• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    基于變換空間近鄰圖的自助型局部保持投影

    2010-05-05 22:55:34喬立山1張麗梅1孫忠貴2
    關(guān)鍵詞:工程系南京航空航天大學(xué)聊城

    喬立山1,2 張麗梅1,2 孫忠貴2

    (1.南京航空航天大學(xué)計(jì)算機(jī)科學(xué)與工程系,南京,210016,中國;2.聊城大學(xué)數(shù)學(xué)科學(xué)學(xué)院,聊城,252000,中國)

    INTRODUCTION

    In practice,the high-dimensional data are often utilized such as face images and gene expression micro-arrays. Dimensionality reduction(DR)is a principle way to mine and understand such high-dimensional data by mapping them into another(usually low-dimensional)space.Classical DR methods include PCA,ICA and LDA,and so on[1].However,these methods cannot discover the nonlinear structure in data.To address this issue,in the past decade,researchers have developed many nonlinear manifold learning algorithms such as LLE[2],ISOM AP[3]and Laplacian eigenmaps[4].They give more flexibility in data modeling,but generally suffer from high computational cost and the so-called″out-of-sample″problem.Ref.[5]showed that although such nonlinear techniques perform well on selected artificial data sets,they generally do not outperform the traditional PCA on real-world tasks yet.

    In the recent years,there is an increasing interest in linearized locality-oriented DR methods,e.g., the locality preserving projections(LPP)[6],the neighborhood preserving embedding (NPE)[7],the unsupervised discriminant projection(UDP)[8],and the sparsity preserving projections(SPP)[9],etc..On one hand,these algorithms are linear in nature,thus avoiding the″out-of-sample″problem involved in nonlinear manifold learning.On the other hand,they model the local neighborhood structure in data,and generally achieve better performance than typical global linear methods such as PCA.According to Ref.[10],almost all of the existing locality-oriented methods essentially share the similar objective function yet with different well-constructed neighborhood graphs.Therefore,without loss of generality,LPP in virtue of its popularity and typicality is chosen to develop the algorithm and demonstrate the idea,though the idea in this paper can be easily and naturally extended to other locality-oriented DR methods.

    As a representative of locality-oriented DR algorithms,LPP has been widely used in many practical problems,such as the face recognition[11].Despite its unsupervised nature,LPP has potential discriminative power by preserving the local geometry of data.However,the neighborhood graph underlying LPP is defined(Eq.(2))based on original data points,and must be fixed all along once constructed.As a result,the performance of LPP generally relies heavily on how well the nearest neighbor criterion work in original space[12].In addition,the so-defined neighborhood graph suffers seriously from the difficulty of parameter selections,i.e.,the neighborhood size k and the Gaussian kernel widthe.

    To address these problems,this paper proposes a novel DR algorithm,called the self-dependent LPP(sdLPP),which is based on the observation that the nearest neighbor criterion usually works well in LPP transformed space.Firstly,LPP is performed based on the typical neighborhood graph.Then,a new neighborhood graph is constructed in LPP transformed space and repeats LPP.Furthermore,a new criterion called the improved laplacian score is developed as an empirical reference for discriminative power and iterative stop condition.Finally,experiments on several publicly available UCI and face data sets verify the feasibility and the effectiveness of the proposed algorithm with promising results.

    1 BRIEF REVIEW OF LOCALITY PRESERVING PROJECTIONS

    Given a set of data pointsX= [x1,x2,…,xn],xi∈Rd,LPP aims at seeking a set of projection directions by preserving the local geometric data structure.The objective function of LPP is defined as follows

    whereW∈ Rd×d′(d′<d)is the projection matrix and S= (Sij)n×nthe adjacency weight matrix defined as

    where Nk(xj)is k nearest neighbors of xj.

    To avoid degenerative solution,this paper,where diiis the

    where D=diag(d11,d22,…,dnn)is a diagonal matrix and L=D-S the graph Laplacian[6].Eq.(3)is a typical non-convex[13],and it is often solved approximately by the generalized eigenvalue problem:XLXTw=λ XDXTw,where w is the eigenvector for constructing.row sum of S(or column since S is symmetrical).Then, with simple formulation, LPP can be rewritten as a compact trace ratio form[6]

    2 SELF-DEPENDENT LOCALITY PRESERVING PROJECTIONS

    2.1 Motivation

    According to Refs.[6,14],the locality preserving power of LPP is potentially related to discriminating power.As a result,the 1-NN classifier in LPP transformed space generally achieves better performance in comparison with the baseline scenario(i.e.,performing 1-NN classifier in original space without any transformation).In fact,this is also the observation from the experiments in many research work[6,9,14]related to LPP.

