• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    IMPROVED DEM-CFD MODEL AND VALIDATION: A CONICAL-BASE SPOUTED BED SIMULATION STUDY*

    2010-07-02 01:37:59RONGLiangwan
    水動力學研究與進展 B輯 2010年3期

    RONG Liang-wan

    Department of Applied Mechanics and Engineering, Sun Yat-sen University, Guangzhou 510275, China,

    E-mail: rongliangwan@163.com

    ZHAN Jie-min

    Department of Applied Mechanics and Engineering, Sun Yat-sen University, Guangzhou 510275, China

    Guangdong Province Key Laboratory of Coastal Ocean Engineering, Sun Yat-sen University, Guangzhou 510275, China

    IMPROVED DEM-CFD MODEL AND VALIDATION: A CONICAL-BASE SPOUTED BED SIMULATION STUDY*

    RONG Liang-wan

    Department of Applied Mechanics and Engineering, Sun Yat-sen University, Guangzhou 510275, China,

    E-mail: rongliangwan@163.com

    ZHAN Jie-min

    Department of Applied Mechanics and Engineering, Sun Yat-sen University, Guangzhou 510275, China

    Guangdong Province Key Laboratory of Coastal Ocean Engineering, Sun Yat-sen University, Guangzhou 510275, China

    An improved and efficient DEM-CFD approach is developed for spouted beds. A nonlinear Discrete Element Method (DEM), with a concept of spring, dash-pot and friction slider, is used for tracing the movement of each individual particle. The gas flow is described by a set of reorganized governing equations. Two phases are coupled through contributions due to effects of porosity, viscosity and drag. All equations are solved with the commercial package Fluent with an implementation of User Defined Functions (UDF). To validate the improved model, a two-dimensional conical-base spouted bed is chosen as a case study. An unstructured mesh system is adopted instead of regular grid system. The simulation also takes the Saffman force and Magnus effect into account. The calculation results show good agreement with the experimental observations which are taken from the literature.

    Discrete Element Method (DEM), spouted bed, Fluent User Defined Functions (UDF), unstructured mesh

    1. Introduction

    Spouted beds provide a means of good mixing of particles and gas-particle contacting for relatively large particles. The spouted bed technique has found applications in many industrial processes, such as catalytic cracking, tablets coating, combustion and granulations of fertilizers and other materials. The successful design and control of a spouted bed requires a better knowledge of the dynamics of the systems and the behaviors of each phase. An advanced experimental technique, such as the Particle Image Velocimetry (PIV), is an expensive approach to makea measurement of these properties. Theoretical studies of gas and solids motion in spouted bed have been conducted by many researchers. A characteristic common to most of these theoretical models is that all interaction forces between phases are lumped into one term through a special approach. The viscous stress terms for both phases are often neglected[1].

    The approach based on a computer simulation has been widely used for studying dense particle systems, with an advantage of easily describing detailed and wide range flow properties[2-5]. In recent years, two most commonly used methods in the simulation of multiphase flows are the Two-Fluid Model (TFM) and the discrete element/particle method (DEM/DPM). The TFM approach treats the different phases as interpenetrating continua and a set of equations that have similar structure apply to eachphase. For the DEM/DPM method, the gas phase is described by a locally averaged Navier-Stokes equation, while the motion of each individual particle is traced by a soft-sphere or a hard-sphere model, and two phases are coupled through a term due to inter-phase momentum transfer. Both approaches have been adopted in the simulations of spout beds. The hydrodynamic behavior in spouted bed was presented by many researchers[6-9]with a two-fluid gas-solids flow model. Huilin[10]and Wan[11]gintegrated a kinetic-frictional constitutive model for dense assemblies of solids in the simulation of spouted beds. The model treated the kinetic and frictional stresses of particles additively. Using the TFM method embedded in the commercial CFD simulation package Fluent, Du[12,13]described the influences of the drag coefficient correlations, frictional stress, maximum packing limit and coefficient of restitution of particles on the CFD simulation of spouted beds.

    The TFM approach is more feasible for practical application to complex multiphase flows, however, it does not recognize the discrete character of the solid phase, and there has not yet been a quantitative analysis to assess multi-particle microstructures. The DEM/DPM approach offers a more natural way to simulate the systems of spouted bed with complex behavior. Several attempts have been made to model spouted beds using this approach[14-18]. One of the challenges confronting the solution of spouted bed is how to handle the convergence problem induced by the porosity variation. Additionally, one should also pay attention to the boundary condition at the conical surface for the V-shape spouted beds. Several researchers have developed the DEM simulations of a conical-base spouted bed under a regular grid system[19-22]. The accuracy of the simulations will not be guaranteed because additional closure equations are required for their boundary conditions.

    In this article, an efficient DEM-CFD model is developed for the spouted beds. The model is incorporated into the commercial Fluent console with a method described by Wu[23,24]. The objective of the present work is to extend the previous simulation techniques under regular grid system to an unstructured mesh system. An advantage of our approach is that it can minimize codes modifications to adapt to spouted beds of arbitrary shape.

    2. Governing equations

    2.1Particle motion

    The motion of each individual particle in the system can be described by Newtonian second law of motion. Thus, at instantt, the translational and rotational motions of particleiwith massmiand volumeViare governed by

    wherefciis the particle-particle contact force,βthe inter-phase momentum transfer coefficient,Tithe summation of torque caused by the tangential components of the contact force, andIi, andupiandωpiare the moment of inertia, linear velocity and angular velocity, respectively, of the particle. The forces on the right side of Eq.(1) are respectively due to the pressure gradient, drag, inter-particle contact forces and gravity.

