs(wLP)

    In a DSC,the photoanode is always required to afford an effective surface area as large as possible;however,the films with LPs have a lower surface area because of the relatively smaller specific surface area for LP itself.Table 2 shows the specific surface area(S)of the LP-PP composite with different mass fractions of LPs(wLP).As wLPincreases,the specific surface area of the composite film decreases,leading to the lowest dye absorption.Moreover,the lifetime(τ)and diffusion length(Ln)also decrease with increasing wLP.Thus,when the mass fraction of LPs is larger than 20%,the performance of the DSC tended to decrease.

    Combining the above analyses,the optimum mass fraction of LPs for an LP-PP composite DSC is around 20%.In the following sections,the ratio of LPs to PPs is fixed at a constant of 1∶4.

    2.2 Solar cells based on TNT-LP-PP composite films

    For TNT-LP-PP composite films,the mass fraction of TNTs varies from 10%to 40%.The J-V curves and the corresponding efficiencies of the TNT-LP-PP composite DSCs are shown in Fig.4 and listed in Table 3,respectively.It is observed that the efficiencies first increase with the increase in TNT content,and then flatten out with a slight decline when the content is beyond 20%.Although a rough conclusion can be drawn that the TNT content for an optimum TNT-LP-PP composite DSC is around 20%,the mechanism of the trend for the light-to-electricity efficiency needs to be elucidated.

    EIS measurements were conducted for these cells.The charge transport properties derived from the Nyquist plots shown in Fig. 5 are displayed in Table 3.It has been found that the relative value between Rctand Rtreflects the competition level of the electron diffusion through the photoanode film with respect to the recombination process.From Table 3,it can be seen that the value of Rct/Rtexhibits a similar trend to that of the conversion efficiency,implying that the incorporation of TNTs could increase the electron transport rate.Compared with the nanoparticle composite films shown in Table 1,the TNT/particle film decreases Rtremarkably at the TNT concentration of 20%.The reason for this is the high diffusion coefficient(Deff)which shows that the electrons move faster in the nanotubes.It is also found that the electron lifetime is larger in the nanotube than that in the particles(as shown in Table 1),which is due to the higher chemical capacitance(Cμ).TNTs have a high diffusion coefficient and long lifetime,thus,the diffusion length for the TNT/nanoparticle composite film achieves a maximum at the TNT concentration of 20%.Considering that the film thickness is 9 μm,the high diffusion length of 12.71 μm benefits the electron transport in the TNT/nanoparticle film which leads to better performance.

    Fig.4 Current density-voltage curves of the TNT-LP-PP composite DSCs

    Fig.5 Nyquist plots of the TNT-LP-PP composite DSCs

    Table 3 Efficiencies of TNT-LP-PP composite DSCs based on photoanodes with different mass fractions of TNTs, and the corresponding electron transport properties derived from EIS

    Table 4 Specific surface area of TNT-LP-PP composite with different mass fractions of TNTs(wTNT)

    Table 4 shows the specific surface area of the TNT-LP-PP composite with different mass fractions of TNTs(wTNT).As the mass fraction of TNTs increases,the specific surface area increases significantly as 1D nanostructures can effectively enlarge the surface area[25].However,compared with the LP-PP composites without nanotubes,the performance of the LP-PP-TNT composite deteriorates.There are other factors affecting the TNTs to improve the performance of the DSC.TNTs have been verified to show a crystal form of anatase in our previous study[18],but its crystallinity is much lower compared to those of LPs and PPs.A lower crystallinity results from a higher concentration of defects, which always acts as a trapping center in the photoanode films. The relatively smaller Deffmay be ascribed to this.The TNTs may also obstruct the diffusion of I-/I-3in the electrolyte[26].To further raise the performance of the TNT-LP-PP composite DSC,TNTs with fewer defects should be explored.

