• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    FLOWS THROUGH ENERGY DISSIPATERS WITH SUDDEN REDUCTION AND SUDDEN ENLARGEMENT FORMS*

    2010-07-02 01:37:59WUJianhuaAIWanzheng

    WU Jian-hua, AI Wan-zheng

    College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China, E-mail: jhwu@hhu.edu.cn

    FLOWS THROUGH ENERGY DISSIPATERS WITH SUDDEN REDUCTION AND SUDDEN ENLARGEMENT FORMS*

    WU Jian-hua, AI Wan-zheng

    College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China, E-mail: jhwu@hhu.edu.cn

    The energy dissipation of flood discharges has been one of important problems that affect directly the safety of hydropower projects. The energy dissipater with sudden reduction and sudden enlargement forms, used widely in large-scale projects, has been a kind of effective structure for energy dissipation. The concept of critical thickness was defined, which is related to both the geometric parameters and the hydraulic parameters of the energy dissipater, and the factors affecting the critical thickness, were analzsed by means of dimensional analysis. The empirical expression about the critical thickness was obtained and could be used as the criterion to distinguish the flows through the energy dissipater, i.e., the plug flow and the orifice plate flow. The error analysis showed that the critical thickness calculated by the expression has the errors of smaller than 10% in the estimation of the flows for the energy dissipater mentioned above.

    critical thickness, energy dissipater, orifice plate, plug, reduction ratio, sudden reduction, sudden enlargement

    1. Introduction

    Both the plug and the orifice plate, as the two types of energy dissipaters with sudden reduction and sudden enlargement forms, have been successfully used in large-scale hydropower projects. For the Mica dam in Canada the flow velocity of the flood discharge tunnel was decreased from 52 m to 35 m at the head of 175 m, due to the use of the plug energy dissipaters, which were the two plugs with the lengths of 49 m and 37 m[1, 2]. In the Xiaolangdi hydropower project in China the three orifice plates in the flood discharge tunnel got the energy dissipation ratio of 44% and controlled effectively the flow velocity through the gate to lower than 35 m/s under the condition of the head of 145 m[3,4].

    Many researches investigated the energydissipaters with sudden reduction and sudden enlargement forms. The interest has been focused on the effects of the geometric parameters on hydraulic characteristics, such as energy dissipation ratio, and cavitation performance and so on. The contraction ratio (β), defined as the ratio of the orifice diameter (d ) of the energy dissipater and the diameter (D) of flood discharge tunnel, is an important index affecting all the hydraulic characteristics. Bullen et al.[5], Wang and Yue[6], Chai et al.[7], Fossa and Guglielmini[8], He and Zhao[9]deemed that the energy dissipation ratio increases with the decrease of the contraction ratio. The energy dissipation ratio increases with decreasing contraction ratio. Meanwhile, the contraction ratio influences directly the cavitation performance, and the incipient cavitation number decreases with the increase of contraction ratio according to the results from Ball et al.[10], Huang and Liu[11], Wu et al.[3], Zhang and Cai[12], and Tian et al.[13].

    The other geometric parameters, such as the thickness (T), the shape, and the edge radius, havethe effects on the energy dissipation ratio, or/and cavitation performance. The sharp-edged form has larger energy dissipation ratio[14]compared with the square-edged and sloping-approach forms and the orifice plate with ring, but causes the increase of the incipient cavitation number[3]at the same contraction ratio. Cai and Zhang[15]showed that the energy dissipation ratio decreases with the increase of the thickness of the energy dissipater.

    The thickness (T) of the energy dissipater brings about the great changes of the flow regime through it. When this thickness is large enough the flow becomes the tube flow in it, while it is the orifice flow for the thinner energy dissipater. They are usually called as plug energy dissipater and orifice plate one respectively in order to investigate their hydraulic characteristics[16-18]. As a matter of fact, those names, only based on the geometry of the energy dissipaters, are not very reasonable for certain range of thickness, and the flows through the energy dissipaters with sudden reductioin and sudden enlargement forms are closely related not only to the geometric parameters but also the hydraulic parameters. It is possible that the tube flow occurs when the flow velocity is low and then changes into the orifice flow with the increase of the velocity for a given thickness. The use of the names plug flow and orifice plate flow, and the confirmation of the flow regime through them, or the presentation of the criterion of the critical status for the flow regime development, are of significance.

    The objectives of the present work, therefore, are to define the critical thickness distinguishing the plug and orifice plate flows through the energy dissipaters, to analyze the factors affecting this thickness, and to establish an empirical expression as a criterion to determine the flows through the energy dissipater mentioned above.

