• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    IMPROVED DEM-CFD MODEL AND VALIDATION: A CONICAL-BASE SPOUTED BED SIMULATION STUDY*

    2010-07-02 01:37:59RONGLiangwan
    水動力學研究與進展 B輯 2010年3期

    RONG Liang-wan

    Department of Applied Mechanics and Engineering, Sun Yat-sen University, Guangzhou 510275, China,

    E-mail: rongliangwan@163.com

    ZHAN Jie-min

    Department of Applied Mechanics and Engineering, Sun Yat-sen University, Guangzhou 510275, China

    Guangdong Province Key Laboratory of Coastal Ocean Engineering, Sun Yat-sen University, Guangzhou 510275, China

    IMPROVED DEM-CFD MODEL AND VALIDATION: A CONICAL-BASE SPOUTED BED SIMULATION STUDY*

    RONG Liang-wan

    Department of Applied Mechanics and Engineering, Sun Yat-sen University, Guangzhou 510275, China,

    E-mail: rongliangwan@163.com

    ZHAN Jie-min

    Department of Applied Mechanics and Engineering, Sun Yat-sen University, Guangzhou 510275, China

    Guangdong Province Key Laboratory of Coastal Ocean Engineering, Sun Yat-sen University, Guangzhou 510275, China

    An improved and efficient DEM-CFD approach is developed for spouted beds. A nonlinear Discrete Element Method (DEM), with a concept of spring, dash-pot and friction slider, is used for tracing the movement of each individual particle. The gas flow is described by a set of reorganized governing equations. Two phases are coupled through contributions due to effects of porosity, viscosity and drag. All equations are solved with the commercial package Fluent with an implementation of User Defined Functions (UDF). To validate the improved model, a two-dimensional conical-base spouted bed is chosen as a case study. An unstructured mesh system is adopted instead of regular grid system. The simulation also takes the Saffman force and Magnus effect into account. The calculation results show good agreement with the experimental observations which are taken from the literature.

    Discrete Element Method (DEM), spouted bed, Fluent User Defined Functions (UDF), unstructured mesh

    1. Introduction

    Spouted beds provide a means of good mixing of particles and gas-particle contacting for relatively large particles. The spouted bed technique has found applications in many industrial processes, such as catalytic cracking, tablets coating, combustion and granulations of fertilizers and other materials. The successful design and control of a spouted bed requires a better knowledge of the dynamics of the systems and the behaviors of each phase. An advanced experimental technique, such as the Particle Image Velocimetry (PIV), is an expensive approach to makea measurement of these properties. Theoretical studies of gas and solids motion in spouted bed have been conducted by many researchers. A characteristic common to most of these theoretical models is that all interaction forces between phases are lumped into one term through a special approach. The viscous stress terms for both phases are often neglected[1].

    The approach based on a computer simulation has been widely used for studying dense particle systems, with an advantage of easily describing detailed and wide range flow properties[2-5]. In recent years, two most commonly used methods in the simulation of multiphase flows are the Two-Fluid Model (TFM) and the discrete element/particle method (DEM/DPM). The TFM approach treats the different phases as interpenetrating continua and a set of equations that have similar structure apply to eachphase. For the DEM/DPM method, the gas phase is described by a locally averaged Navier-Stokes equation, while the motion of each individual particle is traced by a soft-sphere or a hard-sphere model, and two phases are coupled through a term due to inter-phase momentum transfer. Both approaches have been adopted in the simulations of spout beds. The hydrodynamic behavior in spouted bed was presented by many researchers[6-9]with a two-fluid gas-solids flow model. Huilin[10]and Wan[11]gintegrated a kinetic-frictional constitutive model for dense assemblies of solids in the simulation of spouted beds. The model treated the kinetic and frictional stresses of particles additively. Using the TFM method embedded in the commercial CFD simulation package Fluent, Du[12,13]described the influences of the drag coefficient correlations, frictional stress, maximum packing limit and coefficient of restitution of particles on the CFD simulation of spouted beds.

    The TFM approach is more feasible for practical application to complex multiphase flows, however, it does not recognize the discrete character of the solid phase, and there has not yet been a quantitative analysis to assess multi-particle microstructures. The DEM/DPM approach offers a more natural way to simulate the systems of spouted bed with complex behavior. Several attempts have been made to model spouted beds using this approach[14-18]. One of the challenges confronting the solution of spouted bed is how to handle the convergence problem induced by the porosity variation. Additionally, one should also pay attention to the boundary condition at the conical surface for the V-shape spouted beds. Several researchers have developed the DEM simulations of a conical-base spouted bed under a regular grid system[19-22]. The accuracy of the simulations will not be guaranteed because additional closure equations are required for their boundary conditions.

    In this article, an efficient DEM-CFD model is developed for the spouted beds. The model is incorporated into the commercial Fluent console with a method described by Wu[23,24]. The objective of the present work is to extend the previous simulation techniques under regular grid system to an unstructured mesh system. An advantage of our approach is that it can minimize codes modifications to adapt to spouted beds of arbitrary shape.

    2. Governing equations

    2.1Particle motion

    The motion of each individual particle in the system can be described by Newtonian second law of motion. Thus, at instantt, the translational and rotational motions of particleiwith massmiand volumeViare governed by

    wherefciis the particle-particle contact force,βthe inter-phase momentum transfer coefficient,Tithe summation of torque caused by the tangential components of the contact force, andIi, andupiandωpiare the moment of inertia, linear velocity and angular velocity, respectively, of the particle. The forces on the right side of Eq.(1) are respectively due to the pressure gradient, drag, inter-particle contact forces and gravity.