    2.2Fluid motion

    The continuity and momentum equations for the fluid motion are based on local mean variables, given as

    whereuf,fρandεare the fluid velocity, density and the void fraction, respectively,τfis the viscous stress tensor which is assumed to obey the general law for a Newtonian fluid:

    where the bulk viscosityfλcan be set to zero for gases.

    The interaction between the gas phase and the particles is achieved via the coupling termSp, which is computed from

    where ΔVrepresents volume of the mesh where the particles are located. The distribution functionδlocally distributes the reaction force acting on the gas-phase to the Eulerian grid. When the volume of the smallest computational cell for the fluid is much larger than the volume of a particle, the mapping of properties from the Lagrangian particle position to the Eulerian computational grid and vice versa can be done in a straightforward manner through using the volume-weighing techniques[25].

    2.3Momentum exchange coefficient

    A proper drag model for the description of the momentum exchange coefficientβis vital for an adequate description of fluidized beds. Several drag models have been reported in literature. The drag model that is used most frequently in discrete particle models is a combination of the Ergun equation, originally developed for packed beds, at low porosities (ε<0.8):

    and the Wen-Yu relation at high porosities (ε>0.8):

    whereCdis the drag coefficient for an isolated spherical particle given by Schiller and Naumann:

    2.4Inter-particle collisions

    Various types of contact relations are available to describe the interaction between particles. The simplest contact model is the linear contact law in which the spring stiffness is a constant. The nonlinear contact model, an improvement over the linear law, can be made by considering the Hertz theory to obtain the force-deformation relation and is used in this study.

    The total contact force and torque acting on particleiin Eqs.(1) and (2) are the summation of forces due to individual neighborjand can be decomposed into their normal (fcn,ij) and tangential (fct,ij) components:

    whereRiis the radius of the particle,nijis the unit normal vector between particleiandj.

    The equations for forces calculation of the nonlinear contact model are given as follows

    Normal force:

    In whichδnis the overlap of two particles andδtis the displacement in the tangential direction. The spring coefficientsknandktare calculated from the following equations based on the Hertz and MD contact theory:

    whereEsandsσare Young’s modulus and Poisson’s ratio for the solid, respectively.Gsis the shear modulus related to Young’s modulus by

    The damping coefficientsnηandtηare determined from the method of Tanaka, given as

    whereαis a coefficient related to the restitution coefficient.

    3. Numerical strategy

    The commercial CFD package Fluent, a powerful tool to solve physical flows with complex domains, is chosen as our simulation platform. It offers a robust Algebraic Multi-Grid (AMG) solver, optional pressure-velocity coupling algorithms and discretization schemes. The UDFs provided by Fluent allows one to add customized features into the console. A limitation of a normal UDF development of the DPM was showed by Wu[23]and a re-arrangement of the flow governing equations was issued to overcome this limitation. Here we use the similar equations re-arrangement with UDF implementation in our DEM-CFD simulation showed below.

    If the gas density is assumed as a constant or suffered a subtle change, the continuity equation Eq.(3) can be re-organized as

    The term on the right hand side of Eq.(18) represents a mass source due to the porosity variation in time and space caused by the solid phase.

    The momentum Eq.(4) is handled with a distinct similarity showed as follows:

    We can see that source term Eq.(21) of the re-arranged momentum equation include contributions from the variation of porosity, effects of additional viscous force due to non-uniform distribution of porosity, and contribution from the drag between two phases. The effect of viscous force is small compared with the other two parts and thus can be ignored.

    It can be seen that the governing equations of two-phase flow may be reduced to those of single-phase with adding both mass and momentum source terms related to the porosity distribution and variation. Therefore a straightforward UDF could be incorporated into the Fluent console.

    One may note that the source term Eq.(21) of the momentum equations should be decomposed into a linearized form to enhance the stability of solution and help to raise convergence rates as follows:

    The computational strategy used for our DEM-CFD model is displayed in Fig.1. This figure shows a flow chart of the different modules that constitute the model. The porosity, gradient of porosity, and drag coefficient should be prepared before the solution of the governing equations of the gas phase starts. With the computed gas flow field, a DEM module is performed to update the properties of each individual particle.

    Fig.1 Flow chart of improved DEM-CFD model computation

    4. Validation

    In order to show the applicability of our improved DEM-CFD model to the spouted beds with irregular boundaries, a common type of V-shape is considered here. We perform a two-dimensional simulation of the experiment conducted by Zhao[18]. The computed region is filled with a number of 894 unstructured elements. The gas velocity is significant between the central spout region and the annular dense region in a spouted bed. The Saffman lift force due to large gas velocity gradient should not be neglected and is calculated by the Mei empirical fit

    The Magnus lift force due to the velocity difference between the different sides of the particle may be also taken into account and is calculated as follows[26]:

    Table 1 Parameters used for the present simulation

    Initially, all particles with an equal diameter are randomly positioned in the domain and allowed to fall down only under gravity. A stable packing with a static height of 100 mm can be attained after sufficiently long time. The packing configuration is finally used as the initial input data for our simulation. The parameters chosen for the present simulation are provided in Table 1.

