• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    ANALYTICAL STUDY OF WAVE MAKING IN A FLUME WITH A PARTIALLY REFLECTING END-WALL*

    2010-07-02 01:37:59ZHOUBinzhen

    ZHOU Bin-zhen

    State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian 116024, China, E-mail: zhoubinzhen4827@163.com

    NING De-zhi

    State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian 116024, China

    State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, China

    TENG Bin, CHEN Li-fen

    State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian 116024, China

    ANALYTICAL STUDY OF WAVE MAKING IN A FLUME WITH A PARTIALLY REFLECTING END-WALL*

    ZHOU Bin-zhen

    State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian 116024, China, E-mail: zhoubinzhen4827@163.com

    NING De-zhi

    State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian 116024, China

    State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, China

    TENG Bin, CHEN Li-fen

    State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian 116024, China

    Based on the eigenfunction expansion technique, the wave generation by a piston wave maker in a wave flume with a partially reflecting end-wall is studied. The corresponding velocity potential and wave elevation in the flume are obtained. The present analytical solution is verified by the numerical results obtained from a time-domain higher-order boundary element method in a closed flume. Numerical experiments are further carried out to study the difference between the partial/full reflection boundary and the transmission boundary and the effects of the reflection coefficient and the motion period of the wave maker on the wave height. Meanwhile, the natural frequency of the wave flume can be obtained from the analytical expression. The resonance occurs when the motion frequency is equal to the natural frequency. Even the partial reflection of the end-wall in the wave flume experiments has a great influence on the wave height, therefore, inaccurate measurements would be resulted in long-time simulations, especially when the wave frequency approaches the wave flume natural frequency. The present study can serve as a guidance for the physical experiment in wave flumes.

    wave flume, wave maker, partially reflecting end-wall, resonance, eigenfunction, analytical study

    1. Introduction

    The wave generation in flumes is of considerableimportance for offshore and coastal engineering. Many studies have been devoted to wave maker theories based on analytical and numerical methods. For example, Liu et al.[1]applied a theoretical method to study an active absorbing wave maker system. Schaffer and Steenberg[2]developed a complete second-order wave maker theory for the generation of multidirectional waves in a semi-infinite basin. With eigenfunction expansions and Fast Fourier Ttansform (FFT) algorithm, Wojciech and Maciej[3]proposed a semi-analytical nonlinear wave maker model to study the generation and propagation of transient nonlinearwaves in a wave flume. Spinneken and Swan[4]proposed a second-order wave maker theory for regular waves using the force-feedback control. With the eigenfunction expansion technique, Zhou et al.[5]obtained a linear analytical solution for wave generation by a piston wave maker in a deep step-type wave flume. He[6]applied the Boundary Element Method (BEM) combined with the time-stepping scheme to study the wave generation by the large amplitude oscillation of a rocker flap wave maker. Koo and Kim[7]utilized the fully nonlinear 2-D numerical wave tank to simulate the nonlinear wave and force generated by a wedge-shape wave maker. Yang et al.[8]employed a time-domain numerical model to simulate the wave making by a moving ship based on Green’s theorem. Based on a fully nonlinear numerical wave tank model, Zhou et al.[9]and Ning et al.[10]carried out a numerical simulation of waves generated by a piston wave maker. In the above studies, it is noted that the end walls of wave flumes are all defined as the transmission boundary. However, it is actually difficult for outgoing waves to be completely dissipated at the end of a physical flume. And some partial reflections may exist, which would result in inaccurate measurements in a long-time experiment due to the multi-reflections between the wave flume end and the wave maker. Therefore, it is necessary to study the effects of the partial reflection of the wave flume end on experimental results.

    Many investigations were carried out on the prediction of the wave field in a harbor with partial reflection boundaries. For example, Hammanaka[11]studied a harbor wave field for a range of boundary conditions, including partial reflection. Lee and Williams[12]presented a numerical model for the wave field due to the diffraction of multidirectional random waves in a harbor of arbitrary shape with partial reflection boundaries. Tan et al.[13]considered wave fields in harbors using a mesh generation software and the mid-slope equation with partial reflection boundary conditions at the wall boundary considered. Ghassan et al.[14]discussed the interaction of linear water waves with a moored floating breakwater with a leeward boundary composed of a vertical wall.

    In this article, an exact analytical solution is derived for the wave generation by a piston wave maker with a partial reflection wave flume end, based upon the usual assumptions of the linearized water-wave theory and the two-dimensional motion. The fluid is assumed to be ideal, the motion irrotational, and the wave amplitude small compared with the wavelength and the fluid depth. The method of eigenfunction expansions is adopted to calculate the velocity potential and the wave elevation. Moreover, numerical experiments are carried out to see the difference between the partial reflection boundary and the transmission boundary, and the effects of the reflection coefficient and the motion period of the wave maker on the wave height. Meanwhile, the natural frequency of the wave flume is obtained from the analytical solution. It is shown that the resonance occurs in a closed wave flume when the motion frequency is close to the natural frequency, with large waves for partial reflection boundaries.

