• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    14族雜環(huán)戊二烯分子(硅、鍺、錫)的電子結(jié)構(gòu)與光譜性質(zhì)

    2010-12-11 09:10:38鄧春梅牛英利帥志剛
    物理化學(xué)學(xué)報(bào) 2010年4期
    關(guān)鍵詞:環(huán)戊二烯性質(zhì)光譜

    鄧春梅 牛英利 彭 謙,* 帥志剛,2,*

    (1中國(guó)科學(xué)院化學(xué)研究所,北京分子科學(xué)國(guó)家實(shí)驗(yàn)室,有機(jī)固體院重點(diǎn)實(shí)驗(yàn)室,北京 100190; 2清華大學(xué)化學(xué)系,北京 100084)

    14族雜環(huán)戊二烯分子(硅、鍺、錫)的電子結(jié)構(gòu)與光譜性質(zhì)

    鄧春梅1牛英利1彭 謙1,*帥志剛1,2,*

    (1中國(guó)科學(xué)院化學(xué)研究所,北京分子科學(xué)國(guó)家實(shí)驗(yàn)室,有機(jī)固體院重點(diǎn)實(shí)驗(yàn)室,北京 100190;2清華大學(xué)化學(xué)系,北京 100084)

    14族雜原子取代的雜環(huán)戊二烯分子具有獨(dú)特的光譜性質(zhì),成為發(fā)光材料的明星分子.為了更深層次地理解硅、鍺、錫雜環(huán)戊二烯分子的光譜性質(zhì),本文從理論上計(jì)算了它們的電子結(jié)構(gòu)及其吸收和發(fā)射光譜.分別采用密度泛函理論(DFT)和含時(shí)密度泛函理論(TD-DFT),優(yōu)化了硅、鍺、錫雜環(huán)戊二烯分子基態(tài)和第一激發(fā)態(tài)的平衡構(gòu)型,計(jì)算了電子結(jié)構(gòu)和振動(dòng)性質(zhì).在此基礎(chǔ)上,運(yùn)用振動(dòng)關(guān)聯(lián)函數(shù)公式計(jì)算了吸收光譜和發(fā)射光譜.得到的吸收光譜和發(fā)射光譜,特別是發(fā)射光譜的半峰寬與現(xiàn)有的實(shí)驗(yàn)值吻合很好.通過分析結(jié)構(gòu)和光譜性質(zhì)的關(guān)系,指出光譜的性質(zhì)主要取決于苯環(huán)轉(zhuǎn)動(dòng)對(duì)應(yīng)的低頻振動(dòng)模式和中心環(huán)C—C鍵的伸縮振動(dòng)對(duì)應(yīng)的高頻振動(dòng)模式.

    密度泛函理論;14族雜環(huán)戊二烯;振動(dòng)關(guān)聯(lián)函數(shù);光吸收;光發(fā)射

    Since the discovery of organic light-emitting device(OLED) by Tang and VanSlyke[1],there has been increasing interest in developing highly efficient OLED devices because of their great potential efficient in display,solid-state lighting,and other applications.One of the major current subjects in this field is the development of efficient light-emitting materials.

    Group-14 metalloles,silicon-,germanium-,or tin-containing metallacyclopentadienes were first synthesized by Leavitt[2-3]and Braye[4]et al.in 1959-1961.The general structure is of the following form:

    where R1and R2could be alkyl,aryl,halides,a second ring,or one or both may be missing.They are so called metalloles due to the metallic nature of the elements M=Si,Ge,Sn.Recently, much attention has been paid to these systems because of their unusual electronic structure[5-6]and exotic aggregation induced emission photophysical characteristics[7]that have made them intriguing candidates for OLEDs.

    In general,aggregation quenches luminescence because of either charge transfer or energy transfer or Davydov splitting where dark state becomes the lowest-lying excited state.In contrast,siloles exhibit aggregation enhanced luminescence.Siloles have a quite low-lying LUMO(the lowest unoccupied molecular orbital)level,which is ascribed to the σ*-π*conjugation in the ring,that is,the orbital interaction between the σ*orbital of the two exocyclic σ bonds on the silicon atom and the π*orbital of the butadiene structure[8-9].Siloles exhibit high electron affinity and large electron mobility,which has been employed both as electron-transporting and light-emitting layers for organic electronics[10-11].A recent study showed that the electron mobility of a silole based compound was as much as 100 times higher than that of tris(8-hydroxyquinolinato)aluminum(Alq3),which is widely used as an electron-transport material in OLED[12].Since the intriguing phenomenon,the aggregation-induced emission (AIE),was reported by Tang et al.in 2001[13],a series of silole molecules have been found to exhibit the exotic phenomena and used as excellent light-emitting materials for OLED[14].Recently, germoles and stannoles become subjects of great interest since they display the very similar unusual optical properties as the siloles[5-7].

    We have first attempted to understand the AIE phenomena by investigatingtheexcitedstatevibroniccoupling[15-16].Wefoundthe couplings arising from low-frequency nuclear motion contribute the most to the non-radiative decay process.We then developed a fully analytic vibration-correlation function formalism for the internal conversion rate process by considering the multimode mixing(Duschinsky rotation effects).And we further went beyond the“promoting mode”approximation by presenting a formalism which includes all the vibrational modes in the electronic couplings prefactor[17].Eventually,we found that the vibrationcorrelation function formalism can give a comprehensive description for both the radiative and non-radiative decay rates as well as for the optical absorption and emission spectra.

    In this work,we present a computational study on the optical absorption and emission spectra for three metalloles,namely, siloles,germoles,and stannoles by using density functional theory(DFT)[18]and time-dependent density functional theory(TDDFT)[19-21]to generate essential electronic and vibrational structures which are eventually coupled with the vibration-correlation function formalism for the optical spectra.For simplicity,these group-14 hexaphenylmetalloles will be referred to the group-14 elements and the substituents:MPh6(M=Si,Ge,Sn).Finally,we will compare the first-principles results with the experiments.