    Fig. 2 Time series of bed pressure drop

    The residual of the computation will decrease to an order of 10-4after 30 iterations in each flow time step. The convergence history demonstrates a good stability. Figure 2 shows the result of the bed pressure drop varying with time. Two distinct regions can be identified: the start-up (t<0.7s) and stable fluidization stages. Compared with the bed pressure drop at the stable stage, a much higher value is detected at the start-up region because the need to overcome the inter-particle locking and friction. Figure 3 is a plot of the particles distribution at the start-up stage. The particles are pushed to both laterals and a bubble forms at the center having a shape of the domain. When the lateral particles slide along the V-shape wall and back to the bottom of the bed, the stable fluidization stage follows. An oscillation cycle period of 130 ms-150 ms can be identified from the second stage in Fig.2, a little shorter than that of 150 ms-160 ms observed in the experiment[18].

    Fig. 3 Particles distribution at the start-up stage

    Typical flow pattern of particles at different time in the conical-base spouted bed are showed in Fig.4. Three distinct characterized regions, i.e., the spout, annulus and fountain flow regions, can be clearly identified. In a stable flow stage, a “neck” marked with dense particles can be found in the central spout area. The neck starts at the zone near the inlet, moves upwards with the incoming gas and finally disappears at the end of the spout. The particles in the neck region move with a highest speed compared to those in other regions. They appear as a group instead of individual particles. As the neck moves upwardg, additional particles from the annulus can be entrained and make the neck grow progressively denser. The spout becomes almost “choked” when they approach the end of the spout. Finally the choked particles will scatter in an axial direction like an explosion. The patterns of particles flow described above agree well with the experimental observations by Zhao[18].

    Figure 5(a) indicates a comparison of longitudinal distribution of particle vertical velocity on the spout midline to the experiment and the simulation by Zhao[18]. It can be seen that the particles entrained from the annulus near the inlet accelerate in a short time. The maximum particle vertical velocity evaluated in this study is 1.1 m/s, a bit higher than that in the experiment. Then particles decelerate gradually in the fountain zone. Our simulation evaluates a much higher particle vertical velocity in the fountain region and particles thus reach a larger maximum altitude of 180 mm, compared to 155 mm of the experimental observation. This may be due to the coarse evaluation of the real porosity with the 2-D to 3-D transformed correlation showed below

    Hence underestimation of the porosity will cause the drag over-predicted with the Gidspow empirical correlation. Furthermore, the trend of the particle vertical velocity curve of our simulation is quite similar to that of the simulation performed with a three-dimensional DPM method by Wu[23].

    A comparison of the lateral profile of particle vertical velocity in the spout region between the simulations and experiments at various bed levels is showed in Fig.5(b). The simulations agree well with the experiments at all bed heights.

    Fig. 4 Flow patterns of particles in conical-base spouted bed

    Fig.5 Distribution of particle vertical velocities in the spout

    Figure 6(b) outlines the experimental spout borders where vertical particle velocity is zero. The spout width of this simulation yielded from both the borders is larger than that of the experiments, as showed in Fig.6(a). The largest difference, located at the upper end of the spout, is approximately 15 mm. Figure 6(a) also shows the time-average particle velocity vectors. It can be seen that the particle velocity magnitude in the spout is quite large, about 9 times of that in the annulus, which also well agreeswith the experimental observation.

    Fig.6 Spout contour and time-averaged flow fields of particles in conical-base spouted bed

    5. Conclusion

    An efficient DEM-CFD model for spouted beds has been developed by a combination of the discrete element method and a set of re-organized governing equations for the gas phase. The flows of two phases are solved by the Fluent package with a UDF implementation under an unstructured mesh system. The effectiveness of the present model is demonstrated through a simulation of particle motion and gas flow pattern in a two-dimensional conical-based spouted bed. The numerical simulation shows that the computational procedure is of good stability and convergence. The results are compared with measurements reported in literature and also with other researchers’ simulation results. The characteristic particle flow patterns and spouted-bed behaviors, such as annulus, spout and fountain, are reproduced in our simulation. The present investigation predicts a similar oscillation cycle period to the measurement. Particle velocity profiles in the spout and annulus are found to agree with the experimental observations, but a larger value for those in the fountain region. The spout width identified by our simulation is a bit larger than that in the experiment.

    Acknowledgement

    The authors wish to thank Dr. Wu Chun-liang of Guangdong Ocean University for useful discussions.

    [1] HUILIN L., YONGLI S. and YANG L. et al. Numerical simulations of hydrodynamic behaviour in spouted beds[J].Chemical Engineering Research and Design,2001, 79(5): 593-599.

    [2] WANG Li-yang, ZHENG Zhi-chu and WU Ying-xiang et al. Numerical and experimental study on liquid-solid flow in a hydrocyclone[J].Journal of Hydrodynamics,2009, 21(3): 408-414.

    [3] WU Chun-liang, ZHAN Jie-min. Numerical prediction of particle mixing behavior in a bubbling fluidized bed[J].Journal of Hydrodynamics, Ser. B,2007, 19(3): 335-341.

    [4] XIE Ming-liang, ZHOU Huai-chun and ZHANG Yindi. Hydrodynamics stability of bickley jet with particle laden flow[J].Journal of Hydrodynamics,2009, 21(5): 608-613.