    2. Mathematical model

    2.1Governing equation

    A wave flume with a vertical end-wall in water of depthdis considered here, as shown in Fig.1. A Cartesian coordinate system is adopted with the origin in the plane of the undisturbed free surfacez=0, with thez-axis positive upwards and thex-axis positive rightwards. At the left end of the wave flume, a monochromatic wave is generated by a piston wave maker with the following motion:

    Fig.1 Definition sketch

    The fluid is assumed to be inviscid and incompressible, and the motion is irrotational. It is further assumed that the motion is a simple time-harmonic with the angular frequencyω, the time parameter can be separated and the velocity potentialΦ(x,z,t) can be rewritten in the following form:

    whereφ(x,z) is the complex spatial velocity potential with the unit amplitude motion of the wave maker.

    2.2Boundary conditions

    The velocity potentialφ(x,z) is governed by the Laplace equation with the free surface condition, the incident boundary condition and the partial and full reflection boundary conditions.

    2.2.1 Free surface condition

    The linear free surface boundary condition atz=0can be written as:

    2.2.2 Incident boundary condition

    The condition says that the normal derivative of the velocity potential is equal to the wave maker velocity on the wave maker surface, which can be written in the following form:

    2.2.3 Reflection boundary condition

    On the flume bottom, the full reflection boundary condition, i.e., the non-penetrating boundary condition, is

    2.2.4 Partial reflection boundary condition

    In many numerical simulations, the full reflection or the transmission boundary conditions are applied at the right wave flume end. Actually, a partial reflection is the case at the physical flume end. In the present model, a partial reflection boundary condition is imposed by using a mixed boundary condition[14], i.e.,

    whereBis the flume length,kis the wave number andα(=α1+iα2) is a complex transmission coefficient and can be expressed by the conventional reflection coefficientKrand a reflection phase angleβas follows

    Ghassan[14]indicated that the phase angleβhas a minor influence on the results. Therefore, one may assume no phase shift between the incoming waves and the reflected waves, i.e.,β=0. Hence, the partial reflection boundary condition in Eq.(7) can be expressed as:

    3. Mathematical analyses

    The velocity potential, satisfying the linear free surface condition and the non-penetrating condition on the seabed bottom, can be written in the following form:

    where the first term is the rightward waves, the second is the leftward waves, the third is the evanescent waves exponentially decayed far from the wave maker and the last is the waves exponentially decayed away from the vertical sidewall,CmandRm(m=0,1,…) are the unknown coefficients. The vertical eigenfunctionsZm(kmz) form an orthogonal set in[?d,0] and are defined as:

    where wave numbersk0andkmsatisfy the following dispersion equations, respectively,

    In order to evaluate the unknown coefficientsCmandRm, we take (M+1) terms (0,1,…,M) forCmandRm.

    By substituting Eq.(11) into the wave maker boundary condition Eq.(5), the following relation can be obtained:

    Multiplying both sides of Eq.(16) by the vertical eigenfunctionsZm(kmz) and integrating over the interval ?d

    Equations (17) and (18) can be rewritten in the following forms:

    Substituting Eq.(11) into the partial reflecting boundary condition Eq.(10), the following relation can be obtained

    Multiplying both sides of Eq.(23) by the vertical eigenfunctionsZm(kmz) and integrating over the interval ?d

    Equations (24) and (25) can be rewritten in the following forms:

    By substituting Eqs.(26) and (27) into Eqs.(21) and (22), the following relation can be obtained

    The unknownsCmandRm(m=0,1,…,M) can be obtained from Eqs.(26)-(30). Thus the velocity potential can be obtained by substitutingCmandRminto Eq.(11).

    4. Wave elevation

    Based on the linear wave maker theory, the wave surface elevation in the wave flume is

    ForKr=0, it follows thatα=iandR0=0. In this case, the end of the wave flume satisfies the transmission boundary condition, and the wave amplitude agrees with the existing theoretical expression as follows

    ForKr=1, it follows thatα=0 andR=Ceik0B. In this case, the wave elevation can be

    00written as follows if we ignore the evanescent waves:

    From Eq.(33), it can be easily deduced that the wave amplitude reaches the maximum atx=B?nL/2.0(n=0,1,2,…) and the minimum atx=B?nL/4.0 (n=1,3,5,…), respectively, withLbeing the wavelength.

