• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    EXPERIMENT ON THE CHARACTERISTICS OF 3-D VORTEX RING BEHIND A FLEXIBLE OSCILLATING CAUDAL FIN*

    2010-07-02 01:37:55WANGZhidong
    水動力學研究與進展 B輯 2010年3期

    WANG Zhi-dong

    School of Naval Architecture and Ocean Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China, E-mail: cywzd@sohu.com

    LAO Yi-jia

    Technology Research Economy Development Institute, Beijing 10081, China

    LI Li-jun, CONG Wen-chao

    School of Naval Architecture and Ocean Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China

    EXPERIMENT ON THE CHARACTERISTICS OF 3-D VORTEX RING BEHIND A FLEXIBLE OSCILLATING CAUDAL FIN*

    WANG Zhi-dong

    School of Naval Architecture and Ocean Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China, E-mail: cywzd@sohu.com

    LAO Yi-jia

    Technology Research Economy Development Institute, Beijing 10081, China

    LI Li-jun, CONG Wen-chao

    School of Naval Architecture and Ocean Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China

    A test for the wake vortex of a flexible oscillating caudal fin is carried out with Digital Particle Image Velocimetry (DPIV), and the variation of vortex distance and the vorticity in the range of oscillating frequency from 0.704 Hz to 1.17 Hz are analyzed. It is found that with the increase of the oscillating frequency, the vortex distance decreases and the peak of the vorticity increases, When the Strouhal number is smaller than 0.49, a larger thrust component is obtained. The distribution of the velocity circulation and the vortex distance in the different spanwise section of the caudal fin are given, and then the dimension of the vortex ring is determined. The radius of the vortex ring is 79.3 mm and the average velocity circulation is 28152.9 mm2/s at the oscillating frequency of 0.835 Hz. The model of 3-D vortex ring chain of flexible oscillating caudal fin is constructed based on the information of wake vortex field. Finally, an effective analysis method is provided for establishing the relationship of oscillating parameters for the caudal fin and the wake structure and the intrinsic mechanism of efficient fish swimming is investigated.

    Digital Particle Image Velocimetry (DPIV), flexible caudal fin, flow field, vortex ring

    1. Introduction

    Now experiments on the structure of flow field of an oscillating fin become a hot topic in studying bionic propulsive mechanism. The quantitative analysis on the structure of vorticity field with the Digital Particle Image Velocimetry (DPIV) is very important in revealing the inherent mechanism of fishswimming with high propulsive efficiency[1].

    The Particle Image Velocimetry (PIV) has been used to measure the flow field, and the flow visualization has been employed to determine the time-average velocity and locate the wake vortex position and find its structure[2,3]. From the measurement of the vorticity field of pitching and heaving motion of rigid and flexible foil, it was found that the kinetic parameters had great effects on the structure of wake field[4-8]. The different structures of vortical field of oscillating fin was examined with the increase of flexibility of the fin[9], and the radius ofvortex ring and the distance of vortex pair were found to be dependent on the swimming speed and the chord length of the fin[10]. In order to investigate the locomotion mechanism of fish, many researchers have carried out the experiments of the total flow field of fish, including the structure morphology of wake vortex of scombrid at horizontal and vertical section[11], the flow separation on the fish surface, the developing and shedding process of leading edge vortex and wake vortex of eel swimming[12], the vortex structure and its strength of the pectoral fin of crucian carp and sunfish with low- and high-velocity swimming[13], the vortical field structure at upper and lower margin of pectoral fin of bluegill and stickleback[14], the velocity and vortical field due to C-start of crucian carp and yellow catfish[15,16]. It was shown that the locomotion and the deformation of fish body and caudal fin have the positive effect on the structure of flow field and maneuvering of fish. Owing to the difficulty in testing the swimming parameters of live fish, the effect of caudal fin oscillating parameters on the characteristics of field structure was rarely presented in previous work.

    By adjusting the deformation, oscillating amplitude and frequency of caudal fin, fish can realize the optimal control of surrounding water and forms special wake vortex field, thus resulting in the maximum thrust and highest efficiency. An experiment on the wake vortex in different sections of flexible oscillating caudal fin with DPIV is carried out, and the effects of oscillating position and frequency of caudal fin on the vortex strength and vortex distance are analyzed. Based on the quantitative analysis of the geometric characteristics of vortical field, the model of 3-D vortex ring chain is constructed. A reliable means of research and analysis are provided for establishing the relationship of caudal oscillating parameters and wake field structure.

    Fig.1 Model of caudal fin and experimental equipments

    2. Experiment

    The experiment was carried out in a cyclic water tank at Jiangsu University of Science and Technology. Its section size is 300 mm×400 mm. The irradiation mode of DPIV uses laser irradiating. Tracer particles are made of Al2O3.The pixel size of CCD camera is 2048×2048. Working sequence is controlled by synchronizer. The experimental equipments are shown in Fig.1, and experimental parameters are presented in Table 1.