    [5] ZHANG Jin-feng, ZHANG Qing-he. Hydrodynamics of fractal flocs during settling[J].Journal of Hydrodynamics,2009, 21(3): 347-351.

    [6] DUARTE C. R., MURATA V. V. and BARROZO M. A. S. A study of the fluid dynamics of the spouted bed using CFD[J].Brazilian Journal of Chemical Engineering,2005, 22(2): 263-270.

    [7] GRYCZKA O., HEINRICH S. and DEEN N. G. et al. Characterization and CFD-modeling of the hydrodynamics of a prismatic spouted bed apparatus[J].Chemical Engineering Science,2009, 64(14): 3352-3375.

    [8] WANG Z. G., BI H. T. and LIM C. J. Numerical simulations of hydrodynamic behaviors in conical spouted beds[J].China Particuology,2006, 4(3-4): 194-203.

    [9] WU Z. H., MUJUMDAR A. S. CFD modeling of the gas–particle flow behavior in spouted beds[J].Powder Technology,2008, 183(2): 260-272.

    [10] HUILIN L., YURONG H. and WENTIE L. et al. Computer simulations of gas–solid flow in spouted beds using kinetic–frictional stress model of granular flow[J].Chemical Engineering Science,2004, 59(4): 865-878.

    [11] SHUYAN W., XIANG L. and HUILIN L. et al. Numerical simulations of flow behavior of gas and particles in spouted beds using frictional-kinetic stresses model[J].Powder Technology,2009, 196(2): 184-193.

    [12] DU W., BAO X. and XU J. et al. Computational fluid dynamics (CFD) modeling of spouted bed: Assessment of drag coefficient correlations[J].Chemical Engineering Science,2006, 61(5): 1401-1420.

    [13] DU W., BAO X. and XU J. et al. Computational fluid dynamics (CFD) modeling of spouted bed: Influence of frictional stress, maximum packing limit and coefficient of restitution of particles[J].Chemical Engineering Science,2006, 61(14): 4558-4570.

    [14] LINK J. M., CUYPERS L. A. and DEEN N. G. et al. Flow regimes in a spout–fluid bed: A combined experimental and simulation study[J].Chemical Engineering Science,2005, 60(13): 3425-3442.

    [15] TAKEUCHI S., WANG S. and RHODES M. J. Discrete element study of particle circulation in a 3-D spouted bed[J].Chemical Engineering Science,2005, 60(5): 1267-1276.

    [16] TAKEUCHI S., WANG S. and RHODES M. Discrete element simulation of a flat-bottomed spouted bed in the 3-D cylindrical coordinate system[J].Chemical Engineering Science,2004, 59(17): 3495-3504.

    [17] ZHAO X. L., LI S. Q. and LIU G. Q. et al. Flow patterns of solids in a two-dimensional spouted bed with draft plates: PIV measurement and DEM simulations[J].Powder Technology,2007, 183(1): 79-87.

    [18] ZHAO X. L., LI S. Q. and LIU G. Q. et al. DEM simulation of the particle dynamics in two-dimensional spouted beds[J].Powder Technology,2008, 184(2): 205-213.

    [19] KAWAGUCHI T., SAKAMOTO M. and TANAKA T. et al. Quasi-three-dimensional numerical simulation of spouted beds in cylinder[J].Powder Technology,2000, 109(1-3): 3-12.

    [20] LIMTRAKUL S., BOONSRIRAT A. and VATANATHAM T. DEM modeling and simulation of a catalytic gas–solid fluidized bed reactor: A spouted bed as a case study[J].Chemical Engineering Science,2004, 59(22-23): 5225-5231.

    [21] SWASDISEVI T., TANTHAPANICHAKOON W. and CHARINPANITKUL T. et al. Prediction of gas-particle dynamics and heat transfer in a two-dimensional spouted bed[J].Advanced Powder Technology,2005, 16(3): 275-293.

    [22] ZHONG W., XIONG Y. and YUAN Z. et al. DEM simulation of gas–solid flow behaviors in spout-fluid bed[J].Chemical Engineering Science,2006, 61(5): 1571-1584.

    [23] WU C. L., BERROUK A. S. and NANDAKUMAR K. Three-dimensional discrete particle model for gas-solid fluidized beds on unstructured mesh[J].Chemical Engineering Journal,2009, 152(2-3): 514-529

    [24] WU C. L., ZHAN J. M. and LI Y. S. et al. Dense particulate flow model on unstructured mesh[J].Chemical Engineering Science,2006, 61(17): 5726-5741.

    [25] DEEN N. G., Van SINT ANNALAND M. and Van Der HOEF M. A. et al. Review of discrete particle modeling of fluidized beds[J].Chemical Engineering Science,2007, 62(1-2): 28-44.

    [26] MICHAELIDES E.Particles, bubbles and drops: Their motion, heat and mass transfer[M]. Singapore: World Scientific Publish Co. Inc., 2006.

    September 23, 2009, Revised March 30, 2010)

    * Biography: RONG Liang-wan (1980-), Male, Ph. D.