    1 Methodology

    The absorption spectrum,defined as the rate of energy absorption by a single molecule per unit radiant energy flux,is given by the expression

    The emission spectrum in photon counting experiments,defined as the differential rate of photon emission due to a single molecule,is

    where,Ψiνiand Ψfνfare the molecular wave functions and μ is the electric dipole moment.is the Boltzmann distribution function for the initial state vibronic manifold.c represents the velocity of light and ω represents the vibration frequency.Eif=Ei-Efis the energy difference between the initial and final electronic states.andare the total vibrational energy of the molecule in the initial and final electronic states,respectively.

    In the Born-Oppenheimer adiabatic approximation,the wave function of each state can be expressed as a product of the electronic wave function and the wave function for nuclear motion.

    μfi=〈Φf|μ|Φi〉,is the electric transition dipole moment,and can be expanded in a Taylor series in the normal coordinates.

    For the strongly allowed transitions,the emission is usually dominated by the zero-order term,i.e.,the first term of Eq.(4). While for the weakly allowed or dipole-forbidden transitions, the Herzberg-Teller approximation corresponding to the second term should also be considered.In this paper,we will just consider the zero-order term because the transition between the ground state and the lowest excited state is strongly allowed for all the metalloles,even though our formalism is general.

    Applying Fourier transformation,δ(ω)=Then Eqs. (1-2)can be written asis a vibration correlation function of absorption spectrum.(t,T)has the same form as(t,T)with only different initial and final electronic states.

    In order to get the fully analytic formalism of Eqs.(5-6),the path integral formula of harmonic oscillator is adopted to derive the Franck-Condon integrals[22-23].Then the final analytic solution of the correlation function could be obtained as

    where ai,af,and E are N×N matrices,K is 2N×2N matrix,andare N×1 and 2N×1 matrices,respectively.The details of the correlation function are derived in Ref.[24].

    2 Computational details

    The molecular equilibrium geometries for the ground state (S0)were optimized at the level of DFT.And the TD-DFT was applied to optimize the first singlet excited state(S1)of the compounds.The B3LYP functional[25]and def2-SV(P)basis set[26]were used,and the effective core potential(ECP)was employed for Sn atom,in particular.There was no symmetric constrain on the geometric optimization.At the equilibrium geometries,the vibration frequencies and the normal modes of S0electronic states were calculated by analytic second derivative calculations,and the ones for S1electronic states were obtained by numerical differentiation of analytic energy gradients.These electronic structure calculations were carried out by using TURBOMOLE 6.0 program package[18,27].Based on the electronic structure information,considering the displaced and distortion of potential energy surface,the absorption and emission spectra of MPh6(M=Si,Ge, Sn)were investigated by means of a home-made program which is described in the Methodology section.

    Fig.1 General structure of the group-14 metalloles MPh6 (M=Si,Ge,Sn)

    3 Results and discussion

    3.1 Ground and excited state geometries

    The molecular equilibrium geometries for the S0based on the geometries obtained from the X-ray crystal data[7]were optimized at the level of DFT.The molecular structure is depicted in Fig.1.The selected bond lengths,bond angels,and dihedral anglesofbothS0andS1inMPh6(M=Si,Ge,Sn)arelistedinTable1.

    From Table 1,we can find that all three compounds havesimilar conformations in ground state.The three metalloles all have planar central metallol moieties.As for the geometries of the central metallole rings,the heavier metalloles have the longer M—C bond lengths,accompanied with the smaller C2MC5 angles,apparently due to the larger atomic radii of the heavier central group-14 elements.The angles between the phenyl substituents on the diene and the central metallol plane vary from 36.4°to 61.5°,which indicate the two adjacent phenyl rings could not be coplanar with the metallol rings because of the steric hindrance.The substituent phenyl rings give the molecule a propeller-like shape.

    Table 1 Selected important bond lengths,bond angles,and dihedral angles of MPh6(M=Si,Ge,Sn)in the ground state and the first singlet excited state

    When going from the ground state S0to the first singlet excited state S1,two important geometric modifications should be noted: (1)the bonds C2—C3,C4—C5 are elongated,whereas bonds C3—C4,C2—C20,C5—C50,M—C2,and M—C5 are shortened;(2)the dihedral angles of the phenyl rings at 2 and 5 positions to the central metallole ring dramatically decrease.For these phenomena,the detailed explanation will be given in the next section.

    3.2 Molecular orbital calculations

    In order to characterize the optical and electronic properties,it is useful to examine the highest occupied molecular orbital (HOMO),the lowest unoccupied molecular orbital(LUMO), and the energy gaps between HOMO and LUMO(Egap).To gain insight into the influence of the heteroatoms in the group-14 metallols on the molecular orbitals,the plots of HOMO and LUMO for group-14 metallols are showed in Fig.2.The calculated HOMO and LUMO energies and the energy gaps are given in Table 2.

    As shown in Fig.2,the HOMO and LUMO for all the three compounds displayed qualitatively similar iso-surfaces.The HOMO orbitals resemble the HOMO for cis-butadiene,with some additional contributions from the local HOMO of 2,5-phenyl groups and a lesser extent 3,4-phenyl groups.The LUMO orbitals are similar to the LUMO of butadiene with additional in-phase contributions from a M-Ph σ*orbital and from the local LUMO of the 2,3,4,5-pheneyl groups.Based on the orbitals distribution,we could presume that HOMO levels for these three molecules will be insensitive to the heteroatom while the LUMOlevels will have relations with the heteroatom.The computed data(Table 2)have confirmed this guess.There are slightly increases in the order of SiPh6<GePh6<SnPh6both for the LUMO level and the HOMO-LUMO energy gap.The adiabatic excited energy(Ea)between the ground state and the first singlet excited state are also listed in Table 2,and display the same trend as Egap.

    Table 2Calculated HOMO and LUMO energies,HOMOLUMO energy gaps(Egap),and the adiabatic excited energy (Ea)for MPh6(M=Si,Ge,Sn)

    In general,the HOMO orbitals exhibit bonding character and the LUMO orbitals antibonding character.Since the first singlet excited state corresponds almost exclusively to the excitation from the HOMO to the LUMO in all the studied compounds,we could predict the differences of the bond lengths between the S0and S1from MO nodal patterns.For example,the HOMO orbitals of the studied molecules are bonding across the C2—C3, and C4—C5 bonds,whereas the LUMO orbitals have nodes in these regions.The calculated results in Table 1 are in agreement with this anticipated elongation of these bonds.On the contrary, the HOMO orbitals have nodes across the C3—C4,C2—C20, C5—C50,M—C2,and M—C5 bonds,while the LUMO orbitals are bonding in these regions.Therefore,the bond lengths of these bonds become considerably shorter in the excited state as discussed in the previous section.