    2.2Fluid motion

    The continuity and momentum equations for the fluid motion are based on local mean variables, given as

    whereuf,fρandεare the fluid velocity, density and the void fraction, respectively,τfis the viscous stress tensor which is assumed to obey the general law for a Newtonian fluid:

    where the bulk viscosityfλcan be set to zero for gases.

    The interaction between the gas phase and the particles is achieved via the coupling termSp, which is computed from

    where ΔVrepresents volume of the mesh where the particles are located. The distribution functionδlocally distributes the reaction force acting on the gas-phase to the Eulerian grid. When the volume of the smallest computational cell for the fluid is much larger than the volume of a particle, the mapping of properties from the Lagrangian particle position to the Eulerian computational grid and vice versa can be done in a straightforward manner through using the volume-weighing techniques[25].

    2.3Momentum exchange coefficient

    A proper drag model for the description of the momentum exchange coefficientβis vital for an adequate description of fluidized beds. Several drag models have been reported in literature. The drag model that is used most frequently in discrete particle models is a combination of the Ergun equation, originally developed for packed beds, at low porosities (ε<0.8):

    and the Wen-Yu relation at high porosities (ε>0.8):

    whereCdis the drag coefficient for an isolated spherical particle given by Schiller and Naumann:

    2.4Inter-particle collisions

    Various types of contact relations are available to describe the interaction between particles. The simplest contact model is the linear contact law in which the spring stiffness is a constant. The nonlinear contact model, an improvement over the linear law, can be made by considering the Hertz theory to obtain the force-deformation relation and is used in this study.

    The total contact force and torque acting on particleiin Eqs.(1) and (2) are the summation of forces due to individual neighborjand can be decomposed into their normal (fcn,ij) and tangential (fct,ij) components:

    whereRiis the radius of the particle,nijis the unit normal vector between particleiandj.

    The equations for forces calculation of the nonlinear contact model are given as follows

    Normal force:

    In whichδnis the overlap of two particles andδtis the displacement in the tangential direction. The spring coefficientsknandktare calculated from the following equations based on the Hertz and MD contact theory:

    whereEsandsσare Young’s modulus and Poisson’s ratio for the solid, respectively.Gsis the shear modulus related to Young’s modulus by

    The damping coefficientsnηandtηare determined from the method of Tanaka, given as

    whereαis a coefficient related to the restitution coefficient.

    3. Numerical strategy

    The commercial CFD package Fluent, a powerful tool to solve physical flows with complex domains, is chosen as our simulation platform. It offers a robust Algebraic Multi-Grid (AMG) solver, optional pressure-velocity coupling algorithms and discretization schemes. The UDFs provided by Fluent allows one to add customized features into the console. A limitation of a normal UDF development of the DPM was showed by Wu[23]and a re-arrangement of the flow governing equations was issued to overcome this limitation. Here we use the similar equations re-arrangement with UDF implementation in our DEM-CFD simulation showed below.

    If the gas density is assumed as a constant or suffered a subtle change, the continuity equation Eq.(3) can be re-organized as

    The term on the right hand side of Eq.(18) represents a mass source due to the porosity variation in time and space caused by the solid phase.

    The momentum Eq.(4) is handled with a distinct similarity showed as follows:

    We can see that source term Eq.(21) of the re-arranged momentum equation include contributions from the variation of porosity, effects of additional viscous force due to non-uniform distribution of porosity, and contribution from the drag between two phases. The effect of viscous force is small compared with the other two parts and thus can be ignored.

    It can be seen that the governing equations of two-phase flow may be reduced to those of single-phase with adding both mass and momentum source terms related to the porosity distribution and variation. Therefore a straightforward UDF could be incorporated into the Fluent console.

    One may note that the source term Eq.(21) of the momentum equations should be decomposed into a linearized form to enhance the stability of solution and help to raise convergence rates as follows:

    The computational strategy used for our DEM-CFD model is displayed in Fig.1. This figure shows a flow chart of the different modules that constitute the model. The porosity, gradient of porosity, and drag coefficient should be prepared before the solution of the governing equations of the gas phase starts. With the computed gas flow field, a DEM module is performed to update the properties of each individual particle.

    Fig.1 Flow chart of improved DEM-CFD model computation

    4. Validation

    In order to show the applicability of our improved DEM-CFD model to the spouted beds with irregular boundaries, a common type of V-shape is considered here. We perform a two-dimensional simulation of the experiment conducted by Zhao[18]. The computed region is filled with a number of 894 unstructured elements. The gas velocity is significant between the central spout region and the annular dense region in a spouted bed. The Saffman lift force due to large gas velocity gradient should not be neglected and is calculated by the Mei empirical fit

    The Magnus lift force due to the velocity difference between the different sides of the particle may be also taken into account and is calculated as follows[26]:

    Table 1 Parameters used for the present simulation

    Initially, all particles with an equal diameter are randomly positioned in the domain and allowed to fall down only under gravity. A stable packing with a static height of 100 mm can be attained after sufficiently long time. The packing configuration is finally used as the initial input data for our simulation. The parameters chosen for the present simulation are provided in Table 1.