    5. Numerical results and analyses

    We now carry out some numerical simulations to illustrate the analytical method discussed above. First, some numerical experiments are performed to check the convergence of eigenfucntions in Eqs.(11) and (31). It shows that a converged solution can be obtained whenMis truncated with 10 terms.

    Two special casesKr=0 and 1.0 are then considered. The former one (Kr=0) shown in Eq.(32) is validated by a comparison with the existing analytical expression. For the latter one (Kr=1), a numerical wave tank based on the time-domain higher-order boundary element method (THOBEM, Ning and Teng[15]) is used for the comparison. For the frequency-domain method, a steady result can be obtained. But for the time-domain method, the result obtained includes not only the steady solution but also the transient solutions. The transient effects come from the resonant waves in the present case and are rapidly dissipated in the physical flume because of even a very small viscosity. In order to compare with the present steady solution, a damping mechanism invented by Kim[16]is used in the THOBEM to eliminate the transient effects with the corresponding damping coefficient1μ′ of 0.06. A closed wave flume with lengthB=5.0m and water depthd=1.0m is considered here. The motion period and the amplitude of the wave maker areT=2.5s andS=0.01m, respectively. From the above known conditions, the wavelengthL=6.985m is obtained.

    Fig.2 Time history of wave elevation atx=B

    Figure 2 shows the time history of the wave elevation at the wave flume (x=B). The comparisonsof the proposed analytical solution with numerical results from the HOBEM with linear boundary conditions are also given in the figure. From the figure, it can be seen that the numerical wave elevation eventually reaches that of harmonic oscillations, and the results given by the two methods agree well with each other, which validates the theoretical method presented in this article for the full reflection end-wall.

    Fig.3 Distribution of wave amplitudeAat different positions

    Further numerical calculations are carried out in a wave flume with lengthB=30.0m and water depthd=1.0m in the following section.

    Figure 3 is the distribution of the wave amplitudeAalong the line of symmetry of the flume forT=2.5sand different reflection coefficients (Kr=0.1, 0.3, 0.8, 1.0). From the figure, it can be seen that the distribution of the wave amplitude is non-uniform, and varies in a harmonic way with the distance from the wave maker. The oscillating amplitude increases with the increasing of the reflection coefficient. The wave amplitude reaches the maximum at positionsx=B?nL/2.0 (n=0,1,2,…) and reaches the minimum at positionsx=B?nL/4.0 (n=1,3,5,…) for different reflection coefficients. The minimum wave amplitude is zero for the full reflection condition.

    Figures 5(a) and 5(b) give the distribution of the parameterKAversus the reflection coefficientKr. From the figure, it can be seen that the parameterKAincreases with the increasing of the reflection coefficientKr, and the increasing value is related to the motion periodT. Figure 5(a) shows that when the motion period is near the natural period, the parameterKAis greater than the corresponding to other periods. It can be seen from Fig.5(b) that the parameterKAreaches the maximum when the motion period is equal to the natural period, and the resonance occurs forKr=1. Therefore, the partial reflection of the end wall in the wave flume also has a great influence on experimental results. Appropriate measures should be adopted to reduce such experimental errors.

    Fig.4 Distribution of the parameterKAwith periodT

    6. Conclusion

    Fig.5 Distribution ofKAwith the reflection coefficientKr

    [1] LIU Shu-xue, WU Bin and LI Mu-guo et al. Irregular active absorbing wave maker system[J].Journal of Hydrodynamics, Ser. A,2003, 18(5): 532-539(in Chinese).

    [2] SCHAFFER H. A., STEENBERG C. M. Second-order wave maker theory for multidirectional waves[J].Ocean Engineering,2003, 30(10): 1203-1231.

    [3] WOJCIECH S., MACIEJ P. Generation and propagationof transient nonlinear waves in a wave flume[J].Coastal Engineering,2008, 55(4): 277-287.

    [4] SPINNEKEN J., SWAN C. Second-order wave maker theory using force-feedback control. Part I: A new theory for regular wave generation[J].Ocean Engineering,2009, 36(8): 539-548.

    [5] ZHOU B. Z., NING D. Z. and TENG B. et al. Analytical study on wave making in a deep wave flume in step-type[J].Wave motion,2010, 47(1): 1-11.

    [6] HE Wu-zhou, DUAN Wen-yang. Fully nonlinear calculation of 2-D water wave generated by rocker flap wavemaker[J].Journal of Hydrodynamics, Ser. A,1996, 11(1): 35-42(in Chinese).

    [7] KOO W. C., KIM M. H. Numerical simulation of nonlinear wave and force generated by a wedge-shape wave maker[J].Ocean Engineering,2006, 33(8): 983-1006.

    [8] YANG Xiang-hui, YE Heng-kui and FENG Da-kui et al. Computation research on wave making of moving wigley hull in time domain[J].Journal of Hydrodynamics,2008, 20(4): 469-476.