    2. Definition of critical thickness

    For the given geometry of energy dissipater with sudden reduction and sudden enlargement forms, there are two kinds of the flows on the basis of their flow regimes when they pass through the energy dissipaters as shown in Fig.1. They could be called as orifice plate flow and plug flow respectively. For the former, the flow reduces when it enters into the orifice and there is a vortex area of ring form to separate the flow and the whole orifice surface, as shown in Fig.1(a). And for the latter the flow also reduces, but it passes along the orifice surface before leaving this orifice, see Fig.1(b). So the flow regimes depend on not only the geometric parameters, such as the contracion ratio (β), given byβ=d/D, and the ratio of the energy dissipater thickness to the tunnel diameter (α), byα=T/D, but also the hydraulic parameters, such as the velocity of the flow (u), the Reynolds number (Re) and so on. Thus, there is a critical status between the orifice plate flow and the plug flow, or in other words, a critical thickness (αc) for a given contraction ratio and certain conditions of the flow, in which the flow meets just the outlet edge of the orifice when it passes through the energy dissipater. It is the plug flow if the energy dissipater thickness is larger than the critical thickness, whereas it is the orifice plate flow when the thickness is smaller than the critical thickness.

    Fig.1 Flows through energy dissipater with sudden reduction and sudden enlargement forms

    As was stated above, the critical thickness (Tc) is parameters, including the contraction ratio (β=d/D), the viscosity of fluid (μ), the density of fluid (ρ), and the flow velocity (u). It is a function of the parameters mentioned above, and could be expressed[19]as

    3. Analysis of factors affecting critical thickness

    an index, or a criterion, to distinguish the flows through the energy dissipaters with sudden reduction and sudden enlargement forms. This thickness, of course, is related closely to geometric and hydraulic

    Based on the independent parameters ofD,uandρ, its dimensionless form is

    which implies that the critical thickness (cα) of theenergy dissipater is only the function ofβandRe.

    4. Numerical simulation

    4.1Governing equations

    The RNGk?εmodel was used to calculate the hydraulic parameters of the flows through the energy dissipaters. For the steady and incompressible flows, the governing equations of this model can be expressed as[20]

    Continuity equation:

    Momentum equation:

    whereuiis the velocity components in thexidirections,ρis the density of water,pis the pressure,νis the kinematic viscosity of water,νtis the eddy viscosity and can be given byν=C(k2/ε), in whichkis the turbulence kinetic energy,εis the dissipation rate ofkandCμ=0.085. The other parameters are

    4.2Boundary conditions

    In simulation, the boundary conditions are treated as follows: in the inflow boundary the turbulence kinetic energykinand the turbulent dissipation rateεincan be defined as respectively:

    4.3Calculation phases

    The calculation phases include: (1)β=0.40, 0.50, 0.60, 0.70 and 0.80, (2)α=0.40-1.30, and (3)D=5.00m. The purposes of the present work are: (1) for the given thickness (α) and the contraction ratio (β) of the energy dissipater, to determine Reynolds number (Re) at the occurrence of the critical status of the flow change from the plug flow to the orifice plate flow, (2) to establish the relationship between the critical thickness (αc) and the Reynolds number (Re) of the flow for the different values of the contraction ratio (β), and (3) to present an empirical expression for determining the flows through the energy dissipater.

    5. Results and discussions

    5.1Flow regime control

    Fig.2 Flow regime developments from plug flow to orifice plate flow

    Figure 2 is the case of the flow regime development through the energy dissipater with sudden reduction and sudden enlargement, in which the contraction ratioβ=0.50 and the dimensionless thicknessα=0.60. It could be seen that the flow regimes depend on not only its geometric parameters but also the hydraulic parameters through the energy dissipater. For the given energy dissipater, the flow regimes develop from the plug flow to orifice plate flow when the Reynolds number (Re) increases gradually. At smallRethe plug flow appears and the flow entering into the orifice meets the surface of the orifice before it leaves this orifice (see Figs.2(a) and 2(b)). The flow becomes the orifice plate flow whenReis large enough and there is a vortex area of the ring form between the orifice surface and the flow entering into the orifice, so that the flow leaves the orifice directly not to meet the orifice surface (see Figs.2(d) and 2(e)). In the process of the flow regime development, for certain cases, there is the critical flow distinguishing those two flows mentioned above, i.e., the plug and orifice plate flows. The flow shown in Fig.2(c), obviously, is just this kind of the critical flow, and there exists a vortex area which has almost the same length as the orifice surface, or we can say, the length of the vortex area equals the thickness of the energy dissipater (T) approximately. For this energy dissipater withβof 0.50 andαof 0.60, the critical thickness (cα) occurs whenRe=2.63× 107. We can get the critical thickness (α)

    cfor different Reynolds numbers (Re) and reduction ratios (β) by means of same procedure.