    Fig. 2 Time series of bed pressure drop

    The residual of the computation will decrease to an order of 10-4after 30 iterations in each flow time step. The convergence history demonstrates a good stability. Figure 2 shows the result of the bed pressure drop varying with time. Two distinct regions can be identified: the start-up (t<0.7s) and stable fluidization stages. Compared with the bed pressure drop at the stable stage, a much higher value is detected at the start-up region because the need to overcome the inter-particle locking and friction. Figure 3 is a plot of the particles distribution at the start-up stage. The particles are pushed to both laterals and a bubble forms at the center having a shape of the domain. When the lateral particles slide along the V-shape wall and back to the bottom of the bed, the stable fluidization stage follows. An oscillation cycle period of 130 ms-150 ms can be identified from the second stage in Fig.2, a little shorter than that of 150 ms-160 ms observed in the experiment[18].

    Fig. 3 Particles distribution at the start-up stage

    Typical flow pattern of particles at different time in the conical-base spouted bed are showed in Fig.4. Three distinct characterized regions, i.e., the spout, annulus and fountain flow regions, can be clearly identified. In a stable flow stage, a “neck” marked with dense particles can be found in the central spout area. The neck starts at the zone near the inlet, moves upwards with the incoming gas and finally disappears at the end of the spout. The particles in the neck region move with a highest speed compared to those in other regions. They appear as a group instead of individual particles. As the neck moves upwardg, additional particles from the annulus can be entrained and make the neck grow progressively denser. The spout becomes almost “choked” when they approach the end of the spout. Finally the choked particles will scatter in an axial direction like an explosion. The patterns of particles flow described above agree well with the experimental observations by Zhao[18].

    Figure 5(a) indicates a comparison of longitudinal distribution of particle vertical velocity on the spout midline to the experiment and the simulation by Zhao[18]. It can be seen that the particles entrained from the annulus near the inlet accelerate in a short time. The maximum particle vertical velocity evaluated in this study is 1.1 m/s, a bit higher than that in the experiment. Then particles decelerate gradually in the fountain zone. Our simulation evaluates a much higher particle vertical velocity in the fountain region and particles thus reach a larger maximum altitude of 180 mm, compared to 155 mm of the experimental observation. This may be due to the coarse evaluation of the real porosity with the 2-D to 3-D transformed correlation showed below

    Hence underestimation of the porosity will cause the drag over-predicted with the Gidspow empirical correlation. Furthermore, the trend of the particle vertical velocity curve of our simulation is quite similar to that of the simulation performed with a three-dimensional DPM method by Wu[23].

    A comparison of the lateral profile of particle vertical velocity in the spout region between the simulations and experiments at various bed levels is showed in Fig.5(b). The simulations agree well with the experiments at all bed heights.

    Fig. 4 Flow patterns of particles in conical-base spouted bed

    Fig.5 Distribution of particle vertical velocities in the spout

    Figure 6(b) outlines the experimental spout borders where vertical particle velocity is zero. The spout width of this simulation yielded from both the borders is larger than that of the experiments, as showed in Fig.6(a). The largest difference, located at the upper end of the spout, is approximately 15 mm. Figure 6(a) also shows the time-average particle velocity vectors. It can be seen that the particle velocity magnitude in the spout is quite large, about 9 times of that in the annulus, which also well agreeswith the experimental observation.

    Fig.6 Spout contour and time-averaged flow fields of particles in conical-base spouted bed

    5. Conclusion

    An efficient DEM-CFD model for spouted beds has been developed by a combination of the discrete element method and a set of re-organized governing equations for the gas phase. The flows of two phases are solved by the Fluent package with a UDF implementation under an unstructured mesh system. The effectiveness of the present model is demonstrated through a simulation of particle motion and gas flow pattern in a two-dimensional conical-based spouted bed. The numerical simulation shows that the computational procedure is of good stability and convergence. The results are compared with measurements reported in literature and also with other researchers’ simulation results. The characteristic particle flow patterns and spouted-bed behaviors, such as annulus, spout and fountain, are reproduced in our simulation. The present investigation predicts a similar oscillation cycle period to the measurement. Particle velocity profiles in the spout and annulus are found to agree with the experimental observations, but a larger value for those in the fountain region. The spout width identified by our simulation is a bit larger than that in the experiment.

    Acknowledgement

    The authors wish to thank Dr. Wu Chun-liang of Guangdong Ocean University for useful discussions.

    [1] HUILIN L., YONGLI S. and YANG L. et al. Numerical simulations of hydrodynamic behaviour in spouted beds[J].Chemical Engineering Research and Design,2001, 79(5): 593-599.

    [2] WANG Li-yang, ZHENG Zhi-chu and WU Ying-xiang et al. Numerical and experimental study on liquid-solid flow in a hydrocyclone[J].Journal of Hydrodynamics,2009, 21(3): 408-414.

    [3] WU Chun-liang, ZHAN Jie-min. Numerical prediction of particle mixing behavior in a bubbling fluidized bed[J].Journal of Hydrodynamics, Ser. B,2007, 19(3): 335-341.

    [4] XIE Ming-liang, ZHOU Huai-chun and ZHANG Yindi. Hydrodynamics stability of bickley jet with particle laden flow[J].Journal of Hydrodynamics,2009, 21(5): 608-613.