    Since the neighborhood graph and 1-NN classifier are both closely related to the nearest neighbor criterion,a natural idea is that the neighborhood graph constructed in the LPP transformed space includes more discriminative information than the one constructed in the original space.Therefore,this paper updates the neighborhood graph in previous LPP transformed space,and then repeats LPP.The corresponding algorithm is called the self-dependent LPP(sdLPP),since it only depends on LPP itself instead of resorting to other extra tricks or tools.This paper develops an improved Laplacian score(LS)as an alternative under the stop condition,and proposes a specific algorithm.

    2.2 Improved Laplacian score

    The original Laplacian score(LS)is introduced to scale the importance of the feature(or variable)[15]. Different from classical Fisher score[16]which can only work under supervised scenario,LS can work under supervised,unsupervised and even semi-supervised scenarios.Although LS aims at the feature selection,it can naturally be extended to the feature extraction or the dimensionality reduction field.However,typical LS is based on the artificially predefined neighborhood graph,and it becomes a constant once the specific projection directions are given.So the reliability of LS relies heavily on the single pre-fixed neighborhood graph;and LS cannot directly be used as iteration termination condition in the proposed algorithm.

    An improved Laplacian score(iLS)is defined as follows

    The i LS shares the similar mathematical expression to the objective function of Eq.(3)and typical LS[15],but it has remarkable differences from them.In typical LS(or more generally,the most existing locality-oriented DR algorithms),the adjacency weight matrix S of the graph is fixed in advance.While in the proposed iLS,S is variable,that is,the iLS is a joint function with respect to W and S.

    2.3 sdLPP Algorithm

    Based on the above discussion,sdLPP algorithm is given as follows:

    (1)As in LPP and other locality-oriented DR algorithms,the data points in a PCA transformed subspace are firstly projected to remove the null space of XXTand the possible singularity problem is avoided.Without loss of generality,X is used to denote the data points in the PCA transformed subspace.

    (2)Constructing initial neighborhood graph G(X,S)with appropriate neighborhood parameter k and Gaussian kernel width ein Eq.(2),then calculating the projection matrix W by solving the generalized eigenvalue problem: XLXTw =λ XDXTw,and finally calculating the iLS,Lold=L(W,S)with current W and S.

    (3)Updating S in the previous LPP transformed space with the same parameters k ande,then repeatly computing the new projection matrix W and i LS,Lnew=L(W,S)with the new W and S.

    (4)If Lnew>Lold,let Lold= Lnewand turn to Step(3),otherwise,break and return to W.

    It is easy to see that the sdLPP algorithm is simple.Here,it needs to point out that iLSis not an accurate indicator of the discriminate power,since the proposed algorithm completely works under the unsupervised scenario.Therefore,in the experiments,this paper first performs ten iterations and judges whether they should be continued according to iLS at another ten iterations.This trick is used to avoid the unexpected stop due to the possible fluctuation of iLS.Of course,a well-designed heuristic strategy is worthy of deep study in the future.

    3 EXPERIMENTS

    In this section,the algorithm is compared with LPP through the illustrative example,the clustering and the face recognition experiments.

    3.1 Illustrative example

    Firstly,this paper visually show how and why the algorithm works on the widely used Wine data set from the UCI machine learning repository.The Wine has 13 features,3 classes and 178 instances.A main characteristic of this data set is that its last feature has large range and variance relative to other ones.As a result,such remarkable feature will play a key role in the data distribution.This generally challenges the typical locality-oriented DR methods including LPP,since the neighborhood graph is fixed in advance and heavily depends on the last remarkable feature due to its large range and variance in the original space.

    (1)Data visualization

    In particular,Fig.1(a)shows the 2-D projections of Wine by the typical LPP whose adjacency graph is constructed with neighborhood size k=min{n1,n2,n3}- 1,where niis the sample number from the i th class,and heat kernel widtheas the mean norm of the data[17](the influence of these parameters on the ultimate performance is discussed.).By the LPP transformation,the three classes are overlapped together.Then,the proposed sdLPP is performed.Fig.1(b)shows the improved Laplacian score at each iteration.Generally speaking,it presents an increasing tendency with the iteration.Figs.1(c-f)give the 2-D projections by sdLPP after 1,5,10,and 20 iterations,respectively,which show that the three classes in the subspace are gradually separated from each other.This illustrates that the graph updating strategy can potentially benefit the subsequent learning task.