    ZHAN Jie-min,

    E-mail: stszjm@mail.sysu.edu.cn

    2010,22(3):351-359

    10.1016/S1001-6058(09)60064-0

    国产国拍精品亚洲av在线观看| 久久久久免费精品人妻一区二区| 一进一出抽搐动态| 我要搜黄色片| 久久精品影院6| 美女大奶头视频| 国产高清视频在线播放一区| 看片在线看免费视频| 国产又黄又爽又无遮挡在线| 日韩欧美国产在线观看| 婷婷丁香在线五月| 一级av片app| 久久久久久久久久久丰满 | 毛片一级片免费看久久久久 | 一进一出抽搐动态| 一级黄片播放器| 日韩欧美精品免费久久| 一夜夜www| 免费观看人在逋| 欧美一区二区亚洲| 极品教师在线免费播放| 黄色视频,在线免费观看| 国产精品爽爽va在线观看网站| 欧美黑人欧美精品刺激| 男人舔女人下体高潮全视频| 一a级毛片在线观看| 一a级毛片在线观看| 久久婷婷人人爽人人干人人爱| 99久久精品热视频| 久久精品国产亚洲av香蕉五月| 国产毛片a区久久久久| 两个人的视频大全免费| 欧美日韩黄片免| 国产高潮美女av| 欧美又色又爽又黄视频| 午夜a级毛片| 国国产精品蜜臀av免费| 国产伦人伦偷精品视频| 免费搜索国产男女视频| 日本一二三区视频观看| 精品久久久久久久末码| 国产精品嫩草影院av在线观看 | 丰满的人妻完整版| 欧美日本亚洲视频在线播放| 男人舔女人下体高潮全视频| 国产精品一区二区三区四区久久| 我的女老师完整版在线观看| 国产精品日韩av在线免费观看| 亚洲欧美日韩卡通动漫| 国产精华一区二区三区| 精品日产1卡2卡| 亚洲第一电影网av| 看片在线看免费视频| 国语自产精品视频在线第100页| 网址你懂的国产日韩在线| 赤兔流量卡办理| 国产精品女同一区二区软件 | 日韩高清综合在线| 97碰自拍视频| 久久人人精品亚洲av| av国产免费在线观看| 亚洲精品亚洲一区二区| 亚洲在线自拍视频| 国产色爽女视频免费观看| 国产激情偷乱视频一区二区| 搞女人的毛片| 全区人妻精品视频| 欧美又色又爽又黄视频| 国产精品久久久久久精品电影| 噜噜噜噜噜久久久久久91| 男人的好看免费观看在线视频| 国产成人aa在线观看| 国产日本99.免费观看| 亚洲av电影不卡..在线观看| 成人综合一区亚洲| 国产精品乱码一区二三区的特点| 两个人的视频大全免费| 草草在线视频免费看| 亚洲国产欧美人成| 啪啪无遮挡十八禁网站| 男插女下体视频免费在线播放| 美女 人体艺术 gogo| 精品日产1卡2卡| 99精品在免费线老司机午夜| 亚洲午夜理论影院| 两性午夜刺激爽爽歪歪视频在线观看| 白带黄色成豆腐渣| 亚洲专区中文字幕在线| 18禁黄网站禁片免费观看直播| 日本精品一区二区三区蜜桃| 99九九线精品视频在线观看视频| 禁无遮挡网站| 国产69精品久久久久777片| 真实男女啪啪啪动态图| 又黄又爽又免费观看的视频| 人妻夜夜爽99麻豆av| 精品久久久久久久久亚洲 | 少妇猛男粗大的猛烈进出视频 | 少妇的逼水好多| av天堂中文字幕网| 国产爱豆传媒在线观看| 少妇被粗大猛烈的视频| 舔av片在线| a在线观看视频网站| 少妇人妻精品综合一区二区 | 婷婷精品国产亚洲av| 国产极品精品免费视频能看的| 中文字幕av成人在线电影| 日日夜夜操网爽| 99热6这里只有精品| 九九爱精品视频在线观看| 亚洲三级黄色毛片| 日本熟妇午夜| 国产一级毛片七仙女欲春2| 国产精品福利在线免费观看| 亚洲美女视频黄频| 波多野结衣高清作品| 欧美黑人欧美精品刺激| 欧美精品国产亚洲| 一夜夜www| 免费观看的影片在线观看| 久久精品国产99精品国产亚洲性色| 久久久久久久久久久丰满 | 国产高清不卡午夜福利| 欧美区成人在线视频| 日本-黄色视频高清免费观看| 熟女电影av网| 国产不卡一卡二| 变态另类丝袜制服| 亚洲欧美日韩卡通动漫| 18禁裸乳无遮挡免费网站照片| 日韩 亚洲 欧美在线| 特大巨黑吊av在线直播| 尤物成人国产欧美一区二区三区| 在线观看舔阴道视频| 九九在线视频观看精品| 日韩一本色道免费dvd| 国产精品久久久久久精品电影| 欧美日韩中文字幕国产精品一区二区三区| 少妇裸体淫交视频免费看高清| 亚洲精品久久国产高清桃花| 中亚洲国语对白在线视频| 国产亚洲av嫩草精品影院| 美女 人体艺术 gogo| 亚洲不卡免费看| 麻豆一二三区av精品| 99久久九九国产精品国产免费| 亚洲专区中文字幕在线| 