    Based on the results in Table 3,the optimum properties for the electron transport always locate around 20%of TNT content.It is found that the incorporation of TNTs can increase the diffusion length and specific surface area of the TiO2film. However,with the influence of low crystallinity,nanotube structure,and other factors,the performance of the cell is not improved which is in accordance with other research[26].Although a further exploration should be carried out,the TNT content of 20%is regarded as the optimum for the TNT-LP-PP composite DSCs here.

    3 Conclusions

    EIS measurements were conducted to analyze the properties of the dye-sensitized solar cells(DSCs)based on various TiO2composite films.It is found that large particles increase the charge diffusion and cell performance before the mass fraction of large particles reaches 20%.TNTs are found to reduce the charge transport resistance remarkably which shows the advantage of 1D nanostructures in conducting electrons in TiO2thin film.The optimum mass ratio of TNTs∶LPs∶PPs is 20∶16∶64.To improve the application of TNTs in DSCs,further research in improving their crystallinity and structures should be carried out.

    1 O′Regan,B.;Gr?tzel,M.Nature,1991,353:737

    2 Nazeeruddin,M.K.;De Angelis,F.;Fantacci,S.;Selloni,A; Viscardi,G.;Liska,P.;Ito,S.;Takeru,B.;Gr?tzel,M.J.Am.Chem. Soc.,2005,127:16835

    3 Wei,M.D.;Konishi,Y.;Zhou,H.S.;Yanagida,M.;Sugihara,H.; Arakawa,H.J.Mater.Chem.,2006,16:1287

    4 Kroon,J.M.;Bakker,N.J.;Smit,H.J.P.;Liska,P.;Thampi,K.R.; Wang,P.;Zakeeruddin,S.M.;Gr?tzel,M.;Hinsch,A.;Hore,S.; Würfel,U.;Sastrawan,R.;Durrant,J.R.;Palomares,E.;Pettersson, H.;Gruszecki,T.;Walter,J.;Skupien,K.;Tulloch,G.E.Prog. Photovolt:Res.Appl.,2007,15:1

    5 Murakami,T.N.;Ito,S.;Wang,Q.;Nazeeruddin,M.K.;Bessho, T.;Cesar,I.;Liska,P.;Humphry-Baker,R.;Comte,P.;Pechy,P.; Gr?tzel,M.J.Electrochem.Soc.,2006,153:A2255

    6 Adachi,M.;Murata,Y.;Okada,I.;Yoshikawa,S.J.Electrochem. Soc.,2003,150:G488

    7 Ngamsinlapasathian,S.;Sakulkhaemaruethai,S.;Pavasupree,S.; Kitiyanan,A.;Sreethawong,T.;Suzuki,Y.;Yoshikawa,S. J.Photochem.Photobiol.A-Chem.,2004,164:145

    8 Tan,B.;Wu,Y.Y.J.Phys.Chem.B,2006,110:15932

    9 Law,M.;Greene,L.E.;Johnson,J.C.;Saykally,R.;Yang,P.D. Nat.Mater.,2005,4:455

    10 Baxter,J.B.;Aydil,E.S.Appl.Phys.Lett.,2005,86:053114

    11 Ku,C.H.,Wu,J.J.Appl.Phys.Lett.,2007,91:093117

    12 Kern,R.;Sastrawan,R.;Ferber,J.;Stangl,R.;Luther,J. Electrochim.Acta,2002,47:4213

    13 Hoshikawa,T.;Ikebe,T.;Kikuchi,R.;Eguchi,K.Electrochim. Acta,2006,51:5286

    14 Fabregat-Santiago,F.;Bisquert,J.;Palomares,E.;Otero,L.; Kuang,D.B.;Zakeeruddin,S.M.;Gr?tzel,M.J.Phys.Chem.C, 2007,111:6550