    [5] ZHANG Jin-feng, ZHANG Qing-he. Hydrodynamics of fractal flocs during settling[J].Journal of Hydrodynamics,2009, 21(3): 347-351.

    [6] DUARTE C. R., MURATA V. V. and BARROZO M. A. S. A study of the fluid dynamics of the spouted bed using CFD[J].Brazilian Journal of Chemical Engineering,2005, 22(2): 263-270.

    [7] GRYCZKA O., HEINRICH S. and DEEN N. G. et al. Characterization and CFD-modeling of the hydrodynamics of a prismatic spouted bed apparatus[J].Chemical Engineering Science,2009, 64(14): 3352-3375.

    [8] WANG Z. G., BI H. T. and LIM C. J. Numerical simulations of hydrodynamic behaviors in conical spouted beds[J].China Particuology,2006, 4(3-4): 194-203.

    [9] WU Z. H., MUJUMDAR A. S. CFD modeling of the gas–particle flow behavior in spouted beds[J].Powder Technology,2008, 183(2): 260-272.

    [10] HUILIN L., YURONG H. and WENTIE L. et al. Computer simulations of gas–solid flow in spouted beds using kinetic–frictional stress model of granular flow[J].Chemical Engineering Science,2004, 59(4): 865-878.

    [11] SHUYAN W., XIANG L. and HUILIN L. et al. Numerical simulations of flow behavior of gas and particles in spouted beds using frictional-kinetic stresses model[J].Powder Technology,2009, 196(2): 184-193.

    [12] DU W., BAO X. and XU J. et al. Computational fluid dynamics (CFD) modeling of spouted bed: Assessment of drag coefficient correlations[J].Chemical Engineering Science,2006, 61(5): 1401-1420.

    [13] DU W., BAO X. and XU J. et al. Computational fluid dynamics (CFD) modeling of spouted bed: Influence of frictional stress, maximum packing limit and coefficient of restitution of particles[J].Chemical Engineering Science,2006, 61(14): 4558-4570.

    [14] LINK J. M., CUYPERS L. A. and DEEN N. G. et al. Flow regimes in a spout–fluid bed: A combined experimental and simulation study[J].Chemical Engineering Science,2005, 60(13): 3425-3442.

    [15] TAKEUCHI S., WANG S. and RHODES M. J. Discrete element study of particle circulation in a 3-D spouted bed[J].Chemical Engineering Science,2005, 60(5): 1267-1276.

    [16] TAKEUCHI S., WANG S. and RHODES M. Discrete element simulation of a flat-bottomed spouted bed in the 3-D cylindrical coordinate system[J].Chemical Engineering Science,2004, 59(17): 3495-3504.

    [17] ZHAO X. L., LI S. Q. and LIU G. Q. et al. Flow patterns of solids in a two-dimensional spouted bed with draft plates: PIV measurement and DEM simulations[J].Powder Technology,2007, 183(1): 79-87.

    [18] ZHAO X. L., LI S. Q. and LIU G. Q. et al. DEM simulation of the particle dynamics in two-dimensional spouted beds[J].Powder Technology,2008, 184(2): 205-213.

    [19] KAWAGUCHI T., SAKAMOTO M. and TANAKA T. et al. Quasi-three-dimensional numerical simulation of spouted beds in cylinder[J].Powder Technology,2000, 109(1-3): 3-12.

    [20] LIMTRAKUL S., BOONSRIRAT A. and VATANATHAM T. DEM modeling and simulation of a catalytic gas–solid fluidized bed reactor: A spouted bed as a case study[J].Chemical Engineering Science,2004, 59(22-23): 5225-5231.

    [21] SWASDISEVI T., TANTHAPANICHAKOON W. and CHARINPANITKUL T. et al. Prediction of gas-particle dynamics and heat transfer in a two-dimensional spouted bed[J].Advanced Powder Technology,2005, 16(3): 275-293.

    [22] ZHONG W., XIONG Y. and YUAN Z. et al. DEM simulation of gas–solid flow behaviors in spout-fluid bed[J].Chemical Engineering Science,2006, 61(5): 1571-1584.

    [23] WU C. L., BERROUK A. S. and NANDAKUMAR K. Three-dimensional discrete particle model for gas-solid fluidized beds on unstructured mesh[J].Chemical Engineering Journal,2009, 152(2-3): 514-529

    [24] WU C. L., ZHAN J. M. and LI Y. S. et al. Dense particulate flow model on unstructured mesh[J].Chemical Engineering Science,2006, 61(17): 5726-5741.

    [25] DEEN N. G., Van SINT ANNALAND M. and Van Der HOEF M. A. et al. Review of discrete particle modeling of fluidized beds[J].Chemical Engineering Science,2007, 62(1-2): 28-44.

    [26] MICHAELIDES E.Particles, bubbles and drops: Their motion, heat and mass transfer[M]. Singapore: World Scientific Publish Co. Inc., 2006.

    September 23, 2009, Revised March 30, 2010)

    * Biography: RONG Liang-wan (1980-), Male, Ph. D.