    Fig.1 Data visualization results and iLS of sdLPP at each iteration on Wine data set

    (2)Sensitivity to parameters k ande

    The model selection for unsupervised learning is one of classical challenges to machine learning and pattern recognition tasks.Fig.2 shows the performances of LPP and sdLPP on Wine data set with different parameter values,respectively.In the experiment,25 samples per class are randomly selected for training and remaining for test.Then,the classification accuracies of 20 training splits per test are averaged,and the best results at certain dimensions are plotted.In particular,Fig.2(a)shows the classification accuracies using graphs with the different neighborhood size k and fixed heat kernel widthe0,where k is traversed from 1 to 50 ande0is set as the mean norm of the training samples[17].Fig.2(b)shows the accuracies using graphs with different kernel width e and fixed k,where e is chosen from{2-10e0,…,20e0,…,210e0}and k is set to 24,i,e.,25-1.

    Fig.2 Classification accuracies on Wine using graphs

    As shown in Fig.2,with the pre-fixed graph,typical LPP generally suffers from serious performance drop if it gives an improper parameter value.In contrast,sdLPP is not so sensitive to the setting of the initial parameters due to the fact that the graph becomes better with the subsequent updating process.

    3.2 Clustering

    In what follows,this paper performs clustering experiments using ten data sets by widely used UCIincluding Iris,Wine,Wdbc,and so on.The statistical parameters of all the data sets are summarized in Table 1.

    Table1 Statistical parameters of used data sets for clustering

    In the experiments,the normalized mutual information(NMI)[17]is adopted to evaluate the clustering performance.NMI measurement is defined as

    where A and B are the random variables of the cluster memberships from the ground truth and the output of clustering algorithm,respectively;I(A,B)is the mutual information between A and B.H(A)and H(B)are the entropies of A and B,respectively.

    On all the data sets,the k-means clustering is performed in the original space(baseline),the LPP transformed space and the sdLPP transformed space,respectively.For LPP and sdLPP,the neighborhood size k is set to min{n1,n2,…,nc},where niis the training sample number from the ith class;the heat kernel parametereis set as the mean norm of the training samples according to the scheme used in Ref.[17].This paper repeats 50 experiments and reports the mean performances and the corresponding subspace dimensions in Table 2.

    Table 2 Performance(NMI)comparisons for clustering task

    The results show that:(1)the performance of k-means can generally be improved after DR,i.e.,on data sets①—⑤⑧⑨,which illustrates that the locality preserving power is potentially related to discriminative power;(2)on very few data sets(sets⑥⑦),the DR algorithms do not help the clustering,which is due to serious overlap of the data or inappropriately assigned param-eter values for the neighborhood graph;(3)the sdLPP algorithm can remarkably outperform typical LPP on most of the data sets.This illustrates that the neighborhood graph updating can potentially benefit the subsequent discriminant task.

    3.3 Face recognition

    Typical LPP has been successfully used in the face recognition where it is appeared as the popular Laplacianface[11].This paper experimentally comparesthe proposed algorithmswith Laplacianface on two publicly available face databases:AR and extended Yale B.

    (1)Database description

    In the experiments,a subset of the AR face database provided and preprocessed by Martinez[18]is used.This subset contains 1 400 face images corresponding to 100 person(50 men and 50 women),where each person has 14 different images with illumination change and expressions.The original resolution of these image faces is 165×120. For the computational convenience,this paper resizes them to 33× 24.Fig.3(a)gives 14 face images of one person taken in two sessions with different illuminations and expressions.Extended Yale B database[19]contains 2 414 front-view face images of 38individuals.For each individual,about 64 pictures are taken under various laboratory-controlled lighting conditions.In the experiments,this paper uses cropped images with resolution of 32×32.Fig.3(b)gives some face images of one person from this database.

    (2)Experimental setting

    For AR database,the face images taken in the first session are used for training,and the images taken in the second session are used for test;for extended Yale B,this paper randomly selects l(l=10,20 and 30,respectively)samples for training and remaining for test.The ultimate performance is the mean of 10 training per test splits.

    Firstly,the data is projected in a PCA transformed subspace,which is calculated using the training samples and kept 98% energy;then,LPP and sdLPP are performed in the subspace,and 1-NN classifier is chosen due to its simplicity,effectiveness and efficiency to evaluate the recognition rates on the test data.As a Baseline,the recognition rates of 1-NN classifier are also given on the raw data.