日本精品一区二区三区蜜桃| 91久久精品国产一区二区成人| 国产精品久久久久久av不卡| 精品人妻1区二区| 国产精品久久久久久精品电影| 国产亚洲精品综合一区在线观看| 少妇熟女aⅴ在线视频| 国产一区二区三区视频了| 国产一区二区在线观看日韩| 亚洲熟妇熟女久久| 一夜夜www| 可以在线观看的亚洲视频| 中文字幕精品亚洲无线码一区| 欧美高清性xxxxhd video| 中国美白少妇内射xxxbb| 日本成人三级电影网站| 自拍偷自拍亚洲精品老妇| 波多野结衣高清作品| 99久久无色码亚洲精品果冻| 99精品久久久久人妻精品| 精品午夜福利视频在线观看一区| 亚洲在线自拍视频| 婷婷精品国产亚洲av| 2021天堂中文幕一二区在线观| 久久精品夜夜夜夜夜久久蜜豆| 最近视频中文字幕2019在线8| 日韩高清综合在线| 日本一二三区视频观看| 欧美丝袜亚洲另类 | 国产伦在线观看视频一区| 国产精品1区2区在线观看.| 97碰自拍视频| 亚洲18禁久久av| 一区二区三区四区激情视频 | 亚洲成人精品中文字幕电影| 亚洲自偷自拍三级| 亚洲五月天丁香| 91精品国产九色| 看片在线看免费视频| 欧美最新免费一区二区三区| 99国产极品粉嫩在线观看| 免费av毛片视频| 成人午夜高清在线视频| 蜜桃亚洲精品一区二区三区| 久久国产精品人妻蜜桃| 亚洲av五月六月丁香网| 色在线成人网| 国产精品人妻久久久影院| 岛国在线免费视频观看| 午夜精品久久久久久毛片777| 日本三级黄在线观看| 国产伦在线观看视频一区| 欧美一区二区精品小视频在线| 国产精品av视频在线免费观看| 岛国在线免费视频观看| x7x7x7水蜜桃| 又黄又爽又刺激的免费视频.| 亚洲精品一卡2卡三卡4卡5卡| 91av网一区二区| 亚洲七黄色美女视频| 一级av片app| 九九爱精品视频在线观看| 91在线观看av| 欧美三级亚洲精品| 搡女人真爽免费视频火全软件 | 欧美最新免费一区二区三区| 身体一侧抽搐| 国产精华一区二区三区| 非洲黑人性xxxx精品又粗又长| 又爽又黄a免费视频| 91狼人影院| 国产一级毛片七仙女欲春2| 久久久成人免费电影| 俄罗斯特黄特色一大片| 亚洲成人久久爱视频| 久久久精品大字幕| av福利片在线观看| 大型黄色视频在线免费观看| 国产精品人妻久久久影院| 欧美黑人巨大hd| 欧美极品一区二区三区四区| 欧美精品啪啪一区二区三区| 91久久精品电影网| 国产精品无大码| 舔av片在线| 国内精品久久久久久久电影| 欧美最黄视频在线播放免费| 悠悠久久av| 美女大奶头视频| av在线天堂中文字幕| 精品人妻熟女av久视频| 免费一级毛片在线播放高清视频| 日本成人三级电影网站| 欧美bdsm另类| 成人午夜高清在线视频| 极品教师在线视频| 亚洲最大成人中文| 此物有八面人人有两片| 麻豆国产97在线/欧美| 中国美女看黄片| 99热这里只有是精品在线观看| 老司机福利观看| 成人亚洲精品av一区二区| 亚洲无线观看免费| 国产三级在线视频| 久久久久久大精品| 在线免费观看不下载黄p国产 | 他把我摸到了高潮在线观看| 日本a在线网址| 97超级碰碰碰精品色视频在线观看| 91狼人影院| 午夜免费成人在线视频| 男人舔奶头视频| 国内精品美女久久久久久| 国产精品免费一区二区三区在线| a级毛片a级免费在线| 精品乱码久久久久久99久播| 最近在线观看免费完整版| 日日摸夜夜添夜夜添小说| 99久久久亚洲精品蜜臀av| 深夜精品福利| 久久久久国内视频| 久久久久精品国产欧美久久久| 国产精品98久久久久久宅男小说| 精品久久久久久,| 亚洲无线在线观看| 一边摸一边抽搐一进一小说| 精品无人区乱码1区二区| 中文字幕高清在线视频| 日韩精品青青久久久久久| 一级毛片久久久久久久久女| 99热6这里只有精品| 日日摸夜夜添夜夜添av毛片 | 亚洲性夜色夜夜综合| 最新在线观看一区二区三区| 国产亚洲精品av在线| 久久国产乱子免费精品| 91在线精品国自产拍蜜月| 内地一区二区视频在线| av天堂中文字幕网| 国产私拍福利视频在线观看| 日韩欧美精品免费久久| 欧美最黄视频在线播放免费| 日本在线视频免费播放| АⅤ资源中文在线天堂| 99热只有精品国产| 少妇的逼好多水| 午夜福利欧美成人| 乱人视频在线观看| 欧美黑人巨大hd| 最新在线观看一区二区三区| 欧美激情国产日韩精品一区| 久久人人精品亚洲av| 亚洲图色成人| 欧美激情国产日韩精品一区| 在线观看免费视频日本深夜| 日本 av在线| 国产黄片美女视频| 草草在线视频免费看| 