    ZHAN Jie-min,

    E-mail: stszjm@mail.sysu.edu.cn

    2010,22(3):351-359

    10.1016/S1001-6058(09)60064-0

    黄色片一级片一级黄色片| 免费一级毛片在线播放高清视频| 国产熟女xx| 亚洲一区二区三区色噜噜| 美女午夜性视频免费| 精品久久久久久久毛片微露脸| 一本一本综合久久| 淫妇啪啪啪对白视频| 天天一区二区日本电影三级| av天堂在线播放| 国产一区二区在线av高清观看| 色播亚洲综合网| 最近最新免费中文字幕在线| 亚洲国产欧洲综合997久久,| 久久精品aⅴ一区二区三区四区| 色哟哟哟哟哟哟| 亚洲精品中文字幕在线视频| 国产一区二区三区视频了| 此物有八面人人有两片| 亚洲中文av在线| 麻豆成人午夜福利视频| 天堂av国产一区二区熟女人妻 | 99久久久亚洲精品蜜臀av| 国产欧美日韩一区二区三| 亚洲国产精品成人综合色| 精品欧美一区二区三区在线| 亚洲午夜精品一区,二区,三区| 久久久国产欧美日韩av| 91av网站免费观看| 一卡2卡三卡四卡精品乱码亚洲| 特级一级黄色大片| 午夜福利欧美成人| 麻豆av在线久日| 午夜福利成人在线免费观看| www日本在线高清视频| 亚洲欧美日韩无卡精品| 18禁国产床啪视频网站| 日本精品一区二区三区蜜桃| 在线看三级毛片| 欧美中文综合在线视频| 国产99久久九九免费精品| 看片在线看免费视频| 欧美黄色淫秽网站| 1024手机看黄色片| 美女 人体艺术 gogo| 国产69精品久久久久777片 | 亚洲精品一区av在线观看| 欧美日本视频| 精品福利观看| 男女午夜视频在线观看| 国产一区二区激情短视频| 桃红色精品国产亚洲av| 欧美一级毛片孕妇| 亚洲中文日韩欧美视频| 欧美日韩黄片免| 一级毛片精品| 国产成人av教育| 国产精品亚洲av一区麻豆| 人妻久久中文字幕网| 两人在一起打扑克的视频| 一级a爱片免费观看的视频| 国产探花在线观看一区二区| 露出奶头的视频| www日本在线高清视频| 国产视频内射| 成年女人毛片免费观看观看9| 可以在线观看的亚洲视频| 欧美极品一区二区三区四区| 无限看片的www在线观看| 久久人人精品亚洲av| 久久中文字幕一级| 99热这里只有精品一区 | 又黄又粗又硬又大视频| 亚洲美女视频黄频| 丝袜人妻中文字幕| 啦啦啦韩国在线观看视频| 麻豆久久精品国产亚洲av| 亚洲精品美女久久久久99蜜臀| 制服诱惑二区| 窝窝影院91人妻| 99久久久亚洲精品蜜臀av| 亚洲国产欧美人成| 可以免费在线观看a视频的电影网站| 国产成+人综合+亚洲专区| 一级a爱片免费观看的视频| 69av精品久久久久久| 亚洲男人的天堂狠狠| 国产精品1区2区在线观看.| 久久这里只有精品中国| 99在线视频只有这里精品首页| 国产99久久九九免费精品| 91字幕亚洲| 黄色视频,在线免费观看| 国产97色在线日韩免费| 久久国产精品影院| 中文字幕人妻丝袜一区二区| e午夜精品久久久久久久| 又黄又粗又硬又大视频| 男女做爰动态图高潮gif福利片| 中国美女看黄片| 成人18禁高潮啪啪吃奶动态图| 国产午夜福利久久久久久| 亚洲av成人av| 女人被狂操c到高潮| 天天一区二区日本电影三级| 欧美黄色片欧美黄色片| 午夜精品久久久久久毛片777| 久久 成人 亚洲| 最好的美女福利视频网| a级毛片在线看网站| 国产又黄又爽又无遮挡在线| 国内少妇人妻偷人精品xxx网站 | 亚洲第一欧美日韩一区二区三区| 日韩中文字幕欧美一区二区| a级毛片a级免费在线| 国产视频内射| 精品不卡国产一区二区三区| 国产三级黄色录像| 精品日产1卡2卡| 亚洲精品一卡2卡三卡4卡5卡| 91麻豆精品激情在线观看国产| 一本久久中文字幕| 色综合婷婷激情| 美女免费视频网站| 国产精华一区二区三区| 亚洲午夜理论影院| 亚洲美女视频黄频| 国产成人av教育| 老司机深夜福利视频在线观看| avwww免费| 国产成人影院久久av| 50天的宝宝边吃奶边哭怎么回事| 国产亚洲精品第一综合不卡| 国产高清有码在线观看视频 | 久久人人精品亚洲av| 亚洲国产精品成人综合色| 国产aⅴ精品一区二区三区波| 人妻夜夜爽99麻豆av| 国产一区二区三区在线臀色熟女| 狂野欧美激情性xxxx| 老熟妇乱子伦视频在线观看| 床上黄色一级片| 国产区一区二久久| 全区人妻精品视频| 叶爱在线成人免费视频播放| 欧美久久黑人一区二区| 女人高潮潮喷娇喘18禁视频| 夜夜爽天天搞| 