    [9] ZHOU Bin-zhen, NING De-zhi and TENG Bin. Realtime simulation of waves generated by a wave maker[J].ChineseJournal of Hydrodynamics,2009, 24(4): 406-416(in Chinese).

    [10] NING D. Z., ZHOU B. Z. and TENG B. et al. Numerical simulation of nonlinear regular and focused waves generated by a piston wave maker[C].The 5thInternational Conference on Asian and Pacific Coasts.Singapore, 2009.

    [11] HAMMANAKA K. I. Open, partial reflection and incident-absorbing boundary conditions in wave analysis with a boundary integral method[J].Coastal Engineering,1997, 30(3): 281-298.

    [12] LEE H. S., WILLIAMS A. N. Boundary element modelling of multidirectional random waves in a harbour with partially reflecting boundaries[J].Ocean Engineering,2002, 29(1): 39-58.

    [13] TAN Li, TENG Bin and ZHAO Ming. Wave field computation in harbors using the mesh generation software and the mild-slope equation[J].The Ocean Engineering,2004, 22(4): 107-114(in Chinese).

    [14] GHASSAN E., RAFIC Y. and PASCAL L. The effects of reflection coefficient of the harbor sidewall on the performance of floating breakwaters[J].Ocean Engineering,2008, 35(11): 1102-1112.

    [15] NING D. Z., TENG B. Numerical simulation of fully nonlinear irregular wave tank in three-dimension[J].International Journal for Numerical Methods in Fluids,2007, 53(12): 1847-1862.

    [16] KIM Y. H. Artificial damping in water wave problems I: constant damping[J].International Journal of Offshore and Polar Engineering,2003, 13(2): 88-93.

    December 4, 2009, Revised January 14, 2010)

    * Project supported by the Open Fund of Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering (Grant No. 2009491611), the National Natural Science Foundation of China (Grant Nos. 50709005, 10772040 and 50921001) and the Major National Science and Technology Projects of China (Grant No. 2008ZX05026-02).

    Biography:ZHOU Bin-zhen (1984-), Female, Ph. D.