    Table 1 Parameters of oscillating caudal fin

    Fig. 2 Sections of caudal fin

    The shape of the caudal fin is based on the measurement of the actual carp. The material of flexible caudal fin is rubber. The distance between upper edge of caudal fin and free surface is 85 mm. On account of symmetry of the caudal fin alongthe spanwise direction, three sections were selected for test, which are dorsal tip of caudal fin (4-4), spanwise midpoint (0-0) and midpoint of dorsal lobe (2-2), and they are shown in Fig.2. In each plane, three oscillating positions were selected to study their flow field, which are the equilibrium position, the left 13.5oabout the equilibrium position (see Fig.3) and the right 13.5oabout the equilibrium position (see Fig.4). The shooting of the position of the oscillating angle of caudal fin was controlled in real time by a PLC module and optical electric axial angle encoder, the arrows in the figures showing the direction of caudal fin oscillating.

    Fig.3 Oscillating angle 13.5oleft about the equilibrium position

    Fig.4 Oscillating angle 13.5oright about the equilibrium position

    3. Results and discussion

    3.1Flow field characteristics at different oscillating positions and sections of the fin

    Because the caudal fin is asymmetrical in the spanwise direction, the characteristic of velocity field caused by oscillating motion of caudal fin is different in the 0-0 plane, 2-2 plane and 4-4 plane. Table 2 and Fig.5 present the average velocity in the flow field in these three planes at different oscillating positions and frequencies. Under the same oscillating frequency and position, the velocity away from the 0-0 plane exhibits the trend of declination. The results indicate that the average velocity of flow field is in inverse proportion to the oscillating frequency. That is, the increase of oscillating frequency causes the decrease of average velocity. In addition, the velocity gradient at the different oscillating positions has great difference, and there is little change of velocity along the spanwise direction when the oscillating angle of caudal fin is on the left 13.5oabout the equilibrium position.

    Fig.5 Average velocity at middle and left 13.5oposition at frequencies 0.835 Hz and 1.03 Hz

    Fig.6 Vorticity field around a caudal fin in different sections

    Fig.7 Vorticity field of caudal fin at different oscillating frequencies

    Along the spanwise direction, the characteristics of vorticity field at different sections also exhibit significant difference. Figure 6 presents the vorticity field with the oscillating position of 13.5oleft and frequency 0.835 Hz in different sections of fin. The distance of the vortex pair is shortened away from 0-0 plane, meanwhile, a pair of inverse vortices appear in the 4-4 plane. The vortices are considered as affiliated ones which never shed downstream, and the flow field could be considered as in the free stream condition.

    Table 2 Average velocity of the flow field

    3.2Effect of oscillating frequency on vortex distance and vorticity

    The oscillating frequency of caudal fin has an important impact on the formation, development and shedding of vortices, vorticity strength and vortex spacing and so on. The measured results in the spanwise midpoint plane (0-0 plane) and caudal fin oscillating for the 13.5oleft from the equilibrium position, including the velocity field and vorticity field are shown in Fig.7. Oscillating frequency ranges from 0.704 Hz to 1.17 Hz. Based on the data fetch with the DPIV, the calculation of vorticity is determined by self-designed function. The vorticity is indicated as

    whereX(i,j) andY(i,j) are the position of the node, andU(i,j) andV(i,j) are the velocity components at the nodes.

    It is seen from Fig.8 that the oscillating frequency of caudal fin has significant impact on the vortex distance and peak of vorticity. In the graph,Lrepresents the vortex interval. Under the different oscillating frequencies, the vortex distance is determined by calculating their center coordinate. Figure 8 presents the variation of vortex distance. The vortex distance decreases with the increase of oscillating frequency, and exhibits approximately the inverse linear relationship. On the one hand, the decrease of vortex distance increases the jet velocity and thrust, on the other hand it accelerates the shedding speed of wake vortices, and the energy of vortex can not be fully used by caudal fin. Finally, high oscillating frequencies often can not often acquire high propelling efficiency. Table 3 shows the vorticity at four oscillating frequencies. The peak of vorticity rises with the increase of oscillating frequency.

    Fig.8 Relationship between oscillating frequency and vortex distance

    Table 3 Peak of vorticity at different oscillating frequencies

    3.3Characteristic of the vorticity field at different Strouhal numbers

    The Strouhal number (St=fH/v) is related to flow velocity, oscillating frequency and wake vortex width. In order to discuss the effect of the Strouhal number on the structure of the flow field, the flow field was measured forr the thirty-five cases, in which the oscillating amplitude is 20o, corresponding to the wake vortex width 0.9114 m, the oscillating frequency is respectively taken as 0.75 Hz, 0.835 Hz, 0.91 Hz, 1.05 Hz and 1.17 Hz and the velocity 0.154 m/s, 0.176 m/s, 0.195 m/s, 0.215 m/s, 0.233 m/s, 0.254 m/s and 0.272m/s.Figure 9 presents the vorticity distribution of oscillating caudal fin atSt=0.35, 0.39, 0.43, 0.47, 0.54, 0.6. As is shown in Fig.9, the Strouhal number has a significant influence on the vorticity strength, location and spacing of the wake vortices. Figure 10 presents the curve of the center distance of vortex pair changing withSt. In the graph,Lrepresents thecenter distance of vortex pairs. Figure 11 gives the curve of the angle between connection line of vortex pair and the flow direction. In the graph,βrepresents the angle between connetction line of vortex pair and the flow direction. With the increase ofSt, the center distance of vortex pair is decreased and the formation of vortex pairs speed up. When the Strouhal number is smaller than 0.49, the angle between connection line of vortex pair and the flow direction is greater than 50o. Namely as the angle between jet velocity and flow velocity is smaller, the thrust component is larger.