国产精品野战在线观看| 两个人免费观看高清视频| 给我免费播放毛片高清在线观看| netflix在线观看网站| 99re在线观看精品视频| 嫁个100分男人电影在线观看| 脱女人内裤的视频| 美女大奶头视频| 亚洲精品久久国产高清桃花| 色综合婷婷激情| 亚洲国产看品久久| 久久香蕉激情| 免费无遮挡裸体视频| 美女高潮喷水抽搐中文字幕| 性欧美人与动物交配| 国产精品免费视频内射| 亚洲性夜色夜夜综合| 成人三级做爰电影| av免费在线观看网站| 欧美黑人欧美精品刺激| 又爽又黄无遮挡网站| 精品午夜福利视频在线观看一区| 全区人妻精品视频| 中文字幕熟女人妻在线| 在线播放国产精品三级| 亚洲精品在线观看二区| a在线观看视频网站| 国产精品电影一区二区三区| 亚洲美女视频黄频| 免费在线观看黄色视频的| 国产亚洲精品一区二区www| 日本 av在线| 成年人黄色毛片网站| 日日摸夜夜添夜夜添小说| 此物有八面人人有两片| 国产三级黄色录像| 国产高清视频在线观看网站| 男女床上黄色一级片免费看| 久久精品综合一区二区三区| 久久久久久久精品吃奶| 99热6这里只有精品| 黄色a级毛片大全视频| 免费无遮挡裸体视频| 日韩欧美精品v在线| 欧美一区二区国产精品久久精品 | 免费在线观看日本一区| 国产乱人伦免费视频| 色在线成人网| a级毛片a级免费在线| 免费在线观看亚洲国产| 国产精品野战在线观看| 日韩欧美 国产精品| 美女高潮喷水抽搐中文字幕| e午夜精品久久久久久久| 亚洲专区国产一区二区| 国产伦人伦偷精品视频| 国产99久久九九免费精品| 搡老岳熟女国产| 香蕉国产在线看| 国产成+人综合+亚洲专区| 国产私拍福利视频在线观看| 精品无人区乱码1区二区| 成年版毛片免费区| 床上黄色一级片| 精品日产1卡2卡| 免费在线观看影片大全网站| 日本免费a在线| 国产精品 欧美亚洲| 亚洲专区中文字幕在线| 午夜福利在线观看吧| 亚洲av中文字字幕乱码综合| 国产主播在线观看一区二区| 女警被强在线播放| 熟女电影av网| 亚洲一码二码三码区别大吗| 麻豆一二三区av精品| 午夜a级毛片| 别揉我奶头~嗯~啊~动态视频| 天天一区二区日本电影三级| 欧美日韩中文字幕国产精品一区二区三区| 婷婷丁香在线五月| 亚洲av成人不卡在线观看播放网| 制服诱惑二区| 亚洲午夜精品一区,二区,三区| 床上黄色一级片| 国产激情久久老熟女| 天天躁夜夜躁狠狠躁躁| 91国产中文字幕| 特级一级黄色大片| 黄色视频不卡| 观看免费一级毛片| 美女午夜性视频免费| 一级作爱视频免费观看| 日韩中文字幕欧美一区二区| 亚洲黑人精品在线| 熟妇人妻久久中文字幕3abv| 变态另类丝袜制服| √禁漫天堂资源中文www| 成人国产一区最新在线观看| 久久久久九九精品影院| 国产黄片美女视频| 精品国产乱码久久久久久男人| 淫妇啪啪啪对白视频| 美女午夜性视频免费| 可以在线观看的亚洲视频| 久久国产精品影院| 亚洲aⅴ乱码一区二区在线播放 | 日韩av在线大香蕉| 色综合婷婷激情| 国产91精品成人一区二区三区| 国产区一区二久久| 欧美+亚洲+日韩+国产| 18禁裸乳无遮挡免费网站照片| 亚洲午夜理论影院| 亚洲国产欧美人成| 成人18禁高潮啪啪吃奶动态图| 亚洲国产精品sss在线观看| 久9热在线精品视频| 老熟妇乱子伦视频在线观看| 我要搜黄色片| 看免费av毛片| 色综合亚洲欧美另类图片| 夜夜夜夜夜久久久久| 国产亚洲av高清不卡| 丝袜美腿诱惑在线| 男男h啪啪无遮挡| 国产精品免费一区二区三区在线| 亚洲第一欧美日韩一区二区三区| 女人高潮潮喷娇喘18禁视频| 午夜老司机福利片| 熟女电影av网| 午夜福利在线观看吧| 搞女人的毛片| 亚洲性夜色夜夜综合| 啦啦啦观看免费观看视频高清| 一区福利在线观看| 可以免费在线观看a视频的电影网站| 999久久久国产精品视频| 亚洲精品久久国产高清桃花| 国产精品一区二区精品视频观看| 搡老妇女老女人老熟妇| 亚洲成av人片在线播放无| 波多野结衣高清作品| 国产久久久一区二区三区| 村上凉子中文字幕在线| 操出白浆在线播放| 午夜视频精品福利| 1024手机看黄色片| 妹子高潮喷水视频| 亚洲精华国产精华精| 熟妇人妻久久中文字幕3abv| 国产精品精品国产色婷婷| 啦啦啦观看免费观看视频高清| 久久天堂一区二区三区四区| 国内久久婷婷六月综合欲色啪| 2021天堂中文幕一二区在线观| 午夜精品久久久久久毛片777| 女同久久另类99精品国产91| a级毛片在线看网站| 超碰成人久久| 男女之事视频高清在线观看| 