    3.3 Absorption and emission spectra

    Based on the electronic structure information,the absorption from S0to S1and emission from S1to S0spectra for the three compounds are calculated and depicted in Fig.3(a,b).And the comparison between the calculated absorption and emission spectra and the experimental ones[10]of SiPh6are shown in Fig.4. In addition,the maximum absorption and emission peak positions,the full width at the half maximum(FWHM),and the available corresponding experimental data of each molecule are listed in Table 3.

    Fig.2 Calculated HOMO and LUMO for the group-14 metalloles MPh6(M=Si,Ge,Sn)

    Compared with the experimental data,lower excited energies are always obtained by using TD-DFT method due to the limitation of inherent electron self-interaction in DFT methodologies. Furthermore,the experimental data are detected in the acetonitrile solution,while the computed data are obtained in gas phase by employing a single molecule.Therefore,when compared with the experimental data,both the absorption and emission spectra exhibit red shifts(seen in Table 3).And in Fig.4,in order to compare the lineshape of the calculated spectra with the experimental ones[10],we move the calculated spectra to the higher energy scale(3102 cm-1in absorption spectra and 1883 cm-1in emimission spectra)to make sure the maximum peaks overlap. From Fig.4,it can be seen that the lineshapes of the calculated spectra,which stem from the coupling between electronic excited state and the vibration mode,agree excellently with the experimental ones.These indicate that our thermal vibration correlation function method works well for the MPh6molecules. For the absorption spectrum,it is need to note that the transition only from S0to S1is calculated,while in the experimental measure the absorption spectrum includes the transition not only from S0to S1but also from S0to the second singlet excited state S2.

    Fig.3 Absorption(a)and emission(b)spectra of the group-14 metalloles MPh6(M=Si,Ge,Sn)

    Fig.4 Comparisons of the calculated absorption(a)and emission(b)spectra of SiPh6with the experimental ones

    Table 3 The maximum peaks(λ)and full widths at the half maximum(FWHM)of absorption and emission spectra

    Due to the distortion effect of harmonic potential energy surface,i.e.,different frequencies for the ground and the first singlet excited states,a mirror image relation does not appear between the absorption and emission spectra.For absorption spectra,we find that these three molecules have similar lineshapes,and the FWHM of the absorption spectra have a slight increase in the order of SiPh6<GePh6<SnPh6.For emission spectra,the emission maximum wavelength of GePh6is the shortest(529 nm)while thoseofSiPh6andSnPh6arecomparableto each other(547 vs 549 nm),this trend agrees well with the experimental results[76],and the FWHM of the emission spectra also have a slight increase in the order of SiPh6<GePh6<SnPh6.For SiPh6,the FWHM of the calculated emission spectra is in excellent agreement with the experimental one[10](3861 vs 3847 cm-1).

    From the schematic descriptions of displaced and distortion potential energy surfaces of two electronic states in Fig.5,it is very easy to understand that the characteristics of absorption or emission spectra are determined completely by the adiabatic excited energy between two electronic states(discussed in the last section),molecular reorganization energy of the finial state,and the photon distribution(ni=1/(e?ωi/kT-1))of the initial state.Here the temperature effect is not discussed and all the spectra are calculated at 300 K,so we will focus on the analysis of the molecular reorganization energies in the following.

    Fig.5 Schematic description of displaced and distortion potential energy surfaceEv1and Ev2represents the vertical excited energy under the geometry structure of the first singlet excited state and that of ground state,respectively.Ereorg.1and Ereorg.2are the reorganization energy of the ground state and the first excited state, respectively.

    For a normal mode i,its reorganization energy Ereorg.iis the productofthe Huang-Rhys factorof the normal mode and the corresponding vibration energyand thetotalreorganizationenergyisthesumof

    Table 4 and Table 5 give the selected vibration frequencies (cm-1)with important reorganization energies of these three molecules in the first excited and the ground states.For the absorption spectra,the data in Table 4 tell us that for the three compounds the main contributors to the reorganization energies with large values always appear in the high frequency modes(with frequencies 1240-1550 cm-1)and the low frequency ones(with frequencies ca 60 and 90 cm-1).And for emission spectra,as shown in Table 5,the modes with the high frequency(ca 1519 and1565cm-1)andlowfrequency(≤70 cm-1)contribute the most to the reorganization energies for these three molecules.To both absorptionand emission spectra,the former(high frequency modes)are assigned to the single-bond and double-bond stretching vibrations of carbon-carbon related to the central metallole ring, and the latter(low frequency modes)belong to the rotation motions of free phenyl rings at 2 and 5 positions of central metallole ring.

    We further project the reorganization energies onto the internal coordinates of the molecules.In general,the potential energy surface can be expanded with internal coordinates around the equilibrium geometry.

    where V0is the potential energy at the equilibrium geometry,siand sjrepresent the variation of redundant internal coordinates from the equilibrium geometry,and Fi,jis expansion coefficient. Let′s set V0=0 as the zero point of the potential energy surface. Then,

    where,

    It should be noted that Viincludes the contribution,fromthei-thinternalcoordinateandthecouplingterm,from the i-th and j-th internal coordinates.

    Table 4 Selected vibration frequencies(ωe)of the first excited state and the reorganization energies(Ereorg.2)of the group-14 metalloles MPh6(M=Si,Ge,Sn)

    Table 5 Selected vibration frequencies(ωg)of the ground state and reorganization energies(Ereorg.1)of the group-14 metalloles MPh6(M=Si,Ge,Sn)

    Table 6 Component of reorganization energy in the selected internal coordinate representation

    Selected internal coordinates with large component of reorganization energy are listed in Table 6.The data in Table 6 tells us that it is very obvious that the contribution to the reorganization energy mainly come from the stretching vibration of these bonds (C2—C3,C3—C4,C4—C5,C2—C20,C5—C50)and the rotation motions of the free aromatic rings at the 2 and 5 positions of central ring,which is fully consistent with the structure change from the ground to the excited state,discussed in Section 3.1. Nevertheless,all the data demonstrates that there are no noticeable contribution to the optical properties directly coming from the heavy elements Si,Ge,and Sn.