    NING De-zhi,

    E-mail: dzning@dlut.edu.cn

    2010,22(3):402-409

    10.1016/S1001-6058(09)60071-8

    亚洲熟妇中文字幕五十中出| 久久久久久久久久黄片| 中文字幕av在线有码专区| av女优亚洲男人天堂| av在线观看视频网站免费| 国产 一区 欧美 日韩| 日韩欧美精品免费久久| 亚洲美女黄片视频| 中文资源天堂在线| 乱系列少妇在线播放| 天堂动漫精品| 欧美日韩综合久久久久久| 欧美极品一区二区三区四区| 少妇裸体淫交视频免费看高清| 国内少妇人妻偷人精品xxx网站| 又黄又爽又刺激的免费视频.| 亚洲人与动物交配视频| 日本精品一区二区三区蜜桃| 国模一区二区三区四区视频| 亚洲真实伦在线观看| 麻豆一二三区av精品| 亚洲成a人片在线一区二区| 亚洲无线在线观看| 国产av在哪里看| 欧美+日韩+精品| 亚洲av不卡在线观看| 亚洲七黄色美女视频| 免费看a级黄色片| 欧美激情国产日韩精品一区| 免费看av在线观看网站| 俄罗斯特黄特色一大片| 亚洲精品在线观看二区| 特级一级黄色大片| 日本在线视频免费播放| 97热精品久久久久久| 国产私拍福利视频在线观看| 精品一区二区三区视频在线观看免费| 最近最新中文字幕大全电影3| 国产淫片久久久久久久久| 国产亚洲91精品色在线| 国产极品精品免费视频能看的| 99热这里只有是精品50| avwww免费| 高清午夜精品一区二区三区 | 好男人在线观看高清免费视频| 日本-黄色视频高清免费观看| 国产aⅴ精品一区二区三区波| aaaaa片日本免费| 精品午夜福利在线看| 三级经典国产精品| 国产成人aa在线观看| 精品一区二区三区人妻视频| 直男gayav资源| 午夜福利视频1000在线观看| 亚洲熟妇熟女久久| 欧美日本亚洲视频在线播放| 赤兔流量卡办理| 少妇人妻精品综合一区二区 | 1024手机看黄色片| 亚州av有码| 欧美一区二区精品小视频在线| 日本-黄色视频高清免费观看| 国产探花极品一区二区| 欧洲精品卡2卡3卡4卡5卡区| 久久天躁狠狠躁夜夜2o2o| 免费不卡的大黄色大毛片视频在线观看 | 乱系列少妇在线播放| 国产蜜桃级精品一区二区三区| 色综合色国产| 人妻丰满熟妇av一区二区三区| 三级毛片av免费| 欧美日韩乱码在线| avwww免费| 99热精品在线国产| 久久精品国产亚洲网站| 综合色丁香网| 久久精品国产亚洲av香蕉五月| av天堂中文字幕网| 十八禁国产超污无遮挡网站| 一区二区三区免费毛片| 搡女人真爽免费视频火全软件 | 看片在线看免费视频| 国内精品宾馆在线| 久久国产乱子免费精品| 色综合色国产| 亚洲人成网站高清观看| 国产精品美女特级片免费视频播放器| 成年女人永久免费观看视频| 性插视频无遮挡在线免费观看| 精品人妻视频免费看| 一级黄色大片毛片| 淫妇啪啪啪对白视频| 欧美在线一区亚洲| 十八禁网站免费在线| 亚洲精品亚洲一区二区| 国产色爽女视频免费观看| 成人av在线播放网站| 偷拍熟女少妇极品色| 最新中文字幕久久久久| 精品一区二区三区视频在线观看免费| 精品久久久久久久人妻蜜臀av| 夜夜夜夜夜久久久久| 欧美精品国产亚洲| 精品久久久久久久末码| 国产高清视频在线播放一区| 97热精品久久久久久| 日日摸夜夜添夜夜添av毛片| 麻豆国产av国片精品| 亚洲av一区综合| avwww免费| 久久热精品热| 国产黄片美女视频| 国产激情偷乱视频一区二区| 国产v大片淫在线免费观看| 俺也久久电影网| 久久精品综合一区二区三区| 黄片wwwwww| 国产极品精品免费视频能看的| av在线亚洲专区| 国产伦精品一区二区三区四那| 又黄又爽又刺激的免费视频.| 国产在视频线在精品| 蜜桃久久精品国产亚洲av| 欧美另类亚洲清纯唯美| 中出人妻视频一区二区| 亚洲成人久久爱视频| 欧美xxxx性猛交bbbb| 国内精品宾馆在线| 丝袜美腿在线中文| 久久久久久大精品| 色吧在线观看| 亚洲精品日韩av片在线观看| 身体一侧抽搐| 久久亚洲国产成人精品v| 久久精品国产鲁丝片午夜精品| 成人av在线播放网站| 亚洲精品影视一区二区三区av| 少妇的逼好多水| 九九久久精品国产亚洲av麻豆| 搡女人真爽免费视频火全软件 | 亚洲欧美日韩高清专用| 成人午夜高清在线视频| 亚洲内射少妇av| 无遮挡黄片免费观看| 身体一侧抽搐| 一个人看的www免费观看视频| 成人永久免费在线观看视频| 