    Fig.3 Variations of critical thickness (cα) with the Reynolds number (Re) at the different reduction ratios (β)

    5.2Characteristics of critical thicknesses

    Figure 3 is the relationship of the critical thickness (cα) of the energy dissipater with sudden reduction and sudden enlargement forms and the Reynolds number (Re) at the different reduction ratios (β). The lines of the critical thickness divide the aera into two parts, i.e., the left or upper part of the lines belongs to the plug flow for each contraction ratios (β), while the right or lower part is the orifice plate flow. It could be seen that the critical thickness (cα) approximately linearly varies with the increase of the Reynolds number (Re) for each contraction ratio (β) of the energy dissipaters. Furthermore, the slopes of the lines decrease with the increase of reduction ratio, that is to say, the critical thickness decreases with the increase of the contraction ratio at the same Reynolds number (Re). Meanwhile, it could be seen that the differences of the slopes are relatively small at small contraction ratios, such asβof 0.40, 0.50 and 0.60, while the big changes of the slopes take place atβof 0.70, and 0.80 (see Fig.3). Animportant phenomenon should be noted that only the orifice plate flow occurs when the thickness (α) of the energy dissipater is smaller than 0.37 for any contraction ratio (β).

    This figure could be used as the criterion of distinguishing the flows through the energy dissipaters with sudden reduction and sudden enlargement forms. Each line expresses a kind of the critical status of the flow regime development from the plug flow into the orifice plate flow for each contraction ratio.

    The empirical expression for all the contraction ratio (β) could be obtained on the basis of Fig.3:

    It belongs to the plug flow whenα>αc, while the flow is the orifice plate one whenα<αc. Naturally, it is the critical status of the flow at the critical thickness, i.e.,α=αc. This expression is valid forβ=0.40-0.80andα=0.37-1.30.

    Let the relative errorErbetween the calculated critical thickness (αcal) by Eq.(8) and the results (αnu) of numerical simulations from Fig.3 as:

    Fig.4 Comparisons of results from Eq.(8) with data from Fig.3

    The results of the error analysis are shown in Fig.4. From this figure the maximum error of Eq.(8) is obviously smaller than 10% for eachβ. Therefore, it is effective to distinguish flows through the energy dissipater with sudden reduction and sudden enlargement forms by means of Eq.(8).

    6. Conclusions

    The concept of critical thickness is useful in the investigation of the flows through the energy dissipater with sudden reduction and sudden enlargement forms. The critical thickness is related to not only the geometric parameters but also the hydraulic parameters for the energy dissipaters mentioned above.

    The empirical expression has been obtained herein about the critical thickness, reduction ratio and Reynolds number. This expression could be used as the criterion to distinguish the flows through the energy dissipater, i.e., the plug flow and the orifice plate flow. The critical thickness calculated by Eq.(8) has its error smaller than of 10%.

    [1] RUSSELL S O., BALL J. W. Sudden- enlargement energy dissipater for Mica dam[J].Journal of the Hydraulics Division, ASCE,1967, 93(4): 41-56.

    [2] XIANG Tong, CAI Jun-mei. Study and practice of interior energy dissipater for flood discharge tunnels[J].Journal of Water Conservancy and Hydropower Technology,1999, 30(12): 69-71(in Chinese).

    [3] WU Jian-hua, CHAI Gong-chun and XIANG Tong. Hydraulic characteristics and optimization of orifice plate discharge tunnel of the Xiaolangdi hydropower project[J].Journal of Hydraulic Engineering,1995, (Suppl.): 101-109(in Chinese).

    [4] LIN Xiu-shan, SHEN Feng-shang. Orifice plate energy dissipation in Xiaolangdi hydropower project[J].Journal of Water Conservancy and Hydropower Technology,2000, 31(1): 52-54(in Chinese).

    [5] BULLEN P. R., CHEESEMAN D. J. and HUSSAIN L. A. et al. The determination of pipe contraction pressure loss coefficients for incompressible turbulent flow[J].Journal of Heat and Fluid Flow,1987, 8(2): 111-118.

    [6] WANG De-chang, YUE Pei-jiu. An experimental study on energy dissipation of orifice plate in the tube[J].Advances in Hydrodynamics,1987, 2(3): 41-50(in Chinese).

    [7] CHAI Gong-chun, WU Jian-hua and WANG He-sheng et al. Cavitation and energy dissipation of the bottom tunnel with orifice plates in the Xiaolangdi dam[C].Proceedings of International Symposium on Cavitation and Erosion in Hydraulic Structures and Machinery.Nanjing, China, 1992, 83-90.

    [8] FOSSA M., GUGLIELMINI G. Pressure drop and void fraction profiles during horizontal flow through thin andthick orifices[J].Experimental Thermal and Fluid Science,2002, 26(5): 513-523.