    15 Lebrette,S.;Pagnoux,C.;Abélard,P.J.Eur.Ceram.Soc.,2006, 26:2727

    16 Wang,N.;Lin,H.;Li,J.B.;Yang,X.Z.;Chi,B.Thin Solid Films, 2006,496:649

    17 Tang,F.Q.;Uchikoshi,T.;Wawa,K.;Sakka,Y.J.Eur.Ceram. Soc.,2006,26:1555

    18 Zhang,L.Z.;Lin,H.;Wang,N.;Lin,C.F.;Li,J.B.J.Alloy. Compd.,2007,431:230

    19 Li,X.;Lin,H.;Li,J.B.;Wang,N.;Lin,C.F.;Zhang,L.Z. J.Photochem.Photobiol.A-Chem.,2008,195:247

    20 Miyasaka,T.;Kijitori,Y.J.Electrochem.Soc.,2004,151:A1767

    21 Fabregat-Santiago,F.;Bisquert,J.;Garcia-Belmonte,G.;Boschloo, G.;Hagfeldt,A.Sol.Energy Mater.Sol.Cells.,2005,87:117

    22 Li,X.;Lin,H.;Li,J.B.;Li,X.X.;Cui,B.;Zhang,L.Z.J.Phys. Chem.C,2008,112:13744

    23 Bisquert,J.J.Phys.Chem.B,2002,106:325

    24 Park,N.G.;van de Lagemaat,J.;Frank,A.J.J.Phys.Chem.B, 2000,104:8989

    25 Suzuki,Y.;Ngamsinlapasathian,S.;Yoshida,R.;Yoshikawa,S. Cent.Eur.J.Chem.,2006,4:476

    26 Uchida,S.;Chiba,R.;Tomiha,M.;Masaki,N.;Shirai,M. Electrochemistry,2002,70:418

    猜你喜歡
    張羅工程系納米管
    張羅姣作品
    兩種輕型汽車能耗及續(xù)駛里程試驗方法對比
    最近鄰弱交換相互作用對spin-1納米管磁化強(qiáng)度的影響
    靳局長的牽掛
    電子信息工程系
    機(jī)電工程系簡介
    穿行:服裝工程系畢業(yè)設(shè)計作品
    二氧化鈦納米管的制備及其應(yīng)用進(jìn)展
    西安航空學(xué)院專業(yè)介紹
    ———動力工程系
    TiO2納米管負(fù)載Pd-Ag催化1,2-二氯乙烷的選擇性加氫脫氯
    欧美乱色亚洲激情| 欧美激情久久久久久爽电影| 国产99白浆流出| 亚洲国产精品sss在线观看| 免费高清视频大片| 国产亚洲av嫩草精品影院| 亚洲男人的天堂狠狠| 欧美高清成人免费视频www| 每晚都被弄得嗷嗷叫到高潮| 亚洲精品色激情综合| 岛国在线免费视频观看| 亚洲第一欧美日韩一区二区三区| 欧美日韩瑟瑟在线播放| 中文字幕人成人乱码亚洲影| 性色av乱码一区二区三区2| 国产成人aa在线观看| 精品一区二区三区av网在线观看| 亚洲专区中文字幕在线| 