    4 Conclusions

    The electronic structures and spectra properties of a series of group-14 metalloles,from silole to stannole,have been studied with vibration correlation functions method coupled with DFT and TD-DFT computations.The HOMO′s and LUMO′s for all the three compounds are found to dominate the electronic excited state and to possess qualitatively similar isosurfaces.The three molecules have similarly optical lineshapes,while the full width at the half maximum(FWHM)of both the absorption and emission spectra have slightly increases in the order SiPh6<GePh6<SnPh6.Both the lineshapes of the calculated optical absorption and emission spectra,especially the FWHM for all the compounds at room temperature,were in good agreement with the available experiments.The excited state vibronic couplings are revealed by projecting the reorganization energies into both normal mode and internal coordinate components.Both the lowfrequency modes assigned to rotation motion of the free aromatic rings and the high-frequency modes from carboncarbon stretching motions are found to contribute importantly to the optical spectra features such as the bandwidth broadening.

    Acknowledgment:Itisourgreathonorwiththisworktocelebrate the 100th anniversary of College of Chemistry and Molecular Engineering,Peking University,the 100 years full with glory.Fruitful discussions with Professors Eli Pollak(Department of Chemical Physics,The Weizmann Institute of Science),Jiushu Shao(Department of Chemistry,Beijing Normal University),and Qiang Shi(Institute of Chemistry,Chinese Academy of Sciences)are greatly acknowledged.

    1 Tang,C.W.;VanSlyke,S.A.Appl.Phys.Lett.,1987,51:913

    2 Leavitt,F.C.;Manuel,T.A.;Johnson,F.J.Am.Chem.Soc.,1959, 81:3163

    3 Leavitt,F.C.;Manuel,T.A.;Johnson,F.;Matternas,L.U.; Lehman,D.S.J.Am.Chem.Soc.,1960,82:5099

    4 Braye,E.H.;Hubel,W.;Caplier,I.J.Am.Chem.Soc.,1961,83: 4406

    5 Yamaguchi,S.;Itami,Y.;Tamao,K.Organometallics,1998,17: 4910

    6 Yamaguchi,S.;Endo,T.;Uchida,M.;Izumizawa,T.;Furukawa, K.;Tamao,K.Chem.Eur.J.,2000,6:1683

    7 (a)Ferman,J.;Kakareka,J.P.;Klooster,W.T.;Mullin,J.L.; Quattrucci,J.;Ricci,J.S.;Tracy,H.J.;Vining,W.J.;Wallace,S. Inorg.Chem.,1999,38:2464 (b)Tracy,H.J.;Mullin,J.L.;Klooster,W.T.;Martin,J.A.;Haug, J.;Wallace,S.;Rudloe,I.;Watts,K.Inorg.Chem.,2005,44:2003 (c)Mullin,J.L.;Tracy,H.J.;Ford,J.R.;Keenan,S.R.;Fridman, F.J.Inorg.Organomet.Polym.Mater.,2007,17:201

    8 Khabashesku,V.N.;Balaji,V.;Boganov,S.E.;Nefedov,O.M.; Michl,J.J.Am.Chem.Soc.,1994,116:320

    9 Tamao,K.;Yamaguchi,S.Pure Appl.Chem.,1996,68:139

    10 Zhan,X.;Risko,C.;Amy,F.;Chan,C.;Zhao,W.;Barlow,S.; Kahn,A.;Bredas,J.L.;Marder,S.J.Am.Chem.Soc.,2005,127: 9021

    11 Chen,J.;Law,C.C.W.;Lam,J.W.Y.;Dong,Y.;Lo,S.M.F.; Williams,I.D.;Zhu,D.;Tang,B.Z.Chem.Mater.,2003,15: 1535

    12 Murata,H.;Malliaras,G.G.;Uchida,M.;Shen,Y.;Kafafi,Z.H. Chem.Phys.Lett.,2001,339:161

    13 Luo,J.D.;Xie,Z.L.;Lam,J.W.Y.;Cheng,L.;Chen,H.Y.;Qiu, C.F.;Kwok,H.S.;Zhan,X.W.;Liu,Y.Q.;Zhu,D.B.;Tang,B. Z.Chem.Commun.,2001:1740

    14 Hong,Y.;Lam,J.W.Y.;Tang,B.Z.Chem.Commum.,2009: 4332

    15 Yu,G.;Yin,S.W.;Liu,Y.Q.;Chen,J.S.;Xu,X.J.;Sun,X.B.; Ma,D.G.;Zhan,X.W.;Peng,Q.;Shuai,Z.G.;Tang,B.Z.;Zhu, D.B.;Fang,W.H.;Luo,Y.J.Am.Chem.Soc.,2005,127:6335

    16 Yin,S.W.;Peng,Q.;Shuai,Z.G.;Fang,W.H.;Wang,Y.H.;Luo, Y.Phys.Rev.B,2006,73:205409

    17 Niu,Y.;Peng,Q.;Shuai,Z.G.Sci.China Ser.B-Chem.,2008,51: 1153

    18 Treutler,O.;Ahlrichs,R.J.Chem.Phys.,1995,102:346

    19 Bauernschmitt,R.;Ahlrichs,R.Chem.Phys.Lett.,1996,256:454

    20 Bauernschmitt,R.;H?ser,M.;Treutler,O.;Ahlrichs,R.Chem. Phys.Lett.,1997,264:573

    21 Grimme,S.;Furche,F.;Ahlrichs,R.Chem.Phys.Lett.,2002,361: 321

    22 (a)He,Y.;Pollak,E.J.Phys.Chem.A,2001,105:10961 (b)He,Y.;Pollak,E.J.Chem.Phys.,2002,116:6088

    23 (a)Ianconescu,R.;Pollak,E.J.Phys.Chem.A,2004,108:7778 (b)Tatchen,J.;Pollak,E.J.Chem.Phys.,2008,128:164303

    24 Peng,Q.;Niu,Y.L.;Deng,C.M.;Shuai,Z.G.Chem.Phys.,2010, accepted

    25 Becke,A.D.J.Chem.Phys.,1993,98:1372

    26 (a)Schafer,A.;Horn,H.;Ahlrichs,R.J.Chem.Phys.,1992,97: 2571 (b)Weigend,F.;Ahlrichs,R.Phys.Chem.Chem.Phys.,2005,7: 3297

    27 Ahlrichs,R.;Baer,M.;Haeser,M.;Horn,H.;Koelmel,C.Chem. Phys.Lett.,1989,162:165

    December 16,2009;Revised:January 25,2010;Published on Web:February 25,2010.