    [9] HE Ning, ZHAO Zhen-xing. Numerical research on orifice energy dissipation[J].Chinese Journal of Hydrodynamics,2009, 24(3): 358-363(in Chinese).

    [10] BALL J. W., TULLIS J. P. Predicting cavitation in sudden enlargements[J].Journal of the Hydraulics Division, ASCE,1975, 101(7): 857-870.

    [11] HUANG Jian-bo, LIU Bao-qing. Numerical model for predicting incipient cavitation number in a flow[J].Journal of Dalian University of Technology,1993, 33(Suppl.): 50-55(in Chinese).

    [12] ZHANG Zi-ji, CAI Jun-mei. Compromise orifice geometry to minimize pressure drop[J].Journal of Hydraulic Engineering, ASCE,1999, 125(11): 1150-1153.

    [13] TIAN Zhong, XU Wei-Lin and WANG Wei et al. Hydraulic characteristics of plug energy dissipater in flood discharge tunnel[J].Journal of Hydrodynamics,2009, 21(6): 799-806.

    [14] ZHAO Hui-qin. Discussion on multi-orifice plate energy dissipation coefficient[J].Journal of Water Conservancy and Hydropower Technology,1993, (6): 45-50(in Chinese).

    [15] CAI Jun-mei, ZHANG Zi-ji. Effects of orifice plate energy dissipaters on energy dissipation of a flood discharge tunnel[J].Journal of Hydroelectric Engineering,1994, 4(3): 48-56(in Chinese).

    [16] LIU Shan-jun, YANG Yong-quan and XU Wei-lin et al. Hydraulic characteristics of throat-type energy dissipater in discharge tunnel[J].Journal of Hydraulic Engineering,2002, (7): 42-46,52(in Chinese).

    [17] XIA Qing-fu, NI Han-gen. Numerical simulation of plug energy dissipater[J].Journal of Hydraulic Engineering,2003, (8): 37-42(in Chinese).

    [18] TIAN Zhong, XU Wei-lin and LIU Shan-jun et al. Numerical simulation of composite plug energy dissipater[J].Advances in Science and Technology of Water Resources,2005, 25(3): 8-10(in Chinese).

    [19] VICTOR L., STREETER E. and BENJAMIN W. K. et al.Fluid mechanics[M]. Ninth Edition,Bejing: Tsinghua University Press, 2003, 224-258.

    [20] YANG Yong-quan, ZHAO Hai-heng. Numerical simulation of turbulent flows passing through an orifice energy dissipater within a flood discharge tunnel[J].Journal of Hydrodynamics, Ser. B,1992, 4(3): 27-33.

    March 23, 2010, Revised June 7, 2010)

    * Project supported by the Ministry of Science and Technology of China (Grant No. 2008BAB19B04).