    Fig.3 Face images of one person

    (3)Parameter selection

    For LPP and sdLPP,the model parameters include the neighborhood size k and the kernel widthe.In our experiments,we empirically sete as the mean norm of the training samples[17],and determine k values by searching in a large range of candidate values and reporting the best results.

    (4)Experimental results and discussion

    Fig.4 shows the recognition rate curves of different methods on AR and extended Yale B(l=10)databases.For AR,the best recognition rates of Baseline,LPP and sdLPP are 74.57%,79.00% and 81.71%,respectively,where the best neighborhood size k= 1.For extended Yale B,the best performances and corresponding dimensions are reported in Table 3.For l=10,20 and 30,the best neighborhood size k is 1,1 and 2,respectively.

    From the experimental results,the following observations are obtained:

    Table3 Performance comparisons on extended Yale B database

    Fig.4 Recognition rate curves based on different methods

    (1)Typical LPP and the proposed sdLPP can achieve betterperformance than the baseline method.This further illustrates that the locality preserving DR algorithms can encode potential discriminating information,even though under the unsupervised scenario.

    (2)The proposed sdLPP consistently outperforms LPP on the used face databases.This illustrates that sdLPP actually benefits from the graph updating process.

    4 CONCLUSIONS

    This paper develops a novel LPP algorithm with the adjustable neighborhood graph.As a summary,several favorable properties of the algorithm are enumerate.

    (1)sdLPP is self-dependent.It does not acquire to pay incidental expenses for exploiting new tools,but directly work on off-the-shelf LPP.So sdLPP is very simple and analytically tractable.And sdLPP naturally inherits some good characteristics from original LPP.For example,it can avoid the″out-of-sample″problem involved in manifold learning.

    (2)sdLPP is not so sensitive to neighborhood size k and Gaussian kernel width erelative to typical LPP,due to the fact that the neighborhood graph becomes better and better in the subsequent updating process.

    (3)sdLPP can potentially use the discriminative information lying in both the original space and the transformed space,since the graph in sdLPP is adjustable instead of being fixed beforehand as in LPP.This can potentially help the subsequent learning task.

    (4)The idea behind sdLPP is extremely general.It can easily and naturally be applied to many other graph-based DRs just through slight modifications.

    It is worthwhile to point out that the proposed algorithm including the improved Laplacian score is completely unsupervised.Although unsupervised DR methods do not require the efforts of human annotators,reliable supervised information generally help to achieve better discriminative power.In the future,we expect to further improve the proposed algorithm by absorbing possibly known label information and extend it to semi-supervised scenario.

    [1] Hastie T.The elements of statistical learning:data mining,inference,and prediction [M].2nd Ed.New York:Springer,2009.

    [2] Roweis S T,Saul L K.Nonlinear dimensionality reduction by locally linear embedding[J].Science,2000,290(5500):2323-2326.

    [3] Tenenbaum J B,Mapping a manifold of perceptual observations [C]//Neural Information Processing Systems(NIPS). Cambridge,M A,USA:MIT Press,1998:682-688.

    [4] Belkin M,Niyogi P.Laplacian eigenmaps for dimensionality reduction and data representation[J].Neural Computation,2003,15(6):1373-1396.

    [5] Van-der-Maaten L J P,Postma E O,Van-den-Herik H J.Dimensionality reduction:a comparative review[EB/OL].http://ict.ewi.tudelft.nl/~ lvandermaaten/Publications-files/JM LR-Paper.pdf,2009-10.

    [6] He X F,Niyogi P.Locality preserving projections[C]//Neural Information Processing Systems(NIPS).Cambridge,M A,USA:M IT Press,2003:153-160.

    [7] He X F,Cai D,Yan S C,et al.Neighborhood preserving embedding[C]//IEEE International Conference on Computer Vision(ICCV).Washington,DC,USA:IEEE Computer Society,2005:1208-1213.

    [8] Yang J,Zhang D,Yang J Y,et al.Globally maximizing,locally minimizing: Unsupervised discriminant projection with applications to face and palm biometrics[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,29(4): 650-664.

    [9] Qiao L,Chen S,Tan X,Sparsity preserving projections with applications to face recognition[J].Pattern recognition,2010,43(1):331-341.

    [10]Yan S C,Xu D,Zhang B Y,et al.Graph embedding and extensions:a general framework for dimensionality reduction[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,29(1):40-51.