    Electronic Structures and Spectroscopic Properties of Group-14 Metalloles MPh6(M=Si,Ge,Sn)

    DENG Chun-Mei1NIU Ying-Li1PENG Qian1,*SHUAI Zhi-Gang1,2,*
    (1Key Laboratory of Organic Solids,Beijing National Laboratory for Molecular Sciences,Institute of Chemistry,Chinese Academy of Sciences,Beijing 100190,P.R.China;2Department of Chemistry,Tsinghua University,Beijing 100084,P.R.China)

    Group-14 metalloles possess interesting optical properties and are promising molecules for light-emitting materials.We present a theoretical study of the electronic structures and the optical spectra from silole to stannole to gain insight into their optical properties.The optimized equilibrium geometries and the electronic and vibrational structures for the ground state(S0)and the first singlet excited state(S1)were calculated using density functional theory (DFT)andtime-dependentdensity functional theory(TD-DFT),respectively.The optical absorption and emission spectra were calculated using the thermal vibration correlation function formalism.The lineshapes of the calculated optical absorption and emission spectra,especially the full width at half maximum for all the compounds at room temperature, were found to be in good agreement with the available experimental data.Low-frequency modes that are assigned to the rotation motion of free aromatic rings and the high-frequency modes related to the stretching vibration of carboncarbon bonds contribute greatly to the optical features such as the bandwidth of the optical line-shapes.

    Density functional theory; Group-14 metalloles; Vibration correlation function; Optical absorption; Light emission

    *Corresponding authors.Email:qpeng@iccas.ac.cn,zgshuai@tsinghua.edu.cn;Tel/Fax:+86-10-62797689.

    The project was supported by the National Natural Science Foundation of China(90921007)and National Key Basic Research Program of China(973) (2009CB623600).

    國(guó)家自然科學(xué)基金重大項(xiàng)目(90921007)和國(guó)家重點(diǎn)基礎(chǔ)研究發(fā)展計(jì)劃項(xiàng)目(973)(2009CB623600)資助

    帥志剛,北京大學(xué)化學(xué)與分子工程學(xué)院兼職教授.