大又大粗又爽又黄少妇毛片口| 亚洲国产精品久久男人天堂| 春色校园在线视频观看| 免费高清视频大片| 男女做爰动态图高潮gif福利片| 老熟妇仑乱视频hdxx| 99久久九九国产精品国产免费| 久久久欧美国产精品| 联通29元200g的流量卡| 久久久久精品国产欧美久久久| 性欧美人与动物交配| 简卡轻食公司| 欧美xxxx黑人xx丫x性爽| 搡老妇女老女人老熟妇| 丰满乱子伦码专区| 国产私拍福利视频在线观看| 亚洲精品成人久久久久久| 亚洲精品日韩在线中文字幕 | 内地一区二区视频在线| 别揉我奶头~嗯~啊~动态视频| 亚洲精品久久国产高清桃花| 免费观看人在逋| 久久综合国产亚洲精品| av国产免费在线观看| 国产成人一区二区在线| 国产探花在线观看一区二区| 日本一本二区三区精品| 国产欧美日韩精品一区二区| 十八禁国产超污无遮挡网站| 久久久久久久久中文| 亚洲性久久影院| 欧美区成人在线视频| 午夜福利高清视频| 搡老岳熟女国产| 亚洲美女视频黄频| 亚洲精品国产成人久久av| 精品乱码久久久久久99久播| 国产精品久久久久久精品电影| 国产高清视频在线播放一区| 2021天堂中文幕一二区在线观| 国产极品精品免费视频能看的| 精品一区二区三区人妻视频| 在线a可以看的网站| 亚洲激情五月婷婷啪啪| 十八禁网站免费在线| 99久久精品国产国产毛片| 国产大屁股一区二区在线视频| 女同久久另类99精品国产91| 男女做爰动态图高潮gif福利片| 黄色视频,在线免费观看| 免费看av在线观看网站| 久久久久久久久久成人| 日韩国内少妇激情av| 久久久久久久久大av| 男插女下体视频免费在线播放| 久久久久久久亚洲中文字幕| 亚洲精品亚洲一区二区| 日韩成人av中文字幕在线观看 | 美女大奶头视频| 最近视频中文字幕2019在线8| 中文字幕精品亚洲无线码一区| 国产精品人妻久久久久久| 国产男靠女视频免费网站| 欧美一区二区国产精品久久精品| 又爽又黄无遮挡网站| 伊人久久精品亚洲午夜| 久久亚洲精品不卡| 久久久色成人| 中国美白少妇内射xxxbb| 日本色播在线视频| 精品久久久久久久末码| 久久久精品大字幕| 国产高潮美女av| 国产国拍精品亚洲av在线观看| 禁无遮挡网站| a级一级毛片免费在线观看| 你懂的网址亚洲精品在线观看 | 亚洲欧美日韩东京热| 五月伊人婷婷丁香| 欧美成人一区二区免费高清观看| 国产av一区在线观看免费| 日日摸夜夜添夜夜添av毛片| 国产免费一级a男人的天堂| 亚洲精品色激情综合| 九九热线精品视视频播放| 乱系列少妇在线播放| 久久久久久久久久久丰满| 精品少妇黑人巨大在线播放 | 麻豆乱淫一区二区| 少妇熟女aⅴ在线视频| 国产伦精品一区二区三区视频9| videossex国产| 久久久a久久爽久久v久久| 三级国产精品欧美在线观看| 亚洲国产精品sss在线观看| 一区二区三区四区激情视频 | 免费在线观看成人毛片| 日本熟妇午夜| 国产蜜桃级精品一区二区三区| 久久午夜亚洲精品久久| 国产av麻豆久久久久久久| av中文乱码字幕在线| 激情 狠狠 欧美| 亚洲一区高清亚洲精品| av天堂中文字幕网| 亚洲一级一片aⅴ在线观看| 国产片特级美女逼逼视频| 日韩大尺度精品在线看网址| 亚洲自拍偷在线| videossex国产| 精品一区二区三区av网在线观看| 亚洲精品一区av在线观看| 一本久久中文字幕| 联通29元200g的流量卡| 婷婷亚洲欧美| 久久久精品欧美日韩精品| 晚上一个人看的免费电影| 中文字幕av成人在线电影| 久久韩国三级中文字幕| 亚洲国产日韩欧美精品在线观看| 国产精品日韩av在线免费观看| 天堂影院成人在线观看| 亚洲美女视频黄频| 一卡2卡三卡四卡精品乱码亚洲| 午夜福利高清视频| 欧美色视频一区免费| 欧美绝顶高潮抽搐喷水| 久久久久久国产a免费观看| av黄色大香蕉| av国产免费在线观看| 欧美xxxx性猛交bbbb| 精品不卡国产一区二区三区| 99国产精品一区二区蜜桃av| 亚洲av中文字字幕乱码综合| 少妇的逼好多水| 级片在线观看| 国产一区二区三区av在线 | 精品人妻熟女av久视频| 国产午夜福利久久久久久| 男女视频在线观看网站免费| 黄色一级大片看看| 国产精品精品国产色婷婷| 一级毛片aaaaaa免费看小| 亚洲av.av天堂| 免费在线观看成人毛片| 一区二区三区高清视频在线| 给我免费播放毛片高清在线观看| 亚洲av五月六月丁香网| av视频在线观看入口| 成人精品一区二区免费| 男女做爰动态图高潮gif福利片| 性欧美人与动物交配| 