    [11]He X F,Yan S C,Hu Y X,et al.Face recognition using Laplacianfaces[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(3):328-340.

    [12]Chen H T,Chang H W,Liu T L.Local discriminant embedding and its variants[C]//IEEE Conference on Computer Vision and Pattern Recognition(CVPR).Washington,DC,U SA:IEEE ComputerSociety,2005:846-853.

    [13]Wang H,Yan S C,Xu D,et al.Trace ratio vs.ratio trace for dimensionality reduction[C]//IEEE Conference on Computer Vision and Pattern Recognition(CV PR).Washington,DC,U SA:IEEE Computer Society,2007:1-8.

    [14]Cai D,He X F,Han JW,et al.Orthogonal Laplacianfaces for face recognition [J].IEEE Transactions on Image Processing,2006,15(11): 3608-3614.

    [15]He X,Cai D,Niyogi P.Laplacian score for feature selection[C]//Neural Information Processing Systems(NIPS).Cambridge,M A,U SA:MIT Press,2005:507-514.

    [16]Bishop C M.Pattern recognition and machine learning[M].New York:Springer,2006.

    [17]Wu M,Scholkopf B.A local learning approach for clustering[C]//Neural Information Processing Systems(NIPS).Cambridge,MA,USA:MIT Press,2006:1529-1536.

    [18]Martinez A M,Kak A C.PCA versus LDA[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2001,23(2):228-233.

    [19]Lee K C,Ho J,Kriegman D J.Acquiring linear subspaces for face recognition under variable lighting[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(5):684-698.