    O641

    猜你喜歡
    環(huán)戊二烯性質(zhì)光譜
    基于三維Saab變換的高光譜圖像壓縮方法
    隨機(jī)變量的分布列性質(zhì)的應(yīng)用
    完全平方數(shù)的性質(zhì)及其應(yīng)用
    九點(diǎn)圓的性質(zhì)和應(yīng)用
    厲害了,我的性質(zhì)
    星載近紅外高光譜CO2遙感進(jìn)展
    聚砜包覆雙環(huán)戊二烯微膠囊的制備
    甲基環(huán)戊二烯的合成研究
    苦味酸與牛血清蛋白相互作用的光譜研究
    基于2-苯基-1H-1,3,7,8-四-氮雜環(huán)戊二烯并[l]菲的Pb(Ⅱ)、Co(Ⅱ)配合物的晶體結(jié)構(gòu)與發(fā)光
    精品少妇内射三级| 两性夫妻黄色片| 女人高潮潮喷娇喘18禁视频| 精品少妇一区二区三区视频日本电影 | 男的添女的下面高潮视频| 亚洲激情五月婷婷啪啪| 日韩一卡2卡3卡4卡2021年| 国产欧美日韩综合在线一区二区| 免费观看a级毛片全部| 国产麻豆69| 哪个播放器可以免费观看大片| 观看美女的网站| 亚洲精品久久久久久婷婷小说| 亚洲欧美成人精品一区二区| 国产精品不卡视频一区二区| 免费大片黄手机在线观看| 亚洲成色77777| 肉色欧美久久久久久久蜜桃| 日韩中文字幕视频在线看片| 中文乱码字字幕精品一区二区三区| www.自偷自拍.com| 欧美激情极品国产一区二区三区| 亚洲av成人精品一二三区| 丰满乱子伦码专区| 久久精品夜色国产| 亚洲国产精品999| 久久久久久久久久久久大奶| 在线观看三级黄色| a级毛片黄视频| 久久久国产欧美日韩av| 在线看a的网站| 女人精品久久久久毛片| 99久久精品国产国产毛片| 久久精品国产亚洲av天美| 欧美黄色片欧美黄色片| 91aial.com中文字幕在线观看| 男女高潮啪啪啪动态图| 亚洲精品国产av成人精品| 亚洲图色成人| 99精国产麻豆久久婷婷| 中文字幕色久视频| 午夜老司机福利剧场| 韩国精品一区二区三区| 叶爱在线成人免费视频播放| 99香蕉大伊视频| 人人澡人人妻人| 欧美成人午夜精品| 老汉色av国产亚洲站长工具| 日韩不卡一区二区三区视频在线| 欧美日韩国产mv在线观看视频| 天天躁夜夜躁狠狠躁躁| 免费高清在线观看日韩| 在线观看三级黄色| 在现免费观看毛片| 午夜影院在线不卡| 日本-黄色视频高清免费观看| 美女国产视频在线观看| 不卡av一区二区三区| 老女人水多毛片| 成人亚洲精品一区在线观看| 18禁裸乳无遮挡动漫免费视频| 精品卡一卡二卡四卡免费| 18禁观看日本| 美女脱内裤让男人舔精品视频| 精品久久久久久电影网| 亚洲精品国产av成人精品| 日本91视频免费播放| 人人妻人人澡人人爽人人夜夜| 精品国产乱码久久久久久小说| 天美传媒精品一区二区| 伊人久久大香线蕉亚洲五| 国产在线免费精品| 日韩av不卡免费在线播放| 精品国产一区二区三区久久久樱花| 精品一区二区免费观看| 丝袜人妻中文字幕| 街头女战士在线观看网站| 日韩制服骚丝袜av| 国产精品三级大全| 色播在线永久视频| 少妇 在线观看| 久热这里只有精品99| 午夜福利网站1000一区二区三区| 激情五月婷婷亚洲| 精品国产超薄肉色丝袜足j| 国产伦理片在线播放av一区| 在线观看免费日韩欧美大片| 午夜免费鲁丝| 伊人久久国产一区二区| 国产av精品麻豆| 日韩一卡2卡3卡4卡2021年| 久久国产精品大桥未久av| 亚洲av男天堂| 美女国产高潮福利片在线看| 久久av网站| 国产精品偷伦视频观看了| 久久综合国产亚洲精品| 久久久久久人妻| 成人亚洲精品一区在线观看| 国产1区2区3区精品| 在线观看美女被高潮喷水网站| 国产无遮挡羞羞视频在线观看| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 免费在线观看黄色视频的| 黄片播放在线免费| 熟妇人妻不卡中文字幕| 丝袜美腿诱惑在线| 欧美中文综合在线视频| 亚洲成人一二三区av| 亚洲在久久综合| 亚洲精品,欧美精品| 国产综合精华液| 香蕉精品网在线| 精品酒店卫生间| 日韩制服骚丝袜av| 水蜜桃什么品种好| 黄色配什么色好看| 亚洲精品乱久久久久久| 三级国产精品片| 在线精品无人区一区二区三| 亚洲av男天堂| 亚洲五月色婷婷综合| 欧美变态另类bdsm刘玥| 两性夫妻黄色片| 一二三四中文在线观看免费高清| 国产精品麻豆人妻色哟哟久久| 大话2 男鬼变身卡| 国产日韩一区二区三区精品不卡| 国产精品嫩草影院av在线观看| 中文字幕亚洲精品专区| 波多野结衣一区麻豆| 日本免费在线观看一区| 日韩av不卡免费在线播放| 亚洲av成人精品一二三区| 成人漫画全彩无遮挡| 久久久久网色| 三上悠亚av全集在线观看| 久久亚洲国产成人精品v| 国产精品av久久久久免费| 麻豆av在线久日| 美女国产视频在线观看| 国产综合精华液| 水蜜桃什么品种好| 国产野战对白在线观看| a级片在线免费高清观看视频| 老司机影院毛片| 男女下面插进去视频免费观看| 美女脱内裤让男人舔精品视频| 亚洲三级黄色毛片| 熟妇人妻不卡中文字幕| 久久久精品区二区三区| av不卡在线播放| 久久国产亚洲av麻豆专区| 国产片内射在线| 女人精品久久久久毛片| 日韩不卡一区二区三区视频在线| 欧美日韩精品成人综合77777| 交换朋友夫妻互换小说| av网站免费在线观看视频| 中文字幕人妻丝袜一区二区 | 人人妻人人添人人爽欧美一区卜| 久久久久人妻精品一区果冻| 伦理电影免费视频| av一本久久久久| 久久热在线av| 免费在线观看视频国产中文字幕亚洲 | 王馨瑶露胸无遮挡在线观看| 在线观看www视频免费| 精品少妇黑人巨大在线播放| 香蕉国产在线看| 久久国产亚洲av麻豆专区| 久久av网站| 最新中文字幕久久久久| 亚洲国产精品成人久久小说| 欧美黄色片欧美黄色片| 少妇人妻久久综合中文| 一级黄片播放器| 看免费成人av毛片| 精品一区二区免费观看| 免费看av在线观看网站| 亚洲欧美精品自产自拍| av在线播放精品| 亚洲国产毛片av蜜桃av| 免费在线观看黄色视频的| 欧美国产精品va在线观看不卡| 亚洲,欧美精品.