熟妇人妻久久中文字幕3abv| 波多野结衣高清作品| 麻豆av在线久日| 日本 av在线| 免费在线观看完整版高清| 国产精品 国内视频| 国产精品电影一区二区三区| 久久国产乱子伦精品免费另类| 国模一区二区三区四区视频 | av在线天堂中文字幕| 亚洲欧美精品综合久久99| 亚洲中文字幕日韩| 国产av不卡久久| 久久久久国产一级毛片高清牌| 国产一区二区三区视频了| 狠狠狠狠99中文字幕| 日韩免费av在线播放| 久久久久久久午夜电影| 免费在线观看黄色视频的| 亚洲欧美精品综合一区二区三区| 国产亚洲精品第一综合不卡| 99国产精品一区二区蜜桃av| 高清在线国产一区| 小说图片视频综合网站| 长腿黑丝高跟| 久9热在线精品视频| 亚洲欧美日韩高清在线视频| 久久久久久九九精品二区国产 | 最新美女视频免费是黄的| 亚洲专区中文字幕在线| а√天堂www在线а√下载| 黄色丝袜av网址大全| 久久久久久九九精品二区国产 | 国产免费男女视频| 免费av毛片视频| 无人区码免费观看不卡| 欧美日韩瑟瑟在线播放| 岛国视频午夜一区免费看| 日本一区二区免费在线视频| 日韩精品中文字幕看吧| 九色成人免费人妻av| 中出人妻视频一区二区| 国产一级毛片七仙女欲春2| 制服丝袜大香蕉在线| 9191精品国产免费久久| 亚洲狠狠婷婷综合久久图片| 久久久久免费精品人妻一区二区| a级毛片a级免费在线| 麻豆一二三区av精品| 麻豆国产97在线/欧美 | 欧美午夜高清在线| 亚洲天堂国产精品一区在线| 午夜免费观看网址| 亚洲天堂国产精品一区在线| 日韩欧美三级三区| 亚洲欧美日韩高清在线视频| 久久精品影院6| 人妻丰满熟妇av一区二区三区| 88av欧美| 欧美一级a爱片免费观看看 | 香蕉久久夜色| 性色av乱码一区二区三区2| 国产精品亚洲美女久久久| 俄罗斯特黄特色一大片| 成人永久免费在线观看视频| 91av网站免费观看| 两性午夜刺激爽爽歪歪视频在线观看 | 久99久视频精品免费| 午夜视频精品福利| 99久久国产精品久久久| 亚洲av成人不卡在线观看播放网| 午夜老司机福利片| 午夜影院日韩av| 亚洲一区高清亚洲精品| 村上凉子中文字幕在线| 国产97色在线日韩免费| 啦啦啦免费观看视频1| 色综合欧美亚洲国产小说| 18禁黄网站禁片免费观看直播| 国产成人欧美在线观看| av在线播放免费不卡| 熟女少妇亚洲综合色aaa.| 午夜福利欧美成人| 亚洲第一电影网av| 男女床上黄色一级片免费看| 日日爽夜夜爽网站| 听说在线观看完整版免费高清| 欧美日韩国产亚洲二区| а√天堂www在线а√下载| 又黄又爽又免费观看的视频| 亚洲av熟女| 国产黄片美女视频| 亚洲欧美一区二区三区黑人| 国产1区2区3区精品| 三级男女做爰猛烈吃奶摸视频| 亚洲精品一卡2卡三卡4卡5卡| 变态另类丝袜制服| 人妻久久中文字幕网| 999久久久国产精品视频| 成人av一区二区三区在线看| 亚洲精品美女久久久久99蜜臀| 免费在线观看亚洲国产| 欧美乱色亚洲激情| 久久这里只有精品中国| 欧美色欧美亚洲另类二区| 国内少妇人妻偷人精品xxx网站 | 久久精品91无色码中文字幕| netflix在线观看网站| 欧美黑人欧美精品刺激| 亚洲人成伊人成综合网2020| 人人妻人人看人人澡| 国产在线观看jvid| а√天堂www在线а√下载| 亚洲人成伊人成综合网2020| 亚洲国产精品合色在线| 亚洲av成人av| 欧美中文日本在线观看视频| 国产精品免费视频内射| 国内毛片毛片毛片毛片毛片| 首页视频小说图片口味搜索| 在线观看免费视频日本深夜| 国产精品一及| 日本一区二区免费在线视频| 国产免费男女视频| 国产精品一区二区三区四区久久| 热99re8久久精品国产| 欧美精品啪啪一区二区三区| 欧美午夜高清在线| 久99久视频精品免费| 好看av亚洲va欧美ⅴa在| 一区福利在线观看| 日本撒尿小便嘘嘘汇集6| 日本黄色视频三级网站网址| 欧美成人性av电影在线观看| 久久 成人 亚洲| 免费av毛片视频| e午夜精品久久久久久久| 亚洲中文字幕日韩| 国产精品av久久久久免费| svipshipincom国产片| 亚洲美女黄片视频| 真人一进一出gif抽搐免费| 三级男女做爰猛烈吃奶摸视频| 香蕉丝袜av| 免费在线观看日本一区| 一进一出好大好爽视频| 精品日产1卡2卡| 三级毛片av免费| 久99久视频精品免费| 亚洲人成网站在线播放欧美日韩| 亚洲av第一区精品v没综合| 怎么达到女性高潮| 国产精品免费一区二区三区在线| 国产成人啪精品午夜网站| 