    Fig.9 Vorticity field at different Strouhal numbers

    Fig.10 Variation of vortex pair interval

    Fig.11 Variation of included angle beween flow direction and line linking vortex pair centers

    Fig.12 Vorticity field in 0-0 plane

    3.4Model of 3-D vortex ring chain of flexible oscillating caudal fin

    3.4.1 Relation between the position of oscillating fin and characteristic of wake vortex

    Figure 12 shows the vorticity field in the 0-0 plane at the different positions with the frequency 0.835 Hz, and the direction of vortex pairs in Fig.12(b) is opposite to that of Fig.12(a), in addition, the vorticity in both conditions keeps the same. The negative vortex in Fig.12(a) is the starting vortex which is rolled up on the lee sides of caudal fin oscillating from right side to left side, and the positive vortex in Fig.9 is shed from the cross side of caudal fin oscillating to the middle side.

    3.4.2 Velocity circulation and geometrical properties of vortex ring

    In order to describe the geometrical properties of 3-D vortex ring of the caudal fin, the shape and the size of vortex must be determined. According to the Stokes theorem, the ring affected by the vortex can be determined by calculating the radial distribution of velocity circulation. When the velocity circulation reaches the maximum, the radius corresponding to the peak value is the vortex radius. The velocity circulation is defined as

    The selection of calculation path is shown in Fig.13.

    Figures 14 and 15 show the radial distribution of the velocity circulation in the vorticity field in the 0-0 plane with the oscillating frequency 0.835 Hz and at the position of left 13.5o. The peaks of velocity circulation of the red vortex and the blue vortex are 21652 mm2/s and 34653 mm2/s respectively, and their radii are both 30 mm accordingly. So the influence radius in this condition is 30 mm.

    According to the analysis in Section 3.1, in the different sections of the caudal fin, the vortex distance is gradually decreasing away from the center plane. In the different sections of fin, the flow field keeps the shape of vortex pair, and the value of velocity circulation is almost identical, while the relative position and distance of vortex pairs vary. The model of 3-D vortex ring is constructed through linking vortices with the radius of 30 mm in different planes along the spanwise direction. As the oscillating frequency is 0.835 Hz, the vortex distance is 158.6 mm and the radius is 30 mm. Hence corresponding to the 3-D vortex ring, its internal and external diameters are 128.6 mm and 188.6 mm respectively. The shape of the vortex ring is assumed as a circle.

    Fig.13 Calculation path of velocity circulation

    Fig.14 Velocity circulation of negative vortex

    With the evolution of the vortex, vortex rings will continue to move toward the downstream, so vortex ring chain is formed. Figures 16 and 17 present the relationship of the geometry of vortex chain, the vorticity and oscillating position, and the zigzag chain is composed by a series of vortex pairs. Obviously, the central vortex ring creates a jet, and the velocity component of the jet flow along the advancingdirection produces the thrust of the oscillating caudal fin. Because the spanwise length of caudal fin is 175 mm, the diameter of 3-D vortex ring and the span length of the caudal fin almost keep the same, and the shape of the vortex ring is near a circle.

    Fig.15 Velocity circulation of positive vortex

    Fig.16 Top view of vortex chain

    Fig.17 Side view of vortex chain

    Especially, the 3-D vortex rings provide not only the horizontal thrust and lateral oscillating force, but also the small vertical components, namely the lift. It indicates that the 3-D vortex ring is not perpendicular to the plane strictly, but must have a little oblique angle. The oblique angle of vortex ring could be determined according to the coordinates of vortex centers. The oblique angle of vortex ring is 9.85oat the oscillating frequency 0.835 Hz, This conclusion is proved by the experimental results of Lau[4].

    4.Conclusions

    The experiments with the DPIV have been carried out to study the characteristics of the flow field of flexible oscillating caudal fin. The average velocity of flow field from the different film planes is presented for different oscillating positions and frequencies. It is found that the vortex flow fields exhibit significant difference in properties in different sections along the spanwise direction of caudal fin. Through the analysis of the vorticity field of the spanwise in the midpoint plane of the caudal fin with the oscillating positions of 13.5oleft, the effects of oscillating frequency of caudal fin on the vortex distance and vorticity magnitude have been investigated,

    In order to describe the geometrical properties of 3-D vortex ring of the caudal fin, the radius affected by the vortex is determined by calculating the radial distribution of the velocity circulation. According to the results of the vortex distance, the geometry size and the vertical oblique angle of 3-D vortex ring are presented, and then the model of 3-D vortex ring chain of flow field of oscillating caudal fin is constructed. The model gives the quantitative relationship of the oscillating parameter and the wake vortex structure of the caudal fin, and it elucidates the wake field properties produced by the oscillating caudal fin of actual fish swimming. Therefore, it provides the research foundation for establishing the analysis model of oscillating parameters, the flow field structure and the thrust of caudal fin.