| 国产福利在线免费观看视频| 这个男人来自地球电影免费观看 | 成人午夜精彩视频在线观看| 久久婷婷青草| 亚洲视频免费观看视频| 国产精品二区激情视频| 亚洲av中文av极速乱| 国产亚洲午夜精品一区二区久久| 热99国产精品久久久久久7| 999久久久国产精品视频| 亚洲视频免费观看视频| 少妇的丰满在线观看| 欧美成人午夜精品| 大话2 男鬼变身卡| 好男人视频免费观看在线| 亚洲精品久久成人aⅴ小说| 国产 一区精品| 精品第一国产精品| 91精品伊人久久大香线蕉| 国产黄色免费在线视频| 成人国产麻豆网| 人人妻人人添人人爽欧美一区卜| 少妇 在线观看| 精品一品国产午夜福利视频| 午夜福利在线观看免费完整高清在| 婷婷色综合大香蕉| 国产精品女同一区二区软件| 久久人人爽人人片av| 精品少妇黑人巨大在线播放| 99热国产这里只有精品6| 亚洲 欧美一区二区三区| 国产欧美日韩一区二区三区在线| 欧美+日韩+精品| 国产成人精品无人区| 国产成人免费观看mmmm| 91精品伊人久久大香线蕉| 精品99又大又爽又粗少妇毛片| 国产探花极品一区二区| 两性夫妻黄色片| av在线播放精品| 美女视频免费永久观看网站| 女性生殖器流出的白浆| 色婷婷av一区二区三区视频| 嫩草影院入口| 欧美成人午夜免费资源| www.av在线官网国产| 一区在线观看完整版| 日日摸夜夜添夜夜爱| 亚洲国产欧美日韩在线播放| 亚洲国产日韩一区二区| freevideosex欧美| 国产人伦9x9x在线观看 | 男人添女人高潮全过程视频| av.在线天堂| 国产精品女同一区二区软件| 成人午夜精彩视频在线观看| xxx大片免费视频| 三上悠亚av全集在线观看| 国产成人精品在线电影| 精品一区二区免费观看| 日韩免费高清中文字幕av| 18禁观看日本| 日韩,欧美,国产一区二区三区| 少妇人妻久久综合中文| 成人二区视频| 母亲3免费完整高清在线观看 | 亚洲视频免费观看视频| 国产熟女午夜一区二区三区| 国产综合精华液| 久久精品久久久久久久性| 欧美日本中文国产一区发布| 亚洲欧洲精品一区二区精品久久久 | 黑丝袜美女国产一区| 国产成人91sexporn| 人妻系列 视频| 香蕉丝袜av| 天美传媒精品一区二区| 久久久久久人妻| 久久国产精品大桥未久av| 哪个播放器可以免费观看大片| 两个人看的免费小视频| 久久久久久免费高清国产稀缺| 午夜福利乱码中文字幕| 国产伦理片在线播放av一区| 纵有疾风起免费观看全集完整版| 亚洲少妇的诱惑av| 不卡视频在线观看欧美| 亚洲国产av影院在线观看| 色婷婷久久久亚洲欧美| 国产成人精品一,二区| 久久精品国产亚洲av高清一级| 可以免费在线观看a视频的电影网站 | 99国产精品免费福利视频| 国产97色在线日韩免费| 亚洲美女搞黄在线观看| 美女主播在线视频| 妹子高潮喷水视频| 日产精品乱码卡一卡2卡三| 不卡av一区二区三区| 精品酒店卫生间| 亚洲av电影在线观看一区二区三区| 丝袜喷水一区| 国产一区二区在线观看av| 蜜桃国产av成人99| 亚洲av国产av综合av卡| 欧美国产精品一级二级三级| 久久国产精品男人的天堂亚洲| 看非洲黑人一级黄片| 日韩一区二区三区影片| 这个男人来自地球电影免费观看 | 日韩视频在线欧美| 国产精品亚洲av一区麻豆 | 90打野战视频偷拍视频| 亚洲,一卡二卡三卡| 亚洲精华国产精华液的使用体验| 欧美中文综合在线视频| 在线观看免费视频网站a站| 久久久久久伊人网av| 中文字幕亚洲精品专区| 婷婷色综合大香蕉| 美女国产高潮福利片在线看| 亚洲精品美女久久久久99蜜臀 | 97在线人人人人妻| 老鸭窝网址在线观看| 久久午夜综合久久蜜桃| 亚洲av综合色区一区| av.在线天堂| 亚洲成人手机| 国产成人精品福利久久| 高清不卡的av网站| 大香蕉久久网| 久久国产亚洲av麻豆专区| 亚洲成av片中文字幕在线观看 | 亚洲精品国产av蜜桃| 国产女主播在线喷水免费视频网站| 国产精品一区二区在线不卡| 亚洲国产成人一精品久久久| 成年美女黄网站色视频大全免费| 多毛熟女@视频| 香蕉精品网在线| 免费观看在线日韩| 亚洲,一卡二卡三卡| 国产成人一区二区在线| 久久综合国产亚洲精品| kizo精华| 丰满迷人的少妇在线观看| 两个人免费观看高清视频| 久久久久视频综合| 久久久国产欧美日韩av| 成人国语在线视频| 久久久国产欧美日韩av| 久久久久视频综合| 亚洲国产精品国产精品| a级毛片在线看网站| 又大又黄又爽视频免费| 日本av免费视频播放| xxxhd国产人妻xxx| 在线观看人妻少妇| 汤姆久久久久久久影院中文字幕| 少妇猛男粗大的猛烈进出视频| 亚洲精华国产精华液的使用体验| 成人18禁高潮啪啪吃奶动态图| 亚洲人成网站在线观看播放| 欧美少妇被猛烈插入视频| 亚洲三级黄色毛片| www.精华液| 精品视频人人做人人爽| 国产亚洲午夜精品一区二区久久| 少妇被粗大的猛进出69影院| 国产高清国产精品国产三级| 男女午夜视频在线观看| 久久99蜜桃精品久久| 午夜老司机福利剧场| 国产野战对白在线观看| 国产精品 国内视频| 国产日韩一区二区三区精品不卡| 97在线人人人人妻| 亚洲欧美一区二区三区黑人 | 久久久久国产一级毛片高清牌| 91在线精品国自产拍蜜月| 亚洲精品一区蜜桃| av在线观看视频网站免费| 丰满少妇做爰视频| 久久久久久人妻| 90打野战视频偷拍视频| 亚洲国产精品一区三区| 久久国产精品男人的天堂亚洲| 欧美精品一区二区免费开放| 一本久久精品| 黄色配什么色好看| 国产人伦9x9x在线观看 | 菩萨蛮人人尽说江南好唐韦庄| 9热在线视频观看99| 国产精品.久久久| www.精华液| 久久久久久久国产电影| 亚洲精品aⅴ在线观看| 观看美女的网站| 一个人免费看片子| 少妇被粗大猛烈的视频| 久久精品夜色国产| av.在线天堂| 色视频在线一区二区三区| av在线老鸭窝| 亚洲国产av新网站| 美女视频免费永久观看网站| 亚洲精品日韩在线中文字幕| 女性被躁到高潮视频| 黄色一级大片看看| 久久久久久久久免费视频了| 人妻一区二区av| 午夜免费鲁丝| 色94色欧美一区二区| 久久午夜福利片| 欧美激情高清一区二区三区 | 一区福利在线观看| 国产人伦9x9x在线观看 | 一级毛片我不卡| 肉色欧美久久久久久久蜜桃| 黄色视频在线播放观看不卡| 国产极品天堂在线| 999精品在线视频| 欧美bdsm另类| 亚洲少妇的诱惑av| 熟女少妇亚洲综合色aaa.