    Biography:WU Jian-hua (1958-), Male, Ph. D., Professor

    2010,22(3):360-365

    10.1016/S1001-6058(09)60065-2

    久久久久国产网址| 高清在线视频一区二区三区| 免费高清在线观看日韩| 午夜激情av网站| 久久久久久伊人网av| 国产亚洲av片在线观看秒播厂| 人人澡人人妻人| 免费观看在线日韩| 最近的中文字幕免费完整| 777米奇影视久久| 国产伦理片在线播放av一区| 亚洲av综合色区一区| 我的女老师完整版在线观看| 精品熟女少妇av免费看| 99久久人妻综合| 日韩av免费高清视频| 少妇猛男粗大的猛烈进出视频| 精品国产露脸久久av麻豆| 久久精品久久久久久久性| 日韩成人av中文字幕在线观看| 制服丝袜香蕉在线| av黄色大香蕉| 国产精品久久久久久av不卡| 成人毛片a级毛片在线播放| 新久久久久国产一级毛片| 国语对白做爰xxxⅹ性视频网站| 国产黄色免费在线视频| 亚洲精品中文字幕在线视频| 免费av中文字幕在线| 欧美日韩成人在线一区二区| 99热全是精品| 中文欧美无线码| 久久久欧美国产精品| 日韩三级伦理在线观看| av女优亚洲男人天堂| 国产黄频视频在线观看| 国产高清不卡午夜福利| 国产成人aa在线观看| 黄片播放在线免费| 天天操日日干夜夜撸| 亚洲在久久综合| 99热6这里只有精品| 中国国产av一级| 交换朋友夫妻互换小说| 另类精品久久| 国产精品人妻久久久影院| 男女啪啪激烈高潮av片| 国产精品久久久久久久久免| 久久久国产一区二区| 熟女电影av网| 亚洲欧美成人精品一区二区| 我要看黄色一级片免费的| 一区二区av电影网| 精品熟女少妇av免费看| 天天躁夜夜躁狠狠躁躁| 9191精品国产免费久久| 69精品国产乱码久久久| 新久久久久国产一级毛片| 嫩草影院入口| 日韩一本色道免费dvd| 伊人久久国产一区二区| 色视频在线一区二区三区| av网站免费在线观看视频| 少妇精品久久久久久久| 精品一区二区三区视频在线| 男的添女的下面高潮视频| 日日啪夜夜爽| 香蕉精品网在线| 男女边吃奶边做爰视频| 成年美女黄网站色视频大全免费| 一区二区日韩欧美中文字幕 | 乱人伦中国视频| 成人18禁高潮啪啪吃奶动态图| 如日韩欧美国产精品一区二区三区| 日韩在线高清观看一区二区三区| 丝袜脚勾引网站| 成人国产av品久久久| 一级,二级,三级黄色视频| 国产精品久久久久久久电影| 亚洲国产精品一区二区三区在线| av视频免费观看在线观看| 成年女人在线观看亚洲视频| 99热这里只有是精品在线观看| 蜜桃国产av成人99| 美女国产高潮福利片在线看| 亚洲精品av麻豆狂野| 欧美精品av麻豆av| 亚洲精品乱久久久久久| 精品少妇久久久久久888优播| 全区人妻精品视频| 自线自在国产av| 午夜老司机福利剧场| 久久久国产一区二区| 爱豆传媒免费全集在线观看| 高清黄色对白视频在线免费看| 国产深夜福利视频在线观看| 中文字幕av电影在线播放| 久久久久久久久久人人人人人人| 丝袜在线中文字幕| 美女国产视频在线观看| 欧美最新免费一区二区三区| 热99国产精品久久久久久7| 一本—道久久a久久精品蜜桃钙片| 99视频精品全部免费 在线| 水蜜桃什么品种好| 日韩精品有码人妻一区| 免费看光身美女| 女人被躁到高潮嗷嗷叫费观| av免费在线看不卡| 伊人亚洲综合成人网| 久久精品熟女亚洲av麻豆精品| 高清不卡的av网站| 如日韩欧美国产精品一区二区三区| 大话2 男鬼变身卡| 少妇精品久久久久久久| 丝袜脚勾引网站| 啦啦啦中文免费视频观看日本| 男女高潮啪啪啪动态图| 国产精品成人在线| 99re6热这里在线精品视频| 亚洲精品中文字幕在线视频| 午夜福利视频精品| 亚洲精品乱久久久久久| 欧美xxⅹ黑人| 深夜精品福利| 亚洲国产成人一精品久久久| 久久人人爽人人片av| 亚洲av电影在线观看一区二区三区| 国产成人91sexporn| 国产av精品麻豆| 精品人妻一区二区三区麻豆| 精品久久久精品久久久| 日韩大片免费观看网站| 国产av精品麻豆| 少妇被粗大的猛进出69影院 | 日韩中字成人| 久久久久久久久久成人| 国产精品嫩草影院av在线观看| 2018国产大陆天天弄谢| 国产在线免费精品| 亚洲国产成人一精品久久久| 日本av手机在线免费观看| 国产精品国产三级国产av玫瑰| 