久久久国产精品麻豆| a在线观看视频网站| 亚洲avbb在线观看| 国产乱人伦免费视频| 亚洲成人中文字幕在线播放| 日韩av在线大香蕉| svipshipincom国产片| 国产精品国产高清国产av| 久久久国产欧美日韩av| 最近最新中文字幕大全免费视频| 国产精品久久电影中文字幕| 久久国产精品影院| 国产成年人精品一区二区| a在线观看视频网站| 亚洲欧洲精品一区二区精品久久久| 欧美不卡视频在线免费观看| 久久精品国产亚洲av香蕉五月| av视频在线观看入口| 又爽又黄无遮挡网站| 中文资源天堂在线| 午夜福利在线在线| 18禁美女被吸乳视频| 国产精品亚洲av一区麻豆| 黑人操中国人逼视频| 成人国产一区最新在线观看| 亚洲九九香蕉| 狂野欧美激情性xxxx| 一本综合久久免费| 亚洲国产看品久久| 免费看十八禁软件| 久久人妻av系列| 国产乱人伦免费视频| 久久这里只有精品中国| 国产精华一区二区三区| 国产伦精品一区二区三区四那| 成人av一区二区三区在线看| 欧美性猛交╳xxx乱大交人| x7x7x7水蜜桃| 超碰成人久久| 国产伦精品一区二区三区视频9 | 黄频高清免费视频| 美女扒开内裤让男人捅视频| 欧美日韩综合久久久久久 | 一卡2卡三卡四卡精品乱码亚洲| 欧美绝顶高潮抽搐喷水| 久久亚洲精品不卡| 两性夫妻黄色片| 高潮久久久久久久久久久不卡| 999久久久精品免费观看国产| 97超视频在线观看视频| 黄色片一级片一级黄色片| 亚洲av中文字字幕乱码综合| 国产精品久久久久久亚洲av鲁大| 日本a在线网址| 欧美一级毛片孕妇| 又紧又爽又黄一区二区| 在线免费观看的www视频| 亚洲七黄色美女视频| 给我免费播放毛片高清在线观看| 久久性视频一级片| 露出奶头的视频| 在线观看美女被高潮喷水网站 | 色综合婷婷激情| 黄色成人免费大全| 午夜免费成人在线视频| 欧美黄色片欧美黄色片| 露出奶头的视频| 日韩高清综合在线| 最新在线观看一区二区三区| 亚洲在线自拍视频| 日韩国内少妇激情av| 悠悠久久av| 久久婷婷人人爽人人干人人爱| 亚洲精品美女久久av网站| 日本免费a在线| 成人av在线播放网站| 91老司机精品| 亚洲精品一区av在线观看| 日韩欧美免费精品| 亚洲欧美精品综合久久99| 免费无遮挡裸体视频| 国产免费av片在线观看野外av| 国模一区二区三区四区视频 | 欧美性猛交黑人性爽| 免费在线观看成人毛片| 91九色精品人成在线观看| 亚洲国产精品999在线| 欧美zozozo另类| 成人18禁在线播放| 亚洲电影在线观看av| 久久精品影院6| 国产97色在线日韩免费| 欧美日韩瑟瑟在线播放| 波多野结衣高清作品| 国产麻豆成人av免费视频| 一本综合久久免费| 日韩欧美三级三区| 在线看三级毛片| 亚洲专区字幕在线| 久久中文看片网| 亚洲色图 男人天堂 中文字幕| 窝窝影院91人妻| 人人妻,人人澡人人爽秒播| 香蕉丝袜av| 亚洲av电影不卡..