    [1] TONG Bing-gang, LU Xi-yun. A review on biomechanics of animal flight and swimming[J].Advances in Mechanics.2004, 34(1): 1-8(in Chinese).

    [2] Daichin, ZHAO Li-li. PIV measurement of wake flow of an airfoil near free surface and the POD analysis[J].ChineseJournal of Hydrodynamics,2008, 23(2): 196-203(in Chinese).

    [3] LI Hai-feng, CHEN Hong-xun. Experimental and numerical investigation of free surface vortex[J].Journal of Hydrodynamics,2008, 20(4): 485-491.

    [4] LAU T. C. W., KELSO R. M. and HASSAN E. R. Flow visualization of a pitching and heaving hydrofoil[C].The 15th Australasian Fluid Mechanics Conference.Sydney, Australia: The University of Sydney, 2004, 13-17.

    [5] HOVER F. S., TRIANTAFYLLOU M. S. Effect of angle of attack profiles in flapping foil propulsion[J].Journal of Fluids and Structures,2004, 19(1): 37-47.

    [6] SCHOUVEILER L., HOVER F. S. and TRIANTAFYLLOU M. S. Performance of flapping foil propulsion[J].Journal of Fluids and Structures,2005, 20(7): 949-959.

    [7] WANG Zhao, SONG Hong-jun and YIN Xie-zhen. The visualization of vortex field of unsteady motion for2D foil-heaving motion[J].Experiments and Measurements in Fluid Mechanics,2004, 18(2): 71-76(in Chinese).

    [8] LIU Zhen, HYUN Beom-soo and KIM Moo-rong et al. Experimental and numerical study for hydrodynamic characteristics of an oscillating hydrofoil[J].Journal of Hydrodynamics,2008,20(3): 280-287.

    [9] HEATHCOTE S., MARTIN D. and GURSUL I. Flexible flapping wing propulsion at zero free stream velocity[C].The 33rd AIAA Fluid Dynamics Conference and Exhibit.Orlando, Florida, USA, 2003, 23-26.

    [10] NAUEN J. C., LAUDER G. V. Hydrodynamics of caudal fin locomotion by chub mackerel, scomber japonicus (scombridae)[J].The Journal Experimental Biology,2002, 205: 1709-1724.

    [11] MULLER U. K., SMIT J. and STAMHUIS E. J. How the body contributes to the wake in undulatory fish swimming: Flow fields of a swimming eel (anguilla )[J].Journal of Experimental Biology.2001, 204: 2751-2762.

    [12] YANG Yi-hong, YIN Xie-zhen and LU Xi-yan. Flow visualization over a 2-D traveling wave wall[J].Journal of Experiments in Fluid Mechanic,2005, 19(2): 84-90(in Chinese).

    [13] DRUCKER E. G., LAUDER G. V. Locomotor forces on a swimming fish: Three-dimensional vortex wake dynamics quatified using digital particle image velocimetry[J].Journal of Experimental Biology,1999, 202: 2393-2412

    [14] JEFFREY A. W. Dynamics of pectoral fin rowing in a fish with an extreme rowing stroke: The threespine stickleback (gasterosteus aculeatus)[J].Journal of Experimental Biology,2004, 207: 1925-1939.

    [15] JING Jun, LI Sheng and LU Xi-yan et al. The kinematic analysis of C-start in crucian carp (carassius auratus) [J].Journal of Experimental Mechanics,2004, 19(3): 276-282(in Chinese).

    [16] JING Jun, YIN Xie-zhen and LU Xi-yun. Observation and hydrodynamic analysis on fast-start of yellow catfish (pelteobagrus fulvidraco)[J].Progress in Natural Science,2005, 15(1): 34-40.

    November 3, 2009, Revised January 22, 2010)

    * Project supported by the National Natural Science Foundation of China (Grant No. 50879031), the Key laboratory of Jiangsu Province (Grant No. CT0701).