欧美一区二区亚洲| 亚洲人成网站在线播| 亚洲精品一卡2卡三卡4卡5卡| 色综合亚洲欧美另类图片| 久久久国产成人免费| 看片在线看免费视频| 国产午夜精品久久久久久一区二区三区 | 精品人妻偷拍中文字幕| 日韩欧美三级三区| 1024手机看黄色片| 免费一级毛片在线播放高清视频| 22中文网久久字幕| 亚洲最大成人av| 精品久久久久久成人av| 欧美区成人在线视频| 麻豆国产97在线/欧美| 久久精品国产亚洲网站| 日韩,欧美,国产一区二区三区 | 欧美一区二区国产精品久久精品| 国产麻豆成人av免费视频| 欧美人与善性xxx| 色吧在线观看| 人妻少妇偷人精品九色| 欧美日本视频| 午夜影院日韩av| 一个人观看的视频www高清免费观看| 久久人妻av系列| 在线观看av片永久免费下载| 欧美一区二区国产精品久久精品| 久久精品国产99精品国产亚洲性色| 中国美白少妇内射xxxbb| 国产不卡一卡二| 最后的刺客免费高清国语| 精品久久久噜噜| av中文乱码字幕在线| 两个人视频免费观看高清| 直男gayav资源| 亚洲第一区二区三区不卡| 国产一区二区亚洲精品在线观看| 非洲黑人性xxxx精品又粗又长| 国产午夜精品论理片| 国产精品一及| 男人和女人高潮做爰伦理| 精品国内亚洲2022精品成人| 精品人妻偷拍中文字幕| 超碰av人人做人人爽久久| 九九爱精品视频在线观看| 中文亚洲av片在线观看爽| 丰满乱子伦码专区| 又爽又黄无遮挡网站| 成人高潮视频无遮挡免费网站| 久久久成人免费电影| 久9热在线精品视频| 亚洲国产日韩欧美精品在线观看| 精华霜和精华液先用哪个| 99riav亚洲国产免费| 男女那种视频在线观看| 最好的美女福利视频网| 少妇猛男粗大的猛烈进出视频 | 亚洲天堂国产精品一区在线| 国产高清视频在线播放一区| 男女之事视频高清在线观看| 久久久久久久久久久丰满 | 国产一区二区激情短视频| 麻豆av噜噜一区二区三区| 亚洲av五月六月丁香网| 亚洲熟妇中文字幕五十中出| 一级黄片播放器| 亚洲,欧美,日韩| 黄片wwwwww| 嫩草影院入口| 成人欧美大片| 亚洲乱码一区二区免费版| 毛片一级片免费看久久久久 | 日韩中文字幕欧美一区二区| 床上黄色一级片| 亚洲欧美激情综合另类| 一个人看视频在线观看www免费| 国产91精品成人一区二区三区| 热99re8久久精品国产| 人妻制服诱惑在线中文字幕| 99热只有精品国产| 成人二区视频| 精品一区二区三区视频在线观看免费| 国产精品爽爽va在线观看网站| 99热这里只有精品一区| 国内精品美女久久久久久| 床上黄色一级片| 91麻豆av在线| 夜夜看夜夜爽夜夜摸| 欧美日韩乱码在线| 国产aⅴ精品一区二区三区波| 大型黄色视频在线免费观看| 日韩欧美免费精品| 中文字幕人妻熟人妻熟丝袜美| 两个人的视频大全免费| 日本免费a在线| 99久久精品一区二区三区| 婷婷六月久久综合丁香| 国内精品久久久久久久电影| 国产精品一区二区三区四区免费观看 | 变态另类成人亚洲欧美熟女| 少妇的逼好多水| 亚洲一区高清亚洲精品| 夜夜看夜夜爽夜夜摸| 在线观看美女被高潮喷水网站| 天堂影院成人在线观看| 村上凉子中文字幕在线| 给我免费播放毛片高清在线观看| 色综合婷婷激情| 色综合亚洲欧美另类图片| 欧美色欧美亚洲另类二区| 在线观看66精品国产| 欧美性猛交黑人性爽| 久久精品国产亚洲av天美| 人人妻,人人澡人人爽秒播| 男人和女人高潮做爰伦理| 国产精品国产高清国产av| 免费观看的影片在线观看| 国产精品久久电影中文字幕| 12—13女人毛片做爰片一| 午夜福利在线观看吧| 欧美日韩国产亚洲二区| 亚洲一级一片aⅴ在线观看| 老司机午夜福利在线观看视频| 午夜福利在线观看免费完整高清在 | 极品教师在线视频| 一进一出抽搐gif免费好疼| 精品免费久久久久久久清纯| 国产精品野战在线观看| 午夜a级毛片| 国产成人av教育| 日韩精品中文字幕看吧| 亚洲精品粉嫩美女一区| 亚洲人成网站在线播| 人人妻,人人澡人人爽秒播| 久9热在线精品视频| 亚洲专区国产一区二区| 色综合站精品国产| 国产大屁股一区二区在线视频| 一进一出抽搐gif免费好疼| 又黄又爽又免费观看的视频| 自拍偷自拍亚洲精品老妇| 给我免费播放毛片高清在线观看| 国产毛片a区久久久久| 精品久久国产蜜桃| 人妻久久中文字幕网| 亚洲精品亚洲一区二区| 高清毛片免费观看视频网站| 欧美绝顶高潮抽搐喷水| 亚洲精品色激情综合| 性欧美人与动物交配| 1000部很黄的大片| www.www免费av| 