在线观看| 欧美日韩黄片免| 国产精品九九99| 亚洲成a人片在线一区二区| 色老头精品视频在线观看| 国产免费av片在线观看野外av| 久久九九热精品免费| 高潮久久久久久久久久久不卡| 国产三级中文精品| 麻豆av在线久日| 国产成人av激情在线播放| 男人舔女人的私密视频| 久久久久久久精品吃奶| 一本精品99久久精品77| 亚洲真实伦在线观看| 两个人视频免费观看高清| 亚洲第一电影网av| 国产三级中文精品| 丝袜人妻中文字幕| 国产av麻豆久久久久久久| 国产三级在线视频| 18美女黄网站色大片免费观看| 亚洲av成人精品一区久久| 亚洲专区中文字幕在线| 精品久久久久久久末码| 欧美高清成人免费视频www| 99re在线观看精品视频| 桃红色精品国产亚洲av| netflix在线观看网站| 精华霜和精华液先用哪个| 亚洲精品久久国产高清桃花| 国产熟女xx| av欧美777| 真人一进一出gif抽搐免费| 在线国产一区二区在线| 亚洲成人中文字幕在线播放| 成人av在线播放网站| 欧美绝顶高潮抽搐喷水| 亚洲激情在线av| 国产精品美女特级片免费视频播放器 | 亚洲av五月六月丁香网| 久久久久久大精品| 欧美一级毛片孕妇| 国产乱人视频| 18美女黄网站色大片免费观看| 窝窝影院91人妻| 91av网一区二区| 欧美日韩亚洲国产一区二区在线观看| 999久久久国产精品视频| 少妇裸体淫交视频免费看高清| 99久久成人亚洲精品观看| 国产高潮美女av| а√天堂www在线а√下载| 日韩欧美国产在线观看| 亚洲自拍偷在线| 亚洲国产欧美一区二区综合| 搡老熟女国产l中国老女人| 在线永久观看黄色视频| e午夜精品久久久久久久| 国产精品98久久久久久宅男小说| 精品久久久久久久毛片微露脸| 日韩欧美在线二视频| 久久久久久人人人人人| 中亚洲国语对白在线视频| 国产激情欧美一区二区| 国产一区在线观看成人免费| 一进一出抽搐动态| 精品不卡国产一区二区三区| 黄频高清免费视频| 一区二区三区国产精品乱码| 国产精品一及| 狂野欧美白嫩少妇大欣赏| 手机成人av网站| 亚洲av成人av| 国产久久久一区二区三区| 两个人的视频大全免费| 国产精品久久视频播放| 又黄又粗又硬又大视频| 免费高清视频大片| 精品久久久久久久久久久久久| 国产极品精品免费视频能看的| 久久中文字幕人妻熟女| 日韩大尺度精品在线看网址| 久久精品aⅴ一区二区三区四区| 成人av在线播放网站| 久久久久国产精品人妻aⅴ院| 岛国视频午夜一区免费看| 两人在一起打扑克的视频| 99视频精品全部免费 在线 | av福利片在线观看| 91av网站免费观看| 少妇的逼水好多| 久久亚洲精品不卡| 久久精品国产99精品国产亚洲性色| 99视频精品全部免费 在线 | 99视频精品全部免费 在线 | 中文亚洲av片在线观看爽| 露出奶头的视频| 一本精品99久久精品77| 丁香欧美五月| 亚洲成av人片在线播放无| 他把我摸到了高潮在线观看| 亚洲精品456在线播放app | 一区二区三区高清视频在线| 久久天躁狠狠躁夜夜2o2o| 国产成人精品久久二区二区免费| 波多野结衣高清作品| 老司机福利观看| 久久久久久九九精品二区国产| av视频在线观看入口| 国产伦精品一区二区三区四那| 一区福利在线观看| 欧美中文日本在线观看视频| 日韩免费av在线播放| 免费搜索国产男女视频| 老司机深夜福利视频在线观看| 免费av毛片视频| 99久久精品国产亚洲精品| 熟女电影av网| 亚洲国产精品成人综合色| 一级毛片精品| 天堂动漫精品| 午夜久久久久精精品| 午夜影院日韩av| 欧美色视频一区免费| 色老头精品视频在线观看| 90打野战视频偷拍视频| 级片在线观看| 精品国产三级普通话版| 老司机午夜福利在线观看视频| 我的老师免费观看完整版| 日韩av在线大香蕉| 免费看光身美女| 九色成人免费人妻av| 欧美中文综合在线视频| 国产一区在线观看成人免费| 性欧美人与动物交配| 每晚都被弄得嗷嗷叫到高潮| 