日韩人妻高清精品专区| 亚洲精品久久国产高清桃花| 久久久精品94久久精品| 亚洲在线自拍视频| 国产成年人精品一区二区| 色尼玛亚洲综合影院| 精品人妻视频免费看| 少妇人妻精品综合一区二区 | 天天躁夜夜躁狠狠久久av| 男女视频在线观看网站免费| 色综合色国产| 欧美在线一区亚洲| 国产精品一区二区三区四区免费观看 | 国产69精品久久久久777片| 99久久久亚洲精品蜜臀av| 俺也久久电影网| 久久鲁丝午夜福利片| 亚洲综合色惰| 久久精品国产亚洲av天美| 自拍偷自拍亚洲精品老妇| 在现免费观看毛片| 波野结衣二区三区在线| 卡戴珊不雅视频在线播放| 熟妇人妻久久中文字幕3abv| av在线天堂中文字幕| 国产精品一区二区免费欧美| 精品国产三级普通话版| 成人亚洲精品av一区二区| 亚洲精品一区av在线观看| 国产成人aa在线观看| 麻豆久久精品国产亚洲av| 男插女下体视频免费在线播放| 黄色日韩在线| videossex国产| 成年版毛片免费区| 亚洲精品影视一区二区三区av| 国内精品一区二区在线观看| 丝袜美腿在线中文| 亚洲色图av天堂| 成人午夜高清在线视频| 欧美不卡视频在线免费观看| 91在线精品国自产拍蜜月| 欧美激情国产日韩精品一区| 嫩草影院新地址| 色5月婷婷丁香| 亚洲无线在线观看| 人人妻人人看人人澡| 成年女人永久免费观看视频| 亚洲人成网站在线观看播放| 久久精品综合一区二区三区| 久久久久久久久中文| 国产一区二区亚洲精品在线观看| 成人综合一区亚洲| 有码 亚洲区| 成人美女网站在线观看视频| 亚洲自偷自拍三级| 亚洲在线自拍视频| 久久久久久久久久黄片| 国产综合懂色| 久久久久久久久久黄片| 黄色欧美视频在线观看| 长腿黑丝高跟| 天堂av国产一区二区熟女人妻| 床上黄色一级片| 精品国内亚洲2022精品成人| 国国产精品蜜臀av免费| 麻豆一二三区av精品| 国国产精品蜜臀av免费| 国产精品不卡视频一区二区| 免费观看人在逋| 搞女人的毛片| 日日摸夜夜添夜夜爱| 大香蕉久久网| 男女视频在线观看网站免费| 在线观看免费视频日本深夜| 一本久久中文字幕| 国产亚洲av嫩草精品影院| 日韩欧美在线乱码| 成人特级av手机在线观看| a级一级毛片免费在线观看| 深夜精品福利| 国产探花在线观看一区二区| 国产成人福利小说| 亚洲中文日韩欧美视频| 中国国产av一级| 亚洲无线观看免费| 一区二区三区四区激情视频 | 国内精品一区二区在线观看| 嫩草影院入口| 黄色配什么色好看| 毛片一级片免费看久久久久| av福利片在线观看| 一本久久中文字幕| 日韩欧美 国产精品| 熟女人妻精品中文字幕| 蜜臀久久99精品久久宅男| 久久99热6这里只有精品| 亚洲成人精品中文字幕电影| 蜜桃亚洲精品一区二区三区| 男人舔女人下体高潮全视频| 欧美国产日韩亚洲一区| 黑人高潮一二区| 亚洲三级黄色毛片| or卡值多少钱| 天天一区二区日本电影三级| 免费搜索国产男女视频| 欧美日韩一区二区视频在线观看视频在线 | 日韩强制内射视频| 欧美绝顶高潮抽搐喷水| 亚洲高清免费不卡视频| 在线天堂最新版资源| 午夜精品在线福利| 日韩精品青青久久久久久| 欧美色欧美亚洲另类二区| 日产精品乱码卡一卡2卡三| 亚洲一区高清亚洲精品| 热99在线观看视频| 亚洲天堂国产精品一区在线| 少妇的逼好多水| 中文字幕av在线有码专区| 欧美性感艳星| 亚洲av五月六月丁香网| 久久国内精品自在自线图片| 亚洲激情五月婷婷啪啪| 亚洲精品456在线播放app| 美女免费视频网站| av黄色大香蕉| 变态另类丝袜制服| 91在线观看av| 免费人成视频x8x8入口观看| av.在线天堂| 99久国产av精品国产电影| 麻豆久久精品国产亚洲av| 狂野欧美白嫩少妇大欣赏| 亚洲美女黄片视频| 日本三级黄在线观看| 在线免费观看的www视频| 青春草视频在线免费观看| 欧美一区二区国产精品久久精品| 久久精品国产亚洲av涩爱 | 美女 人体艺术 gogo| 久久人人精品亚洲av| 中文字幕免费在线视频6| 91麻豆精品激情在线观看国产| 中文字幕久久专区| 黄色视频,在线免费观看| 最近的中文字幕免费完整| 亚洲精品一卡2卡三卡4卡5卡| 日韩欧美精品免费久久| 久久久久久九九精品二区国产| 日本撒尿小便嘘嘘汇集6| 少妇人妻一区二区三区视频| 尤物成人国产欧美一区二区三区| 九色成人免费人妻av| 亚洲国产日韩欧美精品在线观看| 卡戴珊不雅视频在线播放| av天堂中文字幕网| 给我免费播放毛片高清在线观看| 