    Biography:WANG Zhi-dong (1967-),Male, Ph. D., Professor

    2010,22(3):393-401

    10.1016/S1001-6058(09)60070-6

    国产精品美女特级片免费视频播放器 | 一区福利在线观看| 国产乱人伦免费视频| 黑人猛操日本美女一级片| 欧美成狂野欧美在线观看| 国产午夜精品久久久久久| 亚洲国产中文字幕在线视频| 超碰成人久久| 中文亚洲av片在线观看爽| 18禁国产床啪视频网站| 日韩av在线大香蕉| 99精品久久久久人妻精品| 男女下面插进去视频免费观看| 十八禁网站免费在线| 91成人精品电影| 老司机靠b影院| 亚洲欧美日韩另类电影网站| 男女高潮啪啪啪动态图| 男女下面进入的视频免费午夜 | 欧美黑人欧美精品刺激| 午夜激情av网站| 大陆偷拍与自拍| 久久人人精品亚洲av| 久久精品国产亚洲av高清一级| 亚洲成人久久性| 51午夜福利影视在线观看| 精品一区二区三区视频在线观看免费 | 日韩欧美国产一区二区入口| 精品国产乱子伦一区二区三区| 国产色视频综合| 免费av毛片视频| 精品久久久久久,| 妹子高潮喷水视频| 国产激情久久老熟女| 夜夜夜夜夜久久久久| 亚洲一区二区三区色噜噜 | 亚洲av成人一区二区三| 丰满饥渴人妻一区二区三| 欧美精品亚洲一区二区| 69精品国产乱码久久久| 一区二区三区精品91| 免费看十八禁软件| 男女床上黄色一级片免费看| 久久香蕉精品热| 日韩一卡2卡3卡4卡2021年| 成人18禁在线播放| 亚洲av片天天在线观看| 久99久视频精品免费| 日本vs欧美在线观看视频| 亚洲精华国产精华精| 男女下面插进去视频免费观看| a级毛片在线看网站| 亚洲国产中文字幕在线视频| 十分钟在线观看高清视频www| 一区二区日韩欧美中文字幕| 极品人妻少妇av视频| av视频免费观看在线观看| 黄色 视频免费看| 亚洲男人天堂网一区| 天天添夜夜摸| 欧美日韩福利视频一区二区| 丰满迷人的少妇在线观看| 看黄色毛片网站| 成人特级黄色片久久久久久久| 高清黄色对白视频在线免费看| 91成年电影在线观看| 91av网站免费观看| 中文欧美无线码| av国产精品久久久久影院| 久热这里只有精品99| 老汉色av国产亚洲站长工具| 午夜福利在线免费观看网站| 日本a在线网址| 一级作爱视频免费观看| 极品教师在线免费播放| 久久久久久久精品吃奶| 91麻豆av在线| 亚洲国产中文字幕在线视频| 欧美日韩一级在线毛片| 色尼玛亚洲综合影院| 国产精品一区二区在线不卡| 亚洲第一欧美日韩一区二区三区| 日韩免费高清中文字幕av| 18禁观看日本| 88av欧美| 黄色丝袜av网址大全| 精品久久久久久电影网| 欧美另类亚洲清纯唯美| 久久热在线av| 日韩国内少妇激情av| www.自偷自拍.com| 黄色毛片三级朝国网站| 老汉色∧v一级毛片| 日韩欧美一区二区三区在线观看| 丁香欧美五月| 久久久水蜜桃国产精品网| 国产极品粉嫩免费观看在线| 久久精品亚洲精品国产色婷小说| 国产精品自产拍在线观看55亚洲| 天堂中文最新版在线下载| 精品久久久久久久毛片微露脸| 亚洲全国av大片| 亚洲欧洲精品一区二区精品久久久| 黄片小视频在线播放| 欧美日韩瑟瑟在线播放| 色婷婷久久久亚洲欧美| 女人精品久久久久毛片| 亚洲五月色婷婷综合| 国产精品亚洲av一区麻豆| 久久伊人香网站| 这个男人来自地球电影免费观看| 美女午夜性视频免费| 宅男免费午夜| 大香蕉久久成人网| 国产亚洲欧美98| 国产主播在线观看一区二区| 丝袜美足系列| 国产精品二区激情视频| 国产精品久久久久久人妻精品电影| 精品一区二区三卡| 日本精品一区二区三区蜜桃| 最近最新中文字幕大全电影3 | 老汉色av国产亚洲站长工具| 身体一侧抽搐| 亚洲少妇的诱惑av| 国产成人啪精品午夜网站| 欧美老熟妇乱子伦牲交| 多毛熟女@视频| 51午夜福利影视在线观看| 中文字幕最新亚洲高清| 日韩av在线大香蕉| 纯流量卡能插随身wifi吗| 欧美日韩亚洲国产一区二区在线观看| videosex国产| 18禁国产床啪视频网站| 新久久久久国产一级毛片| 在线视频色国产色| 高清黄色对白视频在线免费看| 久久伊人香网站| 精品少妇一区二区三区视频日本电影| 亚洲欧美激情在线| 亚洲欧美一区二区三区黑人| 一个人免费在线观看的高清视频| av有码第一页| 悠悠久久av| 高清在线国产一区| 欧美日韩乱码在线| 19禁男女啪啪无遮挡网站| 