久久九九热精品免费| 国产精品国产高清国产av| 淫秽高清视频在线观看| 国产激情偷乱视频一区二区| 99精品欧美一区二区三区四区| 成人三级做爰电影| 亚洲国产精品999在线| 日韩有码中文字幕| 夜夜看夜夜爽夜夜摸| 99国产精品一区二区蜜桃av| 91在线观看av| АⅤ资源中文在线天堂| 亚洲精品乱码久久久v下载方式 | 母亲3免费完整高清在线观看| 韩国av一区二区三区四区| 亚洲熟妇中文字幕五十中出| 国产在线精品亚洲第一网站| 日本五十路高清| 黄色视频,在线免费观看| 精品欧美国产一区二区三| 级片在线观看| 在线观看66精品国产| 男女做爰动态图高潮gif福利片| 国产成人精品无人区| 国产v大片淫在线免费观看| 久久国产精品影院| 亚洲熟妇熟女久久| 老司机午夜十八禁免费视频| 日韩国内少妇激情av| 国产精品久久久久久精品电影| 午夜精品在线福利| 中文字幕av在线有码专区| 无遮挡黄片免费观看| 亚洲国产精品成人综合色| 九色国产91popny在线| 12—13女人毛片做爰片一| 国产一区二区三区在线臀色熟女| 亚洲第一欧美日韩一区二区三区| av福利片在线观看| 国产精品九九99| 成熟少妇高潮喷水视频| 九九在线视频观看精品| a级毛片在线看网站| 国产精品乱码一区二三区的特点| 国产精品自产拍在线观看55亚洲| 国产又黄又爽又无遮挡在线| 久久久成人免费电影| 特大巨黑吊av在线直播| 日韩欧美精品v在线| 非洲黑人性xxxx精品又粗又长| 999精品在线视频| a在线观看视频网站| 欧美日韩精品网址| 国产成人精品无人区| 国产精品亚洲美女久久久| 视频区欧美日本亚洲| 91老司机精品| 一二三四社区在线视频社区8| 国产aⅴ精品一区二区三区波| 国产又色又爽无遮挡免费看| 亚洲欧美精品综合久久99| 欧美日本亚洲视频在线播放| 亚洲一区高清亚洲精品| 亚洲美女黄片视频| 久久精品国产99精品国产亚洲性色| 国产精品影院久久| 亚洲成a人片在线一区二区| 久久精品人妻少妇| x7x7x7水蜜桃| 最好的美女福利视频网| 国产97色在线日韩免费| 日韩欧美精品v在线| xxxwww97欧美| 最好的美女福利视频网| 成人鲁丝片一二三区免费| 午夜福利在线在线| 日本黄色片子视频| 亚洲自拍偷在线| 色视频www国产| 97碰自拍视频| 97超级碰碰碰精品色视频在线观看| ponron亚洲| 午夜精品在线福利| 日韩欧美 国产精品| 禁无遮挡网站| 999精品在线视频| 欧美乱妇无乱码| 欧美三级亚洲精品| 欧美成狂野欧美在线观看| 女同久久另类99精品国产91| 免费观看的影片在线观看| 亚洲人成网站在线播放欧美日韩| 丝袜人妻中文字幕| 国产午夜福利久久久久久| 俺也久久电影网| 免费av不卡在线播放| 亚洲国产欧美一区二区综合| av天堂在线播放| 中文字幕精品亚洲无线码一区| 国产高潮美女av| 久9热在线精品视频| 欧美日韩黄片免| 欧美成狂野欧美在线观看| 动漫黄色视频在线观看| 国产淫片久久久久久久久 | 亚洲欧美一区二区三区黑人| 国产成年人精品一区二区| 国产成人aa在线观看| 国产熟女xx| 男女做爰动态图高潮gif福利片| 麻豆国产av国片精品| www日本在线高清视频| 岛国视频午夜一区免费看| 亚洲欧美精品综合久久99| 嫩草影视91久久| 美女cb高潮喷水在线观看 | 巨乳人妻的诱惑在线观看| 一进一出抽搐动态| 一区二区三区激情视频| cao死你这个sao货| 亚洲国产日韩欧美精品在线观看 | 深夜精品福利| 午夜福利成人在线免费观看| 亚洲一区二区三区色噜噜| 露出奶头的视频| www.