在线观看av片永久免费下载| 99热这里只有是精品在线观看| 亚洲国产精品sss在线观看| 成人鲁丝片一二三区免费| 久久亚洲精品不卡| 国产成人a区在线观看| 久久久久久大精品| 伦理电影大哥的女人| 久久久久九九精品影院| 此物有八面人人有两片| 校园春色视频在线观看| 日日撸夜夜添| 亚洲欧美日韩高清在线视频| 中文字幕熟女人妻在线| 网址你懂的国产日韩在线| 国产成人a∨麻豆精品| 全区人妻精品视频| 国产精品一区www在线观看| 免费看a级黄色片| 成人亚洲精品av一区二区| 国产精品免费一区二区三区在线| 看黄色毛片网站| 亚洲av第一区精品v没综合| 亚洲成人av在线免费| 成人性生交大片免费视频hd| 美女免费视频网站| 亚洲在线自拍视频| 99九九线精品视频在线观看视频| 免费av不卡在线播放| 麻豆成人午夜福利视频| 美女大奶头视频| 中文在线观看免费www的网站| 女生性感内裤真人,穿戴方法视频| 国产免费男女视频| 国产亚洲精品久久久com| 亚洲精品在线观看二区| 亚洲国产精品久久男人天堂| 国产一区二区在线av高清观看| 欧美日韩国产亚洲二区| 99riav亚洲国产免费| 又粗又爽又猛毛片免费看| 成人亚洲精品av一区二区| 国产精品国产三级国产av玫瑰| 日韩欧美在线乱码| 美女内射精品一级片tv| 大型黄色视频在线免费观看| 亚洲人成网站在线播| 久久人人爽人人爽人人片va| 国产伦在线观看视频一区| 日韩欧美精品免费久久| 久久欧美精品欧美久久欧美| 日本在线视频免费播放| 欧美性猛交黑人性爽| 国产白丝娇喘喷水9色精品| 1024手机看黄色片| av国产免费在线观看| 亚洲av成人精品一区久久| 俄罗斯特黄特色一大片| 亚洲人成网站在线播放欧美日韩| 久久精品国产亚洲网站| 九九久久精品国产亚洲av麻豆| 黄色欧美视频在线观看| а√天堂www在线а√下载| 国产极品精品免费视频能看的| 色视频www国产| 免费av毛片视频| 久久久欧美国产精品| 六月丁香七月| 久久欧美精品欧美久久欧美| 国产av一区在线观看免费| 亚洲精品国产成人久久av| 精品福利观看| 亚洲成人久久爱视频| 日本 av在线| 精品久久久噜噜| 搡老妇女老女人老熟妇| 色哟哟哟哟哟哟| 91精品国产九色| 欧美精品国产亚洲| 又黄又爽又免费观看的视频| 国产高清有码在线观看视频| 99久久久亚洲精品蜜臀av| 色av中文字幕| 少妇的逼好多水| 国产精品一区二区三区四区免费观看 | 日韩国内少妇激情av| 一本一本综合久久| 婷婷色综合大香蕉| 可以在线观看毛片的网站| 午夜亚洲福利在线播放| 亚洲第一区二区三区不卡| 久久久国产成人精品二区| 免费不卡的大黄色大毛片视频在线观看 | 国产精品人妻久久久影院| 熟妇人妻久久中文字幕3abv| 好男人在线观看高清免费视频| 婷婷色综合大香蕉| 国产色婷婷99| 亚洲欧美日韩卡通动漫| 国产高潮美女av| 免费黄网站久久成人精品| 深夜精品福利| 午夜免费男女啪啪视频观看 | 九九在线视频观看精品| 美女 人体艺术 gogo| 香蕉av资源在线| 国产精品亚洲美女久久久| 在现免费观看毛片| 在线观看一区二区三区| 日韩欧美在线乱码| 美女cb高潮喷水在线观看| 搡老岳熟女国产| 日韩一区二区视频免费看| 亚洲婷婷狠狠爱综合网| 精品人妻偷拍中文字幕| 级片在线观看| 天美传媒精品一区二区| 国产精品综合久久久久久久免费| 日本在线视频免费播放| 偷拍熟女少妇极品色| 身体一侧抽搐| 蜜桃久久精品国产亚洲av| 激情 狠狠 欧美| 国产午夜福利久久久久久| 午夜福利成人在线免费观看| 色哟哟·www| 国产老妇女一区| 桃色一区二区三区在线观看| 十八禁网站免费在线| 亚洲色图av天堂| 在线看三级毛片| 在线免费观看的www视频| 内射极品少妇av片p| 精品人妻熟女av久视频| 久久久久久久久大av| 日韩国内少妇激情av| 亚洲成人久久爱视频| 我的女老师完整版在线观看| 免费看光身美女| 亚洲人与动物交配视频| 国产精品国产三级国产av玫瑰| 成人高潮视频无遮挡免费网站| 能在线免费观看的黄片| 国产精品一及| 亚洲国产精品合色在线| 久久人人爽人人片av| 亚洲国产欧洲综合997久久,| h日本视频在线播放| 啦啦啦啦在线视频资源| 精品久久国产蜜桃| 高清午夜精品一区二区三区 | 99久久九九国产精品国产免费| 韩国av在线不卡| 国产成年人精品一区二区| h日本视频在线播放| 干丝袜人妻中文字幕| 国产精品日韩av在线免费观看| 亚洲中文字幕日韩|