全区人妻精品视频| 女人被躁到高潮嗷嗷叫费观| 狂野欧美激情性bbbbbb| 久久久精品94久久精品| 久久99蜜桃精品久久| 老司机影院毛片| 免费黄频网站在线观看国产| 久久久久久久精品精品| 搡女人真爽免费视频火全软件| 人成视频在线观看免费观看| 另类亚洲欧美激情| 纯流量卡能插随身wifi吗| 99久久综合免费| 亚洲精品乱久久久久久| 国产福利在线免费观看视频| 黑丝袜美女国产一区| 亚洲精品中文字幕在线视频| 国产国拍精品亚洲av在线观看| 日韩精品有码人妻一区| 免费观看a级毛片全部| 2022亚洲国产成人精品| 交换朋友夫妻互换小说| 国产高清不卡午夜福利| 永久免费av网站大全| 全区人妻精品视频| 免费av不卡在线播放| 欧美最新免费一区二区三区| 亚洲国产精品专区欧美| 成人国语在线视频| 日韩中字成人| 亚洲精品色激情综合| 国产国语露脸激情在线看| 男女免费视频国产| 国产精品久久久久久久电影| 久久女婷五月综合色啪小说| 亚洲精品美女久久av网站| 精品一区二区三卡| 国产一区有黄有色的免费视频| 91成人精品电影| 美女中出高潮动态图| 国产高清三级在线| 乱人伦中国视频| 乱码一卡2卡4卡精品| 乱人伦中国视频| 赤兔流量卡办理| 男女午夜视频在线观看 | 国产成人午夜福利电影在线观看| 午夜免费男女啪啪视频观看| 欧美老熟妇乱子伦牲交| 免费少妇av软件| 国产欧美日韩一区二区三区在线| 晚上一个人看的免费电影| 九九爱精品视频在线观看| 国产精品蜜桃在线观看| 国产精品国产三级国产专区5o| 另类精品久久| 女的被弄到高潮叫床怎么办| 自线自在国产av| 亚洲伊人色综图| 亚洲av综合色区一区| 妹子高潮喷水视频| 99热全是精品| 国产高清三级在线| 老熟女久久久| 99久久人妻综合| 亚洲三级黄色毛片| 国产伦理片在线播放av一区| 日韩在线高清观看一区二区三区| 免费大片黄手机在线观看| 欧美激情极品国产一区二区三区 | 哪个播放器可以免费观看大片| 99热网站在线观看| 欧美日韩视频精品一区| 如日韩欧美国产精品一区二区三区| 亚洲美女黄色视频免费看| 蜜臀久久99精品久久宅男| 91aial.com中文字幕在线观看| 国产精品国产三级国产av玫瑰| 成人国语在线视频| 色哟哟·www| 久久人人爽av亚洲精品天堂| 日日爽夜夜爽网站| 亚洲av免费高清在线观看| 在现免费观看毛片| 久久精品夜色国产| 在线免费观看不下载黄p国产| 9热在线视频观看99| 男人舔女人的私密视频| 99热全是精品| 久久久久久人人人人人| 少妇 在线观看| 亚洲少妇的诱惑av| 看免费av毛片| 91在线精品国自产拍蜜月| 亚洲,一卡二卡三卡| 亚洲精品国产av成人精品| 亚洲色图综合在线观看| av电影中文网址| 免费看av在线观看网站| 亚洲av综合色区一区| 男人舔女人的私密视频| 久久精品国产亚洲av天美| 亚洲精品一区蜜桃| 国产成人一区二区在线| 国产又色又爽无遮挡免| 亚洲精品美女久久久久99蜜臀 | 精品亚洲成国产av| 婷婷成人精品国产| 97在线人人人人妻| 午夜免费观看性视频| 色94色欧美一区二区| 国产av精品麻豆| 22中文网久久字幕| 中文字幕人妻熟女乱码| 色婷婷av一区二区三区视频| 久久综合国产亚洲精品| 日本爱情动作片www.在线观看| 国产精品久久久久久精品电影小说| 国产日韩欧美视频二区| 如何舔出高潮| tube8黄色片| 国产成人精品在线电影| 狠狠婷婷综合久久久久久88av| 国产av码专区亚洲av| 视频在线观看一区二区三区| 日本av免费视频播放| 亚洲欧洲日产国产| 亚洲欧洲日产国产| 18禁在线无遮挡免费观看视频| 我要看黄色一级片免费的| 久久久久国产精品人妻一区二区| 欧美日韩亚洲高清精品| 熟女av电影| 五月开心婷婷网| 中文天堂在线官网| 亚洲欧美成人综合另类久久久| 一本—道久久a久久精品蜜桃钙片| 亚洲,一卡二卡三卡| 性色avwww在线观看| 另类精品久久| 如何舔出高潮| 精品国产一区二区三区四区第35| 欧美最新免费一区二区三区| 成年美女黄网站色视频大全免费| av播播在线观看一区| av免费观看日本| 一边亲一边摸免费视频| 一级毛片我不卡| 在线免费观看不下载黄p国产| 亚洲精品一区蜜桃| 亚洲国产精品999| 九九在线视频观看精品| 汤姆久久久久久久影院中文字幕| 我的女老师完整版在线观看| 国产激情久久老熟女| 国产免费视频播放在线视频| 欧美 日韩 