精华液| 99热精品在线国产| 欧美+亚洲+日韩+国产| 精品免费久久久久久久清纯| 久久伊人香网站| 国产精品影院久久| 免费看十八禁软件| 波多野结衣巨乳人妻| 18禁黄网站禁片免费观看直播| 久久精品91无色码中文字幕| 国产亚洲精品综合一区在线观看| 在线视频色国产色| 琪琪午夜伦伦电影理论片6080| 亚洲精品456在线播放app | 亚洲国产精品久久男人天堂| 不卡av一区二区三区| 国产欧美日韩精品亚洲av| 国产麻豆成人av免费视频| 欧美日韩精品网址| 久久久精品欧美日韩精品| 色尼玛亚洲综合影院| 久久久久亚洲av毛片大全| 免费看十八禁软件| 欧美日韩精品网址| 午夜免费激情av| 三级国产精品欧美在线观看 | 亚洲真实伦在线观看| 国产精品亚洲av一区麻豆| 欧美在线黄色| 99久久成人亚洲精品观看| 97超视频在线观看视频| 天堂av国产一区二区熟女人妻| 精品久久久久久久毛片微露脸| 国产精品亚洲美女久久久| 大型黄色视频在线免费观看| 麻豆国产av国片精品| 久久精品人妻少妇| 免费看日本二区| 国产又色又爽无遮挡免费看| 久久国产精品人妻蜜桃| 久久精品综合一区二区三区| 一个人看视频在线观看www免费 | 伦理电影免费视频| 亚洲国产欧洲综合997久久,| 亚洲成av人片在线播放无| 午夜亚洲福利在线播放| 免费av不卡在线播放| 国产亚洲av嫩草精品影院| 欧美一区二区精品小视频在线| 后天国语完整版免费观看| 又粗又爽又猛毛片免费看| 成人鲁丝片一二三区免费| 少妇丰满av| 久久久久精品国产欧美久久久| 国产成年人精品一区二区| 国产激情偷乱视频一区二区| 一夜夜www| 亚洲专区国产一区二区| 一级作爱视频免费观看| 国产av在哪里看| 色av中文字幕| 欧美黑人欧美精品刺激| 国产精品野战在线观看| 午夜亚洲福利在线播放| 国产精品亚洲一级av第二区| 久久精品aⅴ一区二区三区四区| 国产成人aa在线观看| 亚洲美女黄片视频| 在线播放国产精品三级| 国产精品,欧美在线| 看免费av毛片| 叶爱在线成人免费视频播放| 亚洲欧美精品综合一区二区三区| 亚洲欧美日韩高清专用| 久久久国产欧美日韩av| 精品久久久久久久久久久久久| 久久精品影院6| 国产亚洲精品av在线| 女生性感内裤真人,穿戴方法视频| 两个人看的免费小视频| 久久精品夜夜夜夜夜久久蜜豆| 亚洲第一欧美日韩一区二区三区| 老汉色∧v一级毛片| 亚洲人成伊人成综合网2020| 日本 av在线| 午夜精品一区二区三区免费看| 久久精品综合一区二区三区| 欧美日韩瑟瑟在线播放| 两性夫妻黄色片| 久久久久亚洲av毛片大全| 成熟少妇高潮喷水视频| 波多野结衣高清作品| 欧美乱码精品一区二区三区| 最近最新免费中文字幕在线| 免费在线观看影片大全网站| 免费看日本二区| 18禁国产床啪视频网站| 亚洲av成人一区二区三| 亚洲精华国产精华精| 每晚都被弄得嗷嗷叫到高潮| 久久久久国产一级毛片高清牌| 久久精品国产清高在天天线| 一区二区三区国产精品乱码| 日韩av在线大香蕉| 免费在线观看影片大全网站| 中出人妻视频一区二区| 亚洲18禁久久av| 亚洲无线观看免费| 国模一区二区三区四区视频 | 亚洲第一欧美日韩一区二区三区| 国产私拍福利视频在线观看| 亚洲av成人一区二区三| 最近最新免费中文字幕在线| 