欧美av亚洲av综合av国产av| a级毛片在线看网站| 国产69精品久久久久777片 | 777久久人妻少妇嫩草av网站| 欧美日韩乱码在线| 成人精品一区二区免费| 久久精品亚洲精品国产色婷小说| 国产免费av片在线观看野外av| 校园春色视频在线观看| 国产高清视频在线播放一区| 久久久久九九精品影院| 久热爱精品视频在线9| 99久久无色码亚洲精品果冻| 国产精品乱码一区二三区的特点| 国产精品自产拍在线观看55亚洲| 啦啦啦韩国在线观看视频| 国产高清视频在线观看网站| 夜夜躁狠狠躁天天躁| 国产精品一区二区三区四区久久| 亚洲欧美日韩高清在线视频| 久久久久久久久久黄片| 精品一区二区三区av网在线观看| 亚洲男人天堂网一区| 91老司机精品| 变态另类丝袜制服| 午夜精品一区二区三区免费看| 深夜精品福利| 久久午夜综合久久蜜桃| 在线永久观看黄色视频| 成人亚洲精品av一区二区| 神马国产精品三级电影在线观看 | 亚洲午夜理论影院| 久久久国产精品麻豆| 脱女人内裤的视频| 国产精品一区二区三区四区久久| 中出人妻视频一区二区| 久久久国产欧美日韩av| 可以免费在线观看a视频的电影网站| 国产在线观看jvid| 欧美另类亚洲清纯唯美| av国产免费在线观看| 在线看三级毛片| 12—13女人毛片做爰片一| 精品欧美国产一区二区三| 成人av一区二区三区在线看| 久久久国产成人免费| 国产爱豆传媒在线观看 | 亚洲专区国产一区二区| 久久精品国产亚洲av高清一级| 免费在线观看日本一区| 人人妻人人看人人澡| 午夜免费成人在线视频| 国产成人aa在线观看| 两个人的视频大全免费| tocl精华| 午夜两性在线视频| 真人一进一出gif抽搐免费| 亚洲专区中文字幕在线| 国内精品久久久久久久电影| 无遮挡黄片免费观看| 法律面前人人平等表现在哪些方面| 他把我摸到了高潮在线观看| 男女那种视频在线观看| 亚洲熟妇中文字幕五十中出| 看片在线看免费视频| 国产av不卡久久| 男男h啪啪无遮挡| 极品教师在线免费播放| 国产亚洲精品综合一区在线观看 | 精品午夜福利视频在线观看一区| 成人特级黄色片久久久久久久| 亚洲精品色激情综合| 久久久精品大字幕| 国产精品九九99| 欧美高清成人免费视频www| 亚洲av电影在线进入| 亚洲av成人一区二区三| 国产伦人伦偷精品视频| 欧美不卡视频在线免费观看 | 久久 成人 亚洲| a级毛片a级免费在线| 国产激情久久老熟女| 又黄又粗又硬又大视频| 天天添夜夜摸| 两性午夜刺激爽爽歪歪视频在线观看 | 夜夜爽天天搞| 久久国产精品影院| 日本一二三区视频观看| 在线观看www视频免费| 少妇裸体淫交视频免费看高清 | 欧美极品一区二区三区四区| 国产一区二区在线观看日韩 | 成人av一区二区三区在线看| 亚洲成人久久爱视频| 18禁观看日本| 国产av又大| 欧洲精品卡2卡3卡4卡5卡区| 男女下面进入的视频免费午夜| 成人三级做爰电影| 男女做爰动态图高潮gif福利片| 欧美大码av| 十八禁网站免费在线| 啦啦啦观看免费观看视频高清| 国产成人精品久久二区二区免费| 国产在线观看jvid| svipshipincom国产片| 久久中文看片网| 一级毛片女人18水好多| 十八禁网站免费在线| 看黄色毛片网站| 91成年电影在线观看| 色老头精品视频在线观看| 久久九九热精品免费| 婷婷精品国产亚洲av在线| 欧美极品一区二区三区四区| 国产精品免费一区二区三区在线| 黄色毛片三级朝国网站| а√天堂www在线а√下载| 女同久久另类99精品国产91| 国产麻豆成人av免费视频| 国产精品久久久av美女十八| 99热这里只有精品一区 | 夜夜看夜夜爽夜夜摸| bbb黄色大片| 啦啦啦免费观看视频1| 午夜久久久久精精品| 女生性感内裤真人,穿戴方法视频| 超碰成人久久| 国产精品久久视频播放| 精品一区二区三区视频在线观看免费| 最近在线观看免费完整版| ponron亚洲| 国产69精品久久久久777片 | 亚洲国产精品999在线| 欧美成人免费av一区二区三区| 精华霜和精华液先用哪个| 精品日产1卡2卡| 男女做爰动态图高潮gif福利片| 精品久久久久久成人av| 精品国产美女av久久久久小说| 美女扒开内裤让男人捅视频| 国产蜜桃级精品一区二区三区| 国产单亲对白刺激| 国产又色又爽无遮挡免费看| 亚洲男人的天堂狠狠| 国产精品免费一区二区三区在线| 精品久久久久久久久久免费视频| 欧美黑人精品巨大| 国模一区二区三区四区视频 | 日韩三级视频一区二区三区| 麻豆av在线久日| 黄色成人免费大全|