成人高潮视频无遮挡免费网站| 国产一区二区三区在线臀色熟女| 午夜精品一区二区三区免费看| 男女做爰动态图高潮gif福利片| 又爽又黄无遮挡网站| 亚洲专区中文字幕在线| 在现免费观看毛片| av天堂中文字幕网| 岛国在线免费视频观看| 国产亚洲精品综合一区在线观看| 久久精品国产清高在天天线| 亚洲精品456在线播放app | 成人av在线播放网站| 久久精品91蜜桃| 少妇猛男粗大的猛烈进出视频 | 一区福利在线观看| 老司机午夜福利在线观看视频| 中文字幕av成人在线电影| 在现免费观看毛片| 网址你懂的国产日韩在线| 国产黄色小视频在线观看| 国产欧美日韩精品一区二区| 亚洲国产欧洲综合997久久,| 国产精品永久免费网站| 成人三级黄色视频| 色视频www国产| 又粗又爽又猛毛片免费看| 日本欧美国产在线视频| 两性午夜刺激爽爽歪歪视频在线观看| 长腿黑丝高跟| 亚洲图色成人| 婷婷色综合大香蕉| 国产日本99.免费观看| 亚洲专区国产一区二区| 亚洲欧美日韩卡通动漫| 国产探花极品一区二区| 亚洲无线在线观看| 天堂网av新在线| 99热只有精品国产| 久久国产精品人妻蜜桃| 国产免费av片在线观看野外av| 欧美极品一区二区三区四区| 2021天堂中文幕一二区在线观| 国产真实乱freesex| 亚洲国产高清在线一区二区三| 亚洲黑人精品在线| 国产精品人妻久久久久久| 久久久久久伊人网av| 日本三级黄在线观看| 看黄色毛片网站| 亚洲精品日韩av片在线观看| 性色avwww在线观看| 国产综合懂色| 国产老妇女一区| 97人妻精品一区二区三区麻豆| 超碰av人人做人人爽久久| 在线看三级毛片| 国产色婷婷99| h日本视频在线播放| 99热网站在线观看| 亚洲va在线va天堂va国产| 亚洲av不卡在线观看| 欧美日韩国产亚洲二区| 日韩欧美国产一区二区入口| 亚洲精品成人久久久久久| 国产精品日韩av在线免费观看| 成人性生交大片免费视频hd| 女同久久另类99精品国产91| 欧美成人一区二区免费高清观看| 少妇高潮的动态图| 狠狠狠狠99中文字幕| 小蜜桃在线观看免费完整版高清| 成年女人永久免费观看视频| 人妻丰满熟妇av一区二区三区| 日本精品一区二区三区蜜桃| 亚洲人成网站高清观看| 国产欧美日韩精品亚洲av| 精品久久久噜噜| 国产精品一区二区三区四区久久| 精品一区二区三区av网在线观看| 美女黄网站色视频| 99热这里只有是精品50| www日本黄色视频网| 给我免费播放毛片高清在线观看| 国产白丝娇喘喷水9色精品| 天天躁日日操中文字幕| 成年版毛片免费区| 午夜福利在线观看吧| 久久久久久久久中文| 欧美bdsm另类| 日韩欧美在线二视频| www日本黄色视频网| 美女xxoo啪啪120秒动态图| 亚洲国产精品合色在线| 日本a在线网址| 国产乱人伦免费视频| 偷拍熟女少妇极品色| 中文字幕高清在线视频| 久久精品综合一区二区三区| 欧美高清成人免费视频www| 免费大片18禁| 国产精品一区二区三区四区免费观看 | 亚洲国产精品sss在线观看| 蜜桃亚洲精品一区二区三区| 亚洲自拍偷在线| 亚洲一区高清亚洲精品| www日本黄色视频网| 别揉我奶头 嗯啊视频| 美女黄网站色视频| 黄色欧美视频在线观看| 国产精品三级大全| 看黄色毛片网站| 精品免费久久久久久久清纯| 久久久久国产精品人妻aⅴ院| а√天堂www在线а√下载| 免费无遮挡裸体视频| 毛片一级片免费看久久久久 | 99热网站在线观看| 午夜精品一区二区三区免费看| 女生性感内裤真人,穿戴方法视频| 午夜免费男女啪啪视频观看 | 精品久久久久久久末码| 亚洲成人免费电影在线观看| 麻豆国产av国片精品| 国产av在哪里看| 亚洲成人久久爱视频| 午夜福利18| 午夜激情欧美在线| 亚洲成人精品中文字幕电影| 亚洲不卡免费看| 国产高清视频在线观看网站| 中文字幕高清在线视频| 日本爱情动作片www.在线观看 | av在线蜜桃| 国产成人av教育| 国产真实伦视频高清在线观看 | 18禁黄网站禁片免费观看直播| x7x7x7水蜜桃| 少妇丰满av| 十八禁国产超污无遮挡网站| 国产亚洲91精品色在线| 国产亚洲精品av在线| а√天堂www在线а√下载| 一个人看的www免费观看视频| 国产精华一区二区三区| 一区二区三区高清视频在线| 少妇人妻精品综合一区二区 | 成人性生交大片免费视频hd| av中文乱码字幕在线| 久久久国产成人精品二区| 精品久久久久久,| 欧洲精品卡2卡3卡4卡5卡区| 日韩欧美三级三区| 中文字幕高清在线视频|