无遮挡黄片免费观看| 日韩有码中文字幕| 欧美日韩亚洲综合一区二区三区_| 亚洲欧美激情在线| 日韩大码丰满熟妇| 神马国产精品三级电影在线观看 | 精品一品国产午夜福利视频| 亚洲第一欧美日韩一区二区三区| 亚洲情色 制服丝袜| 欧美人与性动交α欧美软件| 性色av乱码一区二区三区2| 日韩一卡2卡3卡4卡2021年| 最近最新中文字幕大全电影3 | 欧美一级毛片孕妇| 免费在线观看日本一区| 精品免费久久久久久久清纯| 国产高清videossex| 91字幕亚洲| 国产一区二区激情短视频| 高清毛片免费观看视频网站 | 天天躁狠狠躁夜夜躁狠狠躁| 久久中文字幕人妻熟女| 免费看十八禁软件| 高潮久久久久久久久久久不卡| 久久影院123| 久久久国产成人精品二区 | 女性生殖器流出的白浆| 欧美+亚洲+日韩+国产| 国内毛片毛片毛片毛片毛片| 欧美黄色淫秽网站| 精品一区二区三区视频在线观看免费 | 91字幕亚洲| 亚洲 国产 在线| 国产熟女午夜一区二区三区| 一区二区三区激情视频| 亚洲欧美精品综合久久99| 国产区一区二久久| 激情视频va一区二区三区| 91成年电影在线观看| 高潮久久久久久久久久久不卡| 另类亚洲欧美激情| 免费在线观看视频国产中文字幕亚洲| 国产一区二区在线av高清观看| 成人18禁高潮啪啪吃奶动态图| 一二三四社区在线视频社区8| 香蕉久久夜色| 亚洲精品粉嫩美女一区| 亚洲精品粉嫩美女一区| 久久午夜亚洲精品久久| 美国免费a级毛片| 亚洲欧洲精品一区二区精品久久久| 国产一卡二卡三卡精品| 国产精品野战在线观看 | 电影成人av| 国内久久婷婷六月综合欲色啪| 老司机靠b影院| 久9热在线精品视频| 在线观看www视频免费| 丝袜美腿诱惑在线| 黑人操中国人逼视频| 99在线视频只有这里精品首页| 在线观看一区二区三区| 亚洲,欧美精品.| 成人亚洲精品av一区二区 | 女人精品久久久久毛片| 日韩一卡2卡3卡4卡2021年| 欧美日韩黄片免| 久久精品亚洲av国产电影网| 亚洲成人精品中文字幕电影 | 国产精品久久久人人做人人爽| 热99国产精品久久久久久7| 一区在线观看完整版| 亚洲av五月六月丁香网| 91麻豆精品激情在线观看国产 | 青草久久国产| 中文字幕人妻丝袜一区二区| 99久久久亚洲精品蜜臀av| 国产精品自产拍在线观看55亚洲| 999久久久精品免费观看国产| 亚洲成人国产一区在线观看| 国产成人啪精品午夜网站| 动漫黄色视频在线观看| 中文亚洲av片在线观看爽| 99精品久久久久人妻精品| 97人妻天天添夜夜摸| 国产欧美日韩一区二区三| 亚洲黑人精品在线| 女人爽到高潮嗷嗷叫在线视频| 91av网站免费观看| 亚洲人成伊人成综合网2020| 国产精品乱码一区二三区的特点 | 一级a爱片免费观看的视频| 十八禁人妻一区二区| 欧美日韩瑟瑟在线播放| 国产成人av教育| 天堂影院成人在线观看| 在线观看免费日韩欧美大片| 国产单亲对白刺激| 神马国产精品三级电影在线观看 | 国产精品一区二区三区四区久久 | 国产精品九九99| 成人免费观看视频高清| 久热爱精品视频在线9| 亚洲avbb在线观看| 老熟妇仑乱视频hdxx| 黄色片一级片一级黄色片| 国产av在哪里看| 热99re8久久精品国产| 日本黄色视频三级网站网址| 最近最新中文字幕大全电影3 | 五月开心婷婷网| 免费观看精品视频网站| 日本一区二区免费在线视频| 亚洲中文日韩欧美视频| 成人三级黄色视频| 亚洲久久久国产精品| 日本一区二区免费在线视频| 国产亚洲av高清不卡| 在线av久久热| 亚洲视频免费观看视频| 日韩欧美在线二视频| 夜夜看夜夜爽夜夜摸 | 高清在线国产一区| 国产一区在线观看成人免费| 久久精品成人免费网站| 搡老岳熟女国产| 亚洲色图av天堂| 精品福利观看| 99久久综合精品五月天人人| 国产免费av片在线观看野外av| 操出白浆在线播放| 美女大奶头视频| 国产伦一二天堂av在线观看| 国产亚洲精品久久久久5区| 国产精品久久久久成人av| 日本一区二区免费在线视频| 一个人观看的视频www高清免费观看 | 国产黄色免费在线视频| 手机成人av网站| 久久久久久久午夜电影 | 最新美女视频免费是黄的| 99久久精品国产亚洲精品| 日韩一卡2卡3卡4卡2021年| av国产精品久久久久影院| 啦啦啦免费观看视频1| 欧美日韩黄片免| 亚洲精品国产区一区二| 91九色精品人成在线观看| 亚洲第一欧美日韩一区二区三区| 日韩欧美一区二区三区在线观看| 精品国产亚洲在线| 国产精品美女特级片免费视频播放器 | 一级毛片精品| 久久影院123| 视频区图区小说| 欧美黑人欧美精品刺激| 国产欧美日韩一区二区三| 男女床上黄色一级片免费看| 日本精品一区二区三区蜜桃| 久久人人爽av亚洲精品天堂| 国产成人av教育| 国产精品一区二区三区四区久久 | 超碰97精品在线观看| 精品国产亚洲在线| 伊人久久大香线蕉亚洲五| 亚洲成人久久性| 窝窝影院91人妻| 精品国产一区二区久久| 老司机福利观看| 久久久久久久久免费视频了| 欧美日韩福利视频一区二区| 精品久久久精品久久久| 久久天躁狠狠躁夜夜2o2o| 亚洲精品一区av在线观看| bbb黄色大片| 无遮挡黄片免费观看| 午夜影院日韩av| 国产精品久久久av美女十八| 国产亚洲欧美精品永久| 亚洲人成77777在线视频| 12—13女人毛片做爰片一| 久久午夜综合久久蜜桃| 后天国语完整版免费观看| 国产免费现黄频在线看| 国产精品 国内视频| 青草久久国产| 99精国产麻豆久久婷婷| 在线观看一区二区三区激情| av欧美777| 日韩欧美三级三区| 天堂动漫精品| av有码第一页| 老汉色av国产亚洲站长工具| 97碰自拍视频| 亚洲va日本ⅴa欧美va伊人久久| 久久久久国产精品人妻aⅴ院| 亚洲精品国产色婷婷电影| 国产精品成人在线| 亚洲精品国产精品久久久不卡| 国产一区二区激情短视频| 国产av一区二区精品久久| 好看av亚洲va欧美ⅴa在| 91国产中文字幕| 99re在线观看精品视频| 人妻丰满熟妇av一区二区三区| 欧美精品一区二区免费开放| cao死你这个sao货| 黄色女人牲交| 亚洲 国产 在线| 91字幕亚洲| 亚洲熟女毛片儿| 曰老女人黄片| 妹子高潮喷水视频| 亚洲美女黄片视频| 国产一卡二卡三卡精品| 国产精品影院久久| 欧美+亚洲+日韩+国产| 日韩精品中文字幕看吧| 90打野战视频偷拍视频| 美女国产高潮福利片在线看| 色老头精品视频在线观看| 国产精品久久久久成人av| 国产日韩一区二区三区精品不卡| 69精品国产乱码久久久| 成年女人毛片免费观看观看9| 在线av久久热| 夜夜夜夜夜久久久久| 久久久久久亚洲精品国产蜜桃av| 午夜福利一区二区在线看| 免费在线观看完整版高清| 欧美日韩亚洲综合一区二区三区_| 丝袜人妻中文字幕| 一夜夜www| 国产欧美日韩综合在线一区二区| 国产精品久久视频播放| 久久九九热精品免费| 五月开心婷婷网| 亚洲黑人精品在线| videosex国产| 大陆偷拍与自拍| 99riav亚洲国产免费| 成人国语在线视频| 正在播放国产对白刺激| 咕卡用的链子| www日本在线高清视频| 夜夜看夜夜爽夜夜摸 | 中文亚洲av片在线观看爽| 久久国产精品影院| 999久久久国产精品视频| 精品福利观看| 免费在线观看影片大全网站| 久久久久久久久免费视频了| 操美女的视频在线观看| 黑人猛操日本美女一级片| xxxhd国产人妻xxx| 免费一级毛片在线播放高清视频 | 亚洲激情在线av| 国产一区二区三区综合在线观看| 欧美日韩乱码在线| 久久久国产成人免费| 国产av一区在线观看免费| 免费日韩欧美在线观看| 免费看a级黄色片| 亚洲久久久国产精品| 日韩人妻精品一区2区三区| 国产97色在线日韩免费| 搡老熟女国产l中国老女人| 亚洲美女黄片视频| 一区福利在线观看| 久久中文字幕人妻熟女| 高清毛片免费观看视频网站 | 视频区欧美日本亚洲| 久久精品亚洲av国产电影网| 一进一出抽搐动态| 精品久久久久久成人av| 搡老熟女国产l中国老女人| 亚洲av片天天在线观看| 午夜两性在线视频| 久久久久久人人人人人| 黄片小视频在线播放| 夜夜爽天天搞| 亚洲第一欧美日韩一区二区三区| 中文字幕高清在线视频| 在线观看66精品国产| 亚洲中文字幕日韩| 99re在线观看精品视频| 黄频高清免费视频| 女人精品久久久久毛片| 在线国产一区二区在线| 老熟妇仑乱视频hdxx| 亚洲第一av免费看| 天堂√8在线中文| 俄罗斯特黄特色一大片| 国产欧美日韩一区二区精品| 精品一区二区三区四区五区乱码| 91国产中文字幕| 日本vs欧美在线观看视频| 怎么达到女性高潮| 韩国av一区二区三区四区| 国产高清视频在线播放一区| 丝袜美腿诱惑在线| 国内久久婷婷六月综合欲色啪| 变态另类成人亚洲欧美熟女 | 一级黄色大片毛片| 国产一区二区激情短视频| 精品欧美一区二区三区在线| 亚洲欧美激情在线| 国产午夜精品久久久久久| 桃色一区二区三区在线观看| 国产精品98久久久久久宅男小说| 亚洲精品粉嫩美女一区| 成人国语在线视频| 