精品 国产| 午夜免费观看性视频| 熟女av电影| 欧美精品一区二区大全| 国产一区二区在线观看av| 久久久久久久精品精品| 侵犯人妻中文字幕一二三四区| videos熟女内射| 欧美+日韩+精品| 久久99精品国语久久久| 免费播放大片免费观看视频在线观看| 中文精品一卡2卡3卡4更新| 中文字幕av电影在线播放| 欧美人与性动交α欧美软件 | 国产成人一区二区在线| 熟女电影av网| 五月伊人婷婷丁香| 国产男女内射视频| 99久久综合免费| 亚洲欧美一区二区三区国产| 伊人久久国产一区二区| 成人午夜精彩视频在线观看| 高清黄色对白视频在线免费看| 搡女人真爽免费视频火全软件| 黑人猛操日本美女一级片| 王馨瑶露胸无遮挡在线观看| 国产日韩欧美视频二区| 国产成人精品一,二区| 中文字幕人妻丝袜制服| 日韩大片免费观看网站| 人人澡人人妻人| 久久久久国产精品人妻一区二区| 内地一区二区视频在线| 80岁老熟妇乱子伦牲交| 蜜臀久久99精品久久宅男| 国产精品秋霞免费鲁丝片| 亚洲婷婷狠狠爱综合网| 99热全是精品| 国产成人精品一,二区| 国产男女超爽视频在线观看| 大香蕉久久成人网| 黑人猛操日本美女一级片| 色视频在线一区二区三区| 国产老妇伦熟女老妇高清| 亚洲少妇的诱惑av| 免费av不卡在线播放| 国产精品成人在线| 亚洲精品色激情综合| 日日摸夜夜添夜夜爱| 欧美亚洲日本最大视频资源| 日韩在线高清观看一区二区三区| 亚洲精品,欧美精品| 黄片播放在线免费| 亚洲精品成人av观看孕妇| 精品国产一区二区三区四区第35| 久久精品人人爽人人爽视色| 中文欧美无线码| 久久ye,这里只有精品| 水蜜桃什么品种好| 亚洲国产看品久久| 精品熟女少妇av免费看| 日本vs欧美在线观看视频| 少妇猛男粗大的猛烈进出视频| 性色av一级| 捣出白浆h1v1| 99香蕉大伊视频| 毛片一级片免费看久久久久| 久久久久精品性色| 日本91视频免费播放| 国产一区二区激情短视频 | 美女福利国产在线| 十八禁高潮呻吟视频| 波野结衣二区三区在线| 最黄视频免费看| 久久97久久精品| 蜜桃国产av成人99| 久久精品国产亚洲av涩爱| 汤姆久久久久久久影院中文字幕| 国产国拍精品亚洲av在线观看| 久久国内精品自在自线图片| 91成人精品电影| 国产av精品麻豆| 亚洲精品久久久久久婷婷小说| 一级a做视频免费观看| 亚洲国产精品成人久久小说| 国产精品麻豆人妻色哟哟久久| 天天操日日干夜夜撸| 天堂8中文在线网| 一二三四在线观看免费中文在 | 精品少妇黑人巨大在线播放| 国产精品成人在线| 两个人看的免费小视频| 国产亚洲一区二区精品| 考比视频在线观看| 永久免费av网站大全| 777米奇影视久久| 成人无遮挡网站| 国产在线一区二区三区精| 黑丝袜美女国产一区| 少妇的丰满在线观看| 国产精品熟女久久久久浪| 日本欧美视频一区| 高清黄色对白视频在线免费看| 久久久国产一区二区| 国产精品一区www在线观看| 日韩一区二区视频免费看| 久久久久久久久久久久大奶| 欧美另类一区| 久久精品夜色国产| 国产不卡av网站在线观看| 亚洲av国产av综合av卡| 在线观看国产h片| 免费看av在线观看网站| 91精品三级在线观看| 一区在线观看完整版| 精品少妇内射三级| 亚洲少妇的诱惑av| 国产精品久久久久久久电影| 亚洲精品色激情综合| 在线 av 中文字幕| 久久久精品免费免费高清| 亚洲精品久久久久久婷婷小说| 精品第一国产精品| 999精品在线视频| 国产精品.久久久| 国产成人91sexporn| 欧美 亚洲 国产 日韩一| 午夜免费观看性视频| 国产黄色免费在线视频| 天美传媒精品一区二区| 美女视频免费永久观看网站| 国产一区二区激情短视频 | 免费日韩欧美在线观看| h视频一区二区三区| 免费高清在线观看视频在线观看| 最近中文字幕高清免费大全6| 纯流量卡能插随身wifi吗| 夫妻性生交免费视频一级片| 女人精品久久久久毛片| a 毛片基地| 久久狼人影院| 国产黄色免费在线视频| 成人漫画全彩无遮挡| 纯流量卡能插随身wifi吗| 伦理电影大哥的女人| 久久久久精品久久久久真实原创| 午夜老司机福利剧场| 日韩电影二区| 超色免费av| 国产免费视频播放在线视频| 乱人伦中国视频| 在线看a的网站| 欧美性感艳星| 在线亚洲精品国产二区图片欧美| 免费女性裸体啪啪无遮挡网站| 多毛熟女@视频| 久久精品久久久久久久性| 看十八女毛片水多多多| 