亚洲 国产 在线| 亚洲avbb在线观看| 国产黄a三级三级三级人| 成人永久免费在线观看视频| 黄片大片在线免费观看| 午夜免费成人在线视频| 国产av一区在线观看免费| 国产亚洲欧美在线一区二区| 国产伦在线观看视频一区| 丝袜人妻中文字幕| 精品人妻1区二区| 欧美国产日韩亚洲一区| 九九热线精品视视频播放| 老司机在亚洲福利影院| 别揉我奶头~嗯~啊~动态视频| 丁香欧美五月| 怎么达到女性高潮| 国产高清有码在线观看视频| 我的老师免费观看完整版| 女人被狂操c到高潮| 午夜免费观看网址| 久久久久免费精品人妻一区二区| 中亚洲国语对白在线视频| 男人舔女人的私密视频| 亚洲精品乱码久久久v下载方式 | 日本撒尿小便嘘嘘汇集6| 日本 av在线| 国产激情偷乱视频一区二区| 老鸭窝网址在线观看| 999久久久精品免费观看国产| 首页视频小说图片口味搜索| 亚洲精品色激情综合| 国产精品99久久久久久久久| 国产亚洲av嫩草精品影院| 亚洲自拍偷在线| 国产在线精品亚洲第一网站| 黄频高清免费视频| 身体一侧抽搐| 欧美日韩亚洲国产一区二区在线观看| 国产午夜精品久久久久久| 国产精品一区二区三区四区免费观看 | 一级a爱片免费观看的视频| e午夜精品久久久久久久| 欧美av亚洲av综合av国产av| 女人被狂操c到高潮| 久久久国产欧美日韩av| av片东京热男人的天堂| 亚洲av成人不卡在线观看播放网| 在线观看免费午夜福利视频| 久久精品人妻少妇| 久久久久性生活片| 97碰自拍视频| 亚洲成a人片在线一区二区| 巨乳人妻的诱惑在线观看| 免费观看精品视频网站| 国产成人精品无人区| 国产精品综合久久久久久久免费| 欧美中文综合在线视频| a级毛片a级免费在线| 国产精品1区2区在线观看.| 精品一区二区三区四区五区乱码| 久久久成人免费电影| 亚洲成av人片在线播放无| 久久久久九九精品影院| 美女大奶头视频| 人妻丰满熟妇av一区二区三区| 国产成人精品无人区| 大型黄色视频在线免费观看| 久久热在线av| 两个人视频免费观看高清| 国内少妇人妻偷人精品xxx网站 | АⅤ资源中文在线天堂| 欧美日韩瑟瑟在线播放| 国产麻豆成人av免费视频| 香蕉av资源在线| av片东京热男人的天堂| 美女高潮喷水抽搐中文字幕| 岛国在线观看网站| 国产成人一区二区三区免费视频网站| 久久精品国产清高在天天线| 欧美绝顶高潮抽搐喷水| 在线观看免费午夜福利视频| 色综合亚洲欧美另类图片| 香蕉久久夜色| 国产淫片久久久久久久久 | 变态另类成人亚洲欧美熟女| av片东京热男人的天堂| 亚洲av成人av| 婷婷精品国产亚洲av| 很黄的视频免费| 丰满人妻一区二区三区视频av | 欧美日韩黄片免| 国产激情久久老熟女| 亚洲性夜色夜夜综合| 欧美三级亚洲精品| 一卡2卡三卡四卡精品乱码亚洲| 90打野战视频偷拍视频| 精品国产超薄肉色丝袜足j| 亚洲av电影不卡..在线观看| 精品久久久久久久毛片微露脸| 成年女人看的毛片在线观看| 婷婷丁香在线五月| 午夜福利免费观看在线| 亚洲精品在线美女| 校园春色视频在线观看| 听说在线观看完整版免费高清| 欧美三级亚洲精品| 国产精品久久电影中文字幕| 叶爱在线成人免费视频播放| 12—13女人毛片做爰片一| 国内久久婷婷六月综合欲色啪| 在线观看美女被高潮喷水网站 | 国产亚洲精品av在线| 亚洲欧美日韩高清专用| 国产精品久久久人人做人人爽| 搞女人的毛片| 无人区码免费观看不卡|