午夜两性在线视频| 午夜福利在线免费观看网站| 色综合欧美亚洲国产小说| 黄网站色视频无遮挡免费观看| 又紧又爽又黄一区二区| 国产免费av片在线观看野外av| 精品久久久久久电影网| 啦啦啦在线免费观看视频4| 国产深夜福利视频在线观看| 亚洲九九香蕉| 色尼玛亚洲综合影院| 亚洲 国产 在线| 母亲3免费完整高清在线观看| 久久人妻av系列| 黑人巨大精品欧美一区二区蜜桃| 亚洲国产精品一区二区三区在线| 久久午夜综合久久蜜桃| 女人高潮潮喷娇喘18禁视频| 少妇裸体淫交视频免费看高清 | 亚洲精品美女久久av网站| 老司机午夜十八禁免费视频| 手机成人av网站| 亚洲精品美女久久久久99蜜臀| 亚洲免费av在线视频| 欧美日韩精品网址| 国产精品一区二区三区四区久久 | 亚洲情色 制服丝袜| 久久久国产欧美日韩av| 日韩高清综合在线| 亚洲午夜理论影院| 日韩欧美一区二区三区在线观看| 久久香蕉激情| 亚洲国产精品合色在线| 日韩三级视频一区二区三区| av网站在线播放免费| 999久久久精品免费观看国产| 99国产综合亚洲精品| 高清av免费在线| 亚洲熟女毛片儿| 中文字幕另类日韩欧美亚洲嫩草| av网站在线播放免费| 亚洲午夜精品一区,二区,三区| 少妇被粗大的猛进出69影院| 国产有黄有色有爽视频| 成人亚洲精品av一区二区 | cao死你这个sao货| 啦啦啦在线免费观看视频4| 男人舔女人下体高潮全视频| 久久精品成人免费网站| 免费日韩欧美在线观看| 日本黄色日本黄色录像| 老司机午夜福利在线观看视频| 国产精品乱码一区二三区的特点 | 日韩精品免费视频一区二区三区| 亚洲五月婷婷丁香| 9191精品国产免费久久| 免费少妇av软件| 男人操女人黄网站| 午夜福利影视在线免费观看| 亚洲激情在线av| 99久久精品国产亚洲精品| 亚洲欧美激情在线| 中文字幕另类日韩欧美亚洲嫩草| 精品第一国产精品| 亚洲成人精品中文字幕电影 | 精品久久久久久电影网| 侵犯人妻中文字幕一二三四区| 国产一区二区激情短视频| 高潮久久久久久久久久久不卡| 国产三级在线视频| 亚洲五月婷婷丁香| 午夜日韩欧美国产| 久久天堂一区二区三区四区| 中文欧美无线码| 两性午夜刺激爽爽歪歪视频在线观看 | 男人操女人黄网站| www日本在线高清视频| 亚洲成av片中文字幕在线观看| 在线播放国产精品三级| 久久国产乱子伦精品免费另类| 中文字幕人妻熟女乱码| 国产乱人伦免费视频| 日韩视频一区二区在线观看| 伦理电影免费视频| 涩涩av久久男人的天堂| 99riav亚洲国产免费| www日本在线高清视频| videosex国产| 人人澡人人妻人| 男人舔女人下体高潮全视频| 久久久精品国产亚洲av高清涩受| 国产亚洲精品久久久久久毛片| 亚洲欧美一区二区三区黑人| 麻豆一二三区av精品| 亚洲激情在线av| 久久精品国产99精品国产亚洲性色 | av有码第一页| 国产精品一区二区在线不卡| 亚洲国产精品sss在线观看 | 日本三级黄在线观看| 免费看a级黄色片| 午夜精品久久久久久毛片777| 欧美精品亚洲一区二区| 日韩视频一区二区在线观看| 中文字幕av电影在线播放| 欧美午夜高清在线| 亚洲avbb在线观看| 村上凉子中文字幕在线| 国产欧美日韩综合在线一区二区| 一级黄色大片毛片| 日韩av在线大香蕉| 中文字幕精品免费在线观看视频| 亚洲激情在线av| 久久久国产一区二区| 婷婷精品国产亚洲av在线| 亚洲色图 男人天堂 中文字幕| 欧美日韩精品网址| 亚洲精品中文字幕一二三四区| 在线观看舔阴道视频| 国产黄a三级三级三级人| 色尼玛亚洲综合影院| 精品一区二区三卡| 午夜老司机福利片| 亚洲精品国产区一区二| 中亚洲国语对白在线视频| 精品福利观看| 免费女性裸体啪啪无遮挡网站| 色综合婷婷激情| 亚洲熟妇熟女久久| 亚洲 欧美一区二区三区| 欧美黄色片欧美黄色片| 多毛熟女@视频| 免费少妇av软件| 欧美中文日本在线观看视频| 99国产极品粉嫩在线观看| 18禁黄网站禁片午夜丰满| 超碰97精品在线观看| 十八禁人妻一区二区| 亚洲色图av天堂| 亚洲国产精品一区二区三区在线| 一本综合久久免费| 亚洲狠狠婷婷综合久久图片| 日日夜夜操网爽| 男人舔女人下体高潮全视频| 亚洲欧美精品综合久久99| 亚洲成人免费av在线播放| 欧美日韩福利视频一区二区| 欧美精品啪啪一区二区三区| 999精品在线视频| 夜夜爽天天搞| 岛国在线观看网站| 91av网站免费观看| 亚洲精品久久午夜乱码| 黄色女人牲交| 黄色丝袜av网址大全|