女人精品久久久久毛片| 亚洲欧美中文字幕日韩二区| 亚洲,欧美,日韩| 久久久久久伊人网av| 亚洲人与动物交配视频| 欧美激情国产日韩精品一区| 搡女人真爽免费视频火全软件| 亚洲精品日本国产第一区| 国产精品不卡视频一区二区| 国产免费视频播放在线视频| 欧美成人午夜精品| 国产白丝娇喘喷水9色精品| 亚洲精品色激情综合| 99热全是精品| 亚洲成色77777| 午夜久久久在线观看| 欧美3d第一页| 香蕉丝袜av| 中文字幕最新亚洲高清| 久久久久久久大尺度免费视频| 肉色欧美久久久久久久蜜桃| 国产精品三级大全| 在线观看www视频免费| 亚洲成色77777| 夫妻午夜视频| 狠狠精品人妻久久久久久综合| 成年美女黄网站色视频大全免费| 国产精品欧美亚洲77777| 三上悠亚av全集在线观看| 制服丝袜香蕉在线| 国产成人av激情在线播放| 乱码一卡2卡4卡精品| 汤姆久久久久久久影院中文字幕| 嫩草影院入口| 久久这里有精品视频免费| 午夜av观看不卡| 欧美人与性动交α欧美软件 | 菩萨蛮人人尽说江南好唐韦庄| a 毛片基地| 女人久久www免费人成看片| 日本猛色少妇xxxxx猛交久久| 18禁动态无遮挡网站| 在线看a的网站| 天美传媒精品一区二区| 亚洲av在线观看美女高潮| 日韩av不卡免费在线播放| 在线观看免费高清a一片| 午夜免费观看性视频| 少妇人妻 视频| 一个人免费看片子| 亚洲精品乱码久久久久久按摩| 免费日韩欧美在线观看| 香蕉丝袜av| xxxhd国产人妻xxx| videos熟女内射| 最新中文字幕久久久久| 欧美日韩亚洲高清精品| 亚洲熟女精品中文字幕| 最近的中文字幕免费完整| 亚洲成人av在线免费| 黄片播放在线免费| 国产成人精品一,二区| 一区在线观看完整版| 男人爽女人下面视频在线观看| 免费看光身美女| 国产精品免费大片| 国产欧美日韩一区二区三区在线| 男男h啪啪无遮挡| 久久av网站| 成人国语在线视频| 欧美日韩亚洲高清精品| 日本与韩国留学比较| 国产成人aa在线观看| 久久久久国产网址| √禁漫天堂资源中文www| 成年av动漫网址| 婷婷色麻豆天堂久久| 2021少妇久久久久久久久久久| 日本黄色日本黄色录像| 欧美精品国产亚洲| 丝瓜视频免费看黄片| 午夜日本视频在线| 婷婷色综合www| 18禁国产床啪视频网站| 精品午夜福利在线看| 男人舔女人的私密视频| 汤姆久久久久久久影院中文字幕| 亚洲综合精品二区| 日韩熟女老妇一区二区性免费视频| 久久青草综合色| 午夜免费男女啪啪视频观看| 成人国产av品久久久| 欧美最新免费一区二区三区| 欧美另类一区| 国产精品麻豆人妻色哟哟久久| 日韩伦理黄色片| 久久人人爽人人片av| 母亲3免费完整高清在线观看 | 26uuu在线亚洲综合色| a 毛片基地| 人成视频在线观看免费观看| 亚洲欧美清纯卡通| 大香蕉久久网| 色视频在线一区二区三区| 亚洲精品久久成人aⅴ小说| 精品一区二区三区四区五区乱码 | 国产精品秋霞免费鲁丝片| 国产乱来视频区| 18在线观看网站| 久久久久网色| 全区人妻精品视频| 亚洲成人手机| 亚洲国产日韩一区二区| av天堂久久9| 十八禁高潮呻吟视频| 免费观看a级毛片全部| 97精品久久久久久久久久精品| 午夜福利网站1000一区二区三区| 日韩免费高清中文字幕av| 国产精品.久久久| 亚洲 欧美一区二区三区| 中国美白少妇内射xxxbb| 国产片内射在线| 亚洲丝袜综合中文字幕| 成人国产麻豆网| 999精品在线视频| 国产黄频视频在线观看| 最近2019中文字幕mv第一页| 狠狠婷婷综合久久久久久88av| videossex国产| 亚洲中文av在线| 久久99热这里只频精品6学生| 人妻一区二区av| 精品少妇久久久久久888优播| 宅男免费午夜| 成人影院久久| 少妇被粗大的猛进出69影院 | 青青草视频在线视频观看| 少妇被粗大的猛进出69影院 | 亚洲四区av| 大陆偷拍与自拍| 精品国产国语对白av| 国产精品.久久久| 国产1区2区3区精品| 看免费成人av毛片| av在线播放精品| 国产一区二区三区综合在线观看 | av视频免费观看在线观看| 男女国产视频网站| 国产又色又爽无遮挡免| 久久久久人妻精品一区果冻| 丝袜人妻中文字幕| 国产精品99久久99久久久不卡 | 中文乱码字字幕精品一区二区三区| 一级毛片黄色毛片免费观看视频| 美国免费a级毛片| 大陆偷拍与自拍| 久久国内精品自在自线图片|