| 欧美变态另类bdsm刘玥| 日本av手机在线免费观看| av有码第一页| 高清欧美精品videossex| 国产成人精品无人区| 国产精品免费视频内射| 亚洲色图 男人天堂 中文字幕| 久久久久久久大尺度免费视频| av福利片在线| 精品亚洲成a人片在线观看| 日韩中文字幕视频在线看片| 少妇的逼水好多| 我的亚洲天堂| 国产高清不卡午夜福利| 亚洲国产精品成人久久小说| 天天躁夜夜躁狠狠久久av| 2021少妇久久久久久久久久久| 女人高潮潮喷娇喘18禁视频| 免费少妇av软件| 69精品国产乱码久久久| 国产乱来视频区| 免费女性裸体啪啪无遮挡网站| 免费观看性生交大片5| 国产色婷婷99| 亚洲av成人精品一二三区| 久久久精品区二区三区| 免费观看在线日韩| 成人漫画全彩无遮挡| av线在线观看网站| 日韩一区二区视频免费看| 午夜免费男女啪啪视频观看| av一本久久久久| 久热这里只有精品99| 多毛熟女@视频| 日韩一区二区视频免费看| 久久这里只有精品19| 久久久久精品性色| 国产女主播在线喷水免费视频网站| av电影中文网址| 色网站视频免费| 国产免费一区二区三区四区乱码| 精品少妇黑人巨大在线播放| 亚洲激情五月婷婷啪啪| 在线观看一区二区三区激情| 高清黄色对白视频在线免费看| 一级毛片电影观看| 王馨瑶露胸无遮挡在线观看| 巨乳人妻的诱惑在线观看| 人妻一区二区av| av视频免费观看在线观看| 这个男人来自地球电影免费观看 | 人人妻人人澡人人爽人人夜夜| 菩萨蛮人人尽说江南好唐韦庄| 午夜老司机福利剧场| 国产日韩欧美在线精品| 男女下面插进去视频免费观看| 在线观看国产h片| 亚洲欧美色中文字幕在线| 99热网站在线观看| 亚洲伊人色综图| 免费播放大片免费观看视频在线观看| 99久久人妻综合| 自拍欧美九色日韩亚洲蝌蚪91| 国产av一区二区精品久久| 成人影院久久| 久久精品aⅴ一区二区三区四区 | 久久精品人人爽人人爽视色| 一级毛片 在线播放| 亚洲国产欧美日韩在线播放| 亚洲av国产av综合av卡| 国产片特级美女逼逼视频| 久久人妻熟女aⅴ| 免费黄色在线免费观看| 欧美日韩精品成人综合77777| 国产野战对白在线观看| 男女高潮啪啪啪动态图| 性高湖久久久久久久久免费观看| 热99国产精品久久久久久7| 免费高清在线观看视频在线观看| 男人舔女人的私密视频| 国产男人的电影天堂91| 黄片小视频在线播放| 国产成人a∨麻豆精品| 在线看a的网站| 国产亚洲一区二区精品| 亚洲av男天堂| 蜜桃在线观看..| 久久青草综合色| 精品国产一区二区三区久久久樱花| 水蜜桃什么品种好| 国产极品粉嫩免费观看在线| 国产色婷婷99| 看免费av毛片| 亚洲国产精品一区二区三区在线| 免费看av在线观看网站| 日韩大片免费观看网站| 亚洲,欧美精品.| 午夜91福利影院| 美女大奶头黄色视频| 飞空精品影院首页| 777米奇影视久久| 亚洲成av片中文字幕在线观看 | 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 一区福利在线观看| 久久97久久精品| 在线看a的网站| 婷婷成人精品国产| 久久久久国产一级毛片高清牌| 熟女av电影| 天天躁日日躁夜夜躁夜夜| 亚洲精品aⅴ在线观看| 婷婷成人精品国产| 777米奇影视久久| 精品少妇黑人巨大在线播放| 亚洲av免费高清在线观看| 香蕉国产在线看| 国产精品麻豆人妻色哟哟久久| 丰满迷人的少妇在线观看| 国产精品av久久久久免费| 欧美成人午夜精品| 一级毛片 在线播放| 久久亚洲国产成人精品v| 午夜老司机福利剧场| 亚洲人成电影观看| 在线观看人妻少妇| 精品第一国产精品| 欧美日韩一区二区视频在线观看视频在线| 韩国av在线不卡| 亚洲av男天堂| 午夜福利,免费看| 一本大道久久a久久精品| 青草久久国产| 久久人人97超碰香蕉20202| 夫妻午夜视频| 90打野战视频偷拍视频| 秋霞在线观看毛片| 成人国产av品久久久| 成人亚洲欧美一区二区av| 一级黄片播放器| 女人精品久久久久毛片| 午夜福利,免费看| av不卡在线播放| 国产熟女午夜一区二区三区| 日韩电影二区| 国产精品久久久久久av不卡| 婷婷色麻豆天堂久久| 新久久久久国产一级毛片| 久久热在线av| 寂寞人妻少妇视频99o| 国产无遮挡羞羞视频在线观看| av又黄又爽大尺度在线免费看| 捣出白浆h1v1| 亚洲国产色片| 日韩不卡一区二区三区视频在线| 久久久欧美国产精品| 王馨瑶露胸无遮挡在线观看| 只有这里有精品99| tube8黄色片| 91在线精品国自产拍蜜月| 男的添女的下面高潮视频| 丝瓜视频免费看黄片| 国产亚洲最大av| 国产熟女欧美一区二区| 国产一级毛片在线| 日韩av免费高清视频| 久久久久国产网址| 国产精品99久久99久久久不卡 | 午夜老司机福利剧场| 中文欧美无线码| 男女无遮挡免费网站观看| 日日爽夜夜爽网站| 日韩av在线免费看完整版不卡| av在线app专区| 中文精品一卡2卡3卡4更新| 精品国产一区二区三区四区第35| av一本久久久久| 亚洲精品美女久久av网站| 高清不卡的av网站| 最近最新中文字幕大全免费视频 | 国产深夜福利视频在线观看| 爱豆传媒免费全集在线观看| 国产精品不卡视频一区二区| 啦啦啦视频在线资源免费观看| 岛国毛片在线播放| 99久久综合免费| 亚洲欧美精品自产自拍| 天堂俺去俺来也www色官网| 五月伊人婷婷丁香| 丝袜喷水一区| 亚洲欧洲精品一区二区精品久久久 | 日日摸夜夜添夜夜爱| 亚洲第一区二区三区不卡| 青春草国产在线视频| 国产精品秋霞免费鲁丝片| 国产成人精品一,二区| 亚洲精品国产色婷婷电影| 女人久久www免费人成看片| 欧美国产精品va在线观看不卡| 国产成人精品久久二区二区91 | 丝袜美足系列| 亚洲三区欧美一区| 日韩,欧美,国产一区二区三区| 亚洲欧美清纯卡通| 午夜福利在线观看免费完整高清在|