    猜你喜歡
    工程系南京航空航天大學(xué)聊城
    南京航空航天大學(xué)機(jī)電學(xué)院
    南京航空航天大學(xué)機(jī)電學(xué)院
    南京航空航天大學(xué)
    南京航空航天大學(xué)生物醫(yī)學(xué)光子學(xué)實(shí)驗(yàn)室
    聊城高新區(qū)多措并舉保障貧困戶“居住無憂”
    聊城 因水而生 有水則靈
    走向世界(2018年11期)2018-12-26 01:12:44
    聊城,宛在水中央
    走向世界(2018年11期)2018-12-26 01:12:44
    新動能,新聊城
    走向世界(2018年11期)2018-12-26 01:12:32
    電子信息工程系
    機(jī)電工程系簡介
    亚洲av免费在线观看| 欧美激情久久久久久爽电影| 99riav亚洲国产免费| 国产99白浆流出| 成人av在线播放网站| 国产不卡一卡二| 一区二区三区国产精品乱码| 精品国产乱码久久久久久男人| 久久香蕉精品热| 美女 人体艺术 gogo| 日本五十路高清| 中文字幕av在线有码专区| 真人一进一出gif抽搐免费| 国产欧美日韩一区二区三| 一本综合久久免费| 午夜精品在线福利| 男女床上黄色一级片免费看| av福利片在线观看| 特大巨黑吊av在线直播| 天天躁日日操中文字幕| 听说在线观看完整版免费高清| 国产精品影院久久| 日韩国内少妇激情av| 亚洲男人的天堂狠狠| 十八禁人妻一区二区| 国产三级黄色录像| 久久久久久人人人人人| 不卡av一区二区三区| 两个人看的免费小视频| 麻豆成人午夜福利视频| av视频在线观看入口| 日本精品一区二区三区蜜桃| 在线免费观看的www视频| 人人妻人人澡欧美一区二区| 欧美日本亚洲视频在线播放| 国产一区二区在线观看日韩 | 国产av不卡久久| 亚洲自拍偷在线| 久久国产精品影院| 可以在线观看毛片的网站| 亚洲男人的天堂狠狠| 在线观看免费午夜福利视频| 岛国在线免费视频观看| 天堂√8在线中文| 热99在线观看视频| 国产乱人伦免费视频| 九九在线视频观看精品| 国产黄a三级三级三级人| 桃红色精品国产亚洲av| 黑人巨大精品欧美一区二区mp4| 欧美成人免费av一区二区三区| 日本 欧美在线| 1024香蕉在线观看| 婷婷精品国产亚洲av在线| 黄色成人免费大全| 欧美高清成人免费视频www| 看免费av毛片| 一级毛片高清免费大全| 欧美一级毛片孕妇| 一本一本综合久久| 热99re8久久精品国产| 免费看日本二区| 毛片女人毛片| 国产精品自产拍在线观看55亚洲| 男人舔女人下体高潮全视频| 国产精品综合久久久久久久免费| 久久伊人香网站| 亚洲五月婷婷丁香| 免费大片18禁| 国产精品一区二区三区四区久久| 成人三级黄色视频| 动漫黄色视频在线观看| 国产伦在线观看视频一区| 人妻丰满熟妇av一区二区三区| 亚洲成人久久爱视频| 91在线精品国自产拍蜜月 | 在线视频色国产色| 国内精品美女久久久久久| 国产亚洲av高清不卡| 亚洲人成网站高清观看| 熟女人妻精品中文字幕| 亚洲av第一区精品v没综合| 色吧在线观看| 老汉色∧v一级毛片| 国产成+人综合+亚洲专区| 天堂影院成人在线观看| 色视频www国产| tocl精华| 麻豆国产97在线/欧美| 男女下面进入的视频免费午夜| 亚洲av成人不卡在线观看播放网| 欧美不卡视频在线免费观看| 波多野结衣巨乳人妻| 熟女少妇亚洲综合色aaa.| 久久久色成人| 国产精品 国内视频| 久久久久久久午夜电影| 香蕉av资源在线| 日韩欧美精品v在线| 午夜视频精品福利| 国产伦一二天堂av在线观看| 中文字幕久久专区| 国产精品久久电影中文字幕| 一级作爱视频免费观看| 久久久久九九精品影院| 色播亚洲综合网| 国产精品精品国产色婷婷| 国产一区二区在线av高清观看| 国产蜜桃级精品一区二区三区| 村上凉子中文字幕在线| 亚洲精品在线美女| 网址你懂的国产日韩在线| 亚洲自偷自拍图片 自拍| 精品国产乱子伦一区二区三区| 中出人妻视频一区二区| 精品一区二区三区视频在线 | 1024香蕉在线观看| 日韩 欧美 亚洲 中文字幕| 国产乱人视频| 国产99白浆流出| av天堂中文字幕网| 婷婷亚洲欧美| 亚洲va日本ⅴa欧美va伊人久久| 真实男女啪啪啪动态图| 日本在线视频免费播放| 精品日产1卡2卡| 亚洲一区高清亚洲精品| 99久久国产精品久久久| 三级毛片av免费| 国产真实乱freesex| 十八禁人妻一区二区| 亚洲国产欧美一区二区综合| 亚洲性夜色夜夜综合| 国产一区在线观看成人免费| 三级男女做爰猛烈吃奶摸视频| 色av中文字幕| 一边摸一边抽搐一进一小说| 成人午夜高清在线视频| 91字幕亚洲| 亚洲欧美日韩东京热| 成年女人毛片免费观看观看9| 最近在线观看免费完整版| 国产成人精品无人区| 成在线人永久免费视频| 啪啪无遮挡十八禁网站| 搡老妇女老女人老熟妇| 十八禁网站免费在线| www日本黄色视频网| 午夜福利18| 精品电影一区二区在线| 亚洲中文字幕一区二区三区有码在线看 | 国产69精品久久久久777片 | 国产午夜精品论理片| 天堂av国产一区二区熟女人妻| 精品久久久久久久久久久久久| 久久久久国产一级毛片高清牌| 在线看三级毛片| 欧美乱妇无乱码| 久久久精品欧美日韩精品| 天堂√8在线中文| 99精品欧美一区二区三区四区| 婷婷六月久久综合丁香| 国产av在哪里看| 一进一出抽搐gif免费好疼| 一区二区三区国产精品乱码| 国产成人av激情在线播放| 丰满人妻熟妇乱又伦精品不卡| e午夜精品久久久久久久| 亚洲国产色片| 美女cb高潮喷水在线观看 | 国产熟女xx| 亚洲av片天天在线观看| 亚洲 欧美一区二区三区| 久久国产精品人妻蜜桃| 人妻久久中文字幕网| 国产单亲对白刺激| 亚洲avbb在线观看| 亚洲欧美精品综合久久99| 亚洲欧美精品综合久久99| 婷婷丁香在线五月| 校园春色视频在线观看| 校园春色视频在线观看| av黄色大香蕉| 精品一区二区三区av网在线观看| 高潮久久久久久久久久久不卡| 国产精品野战在线观看| 黑人操中国人逼视频| 搡老熟女国产l中国老女人| 久久精品亚洲精品国产色婷小说| 免费无遮挡裸体视频| 亚洲成人免费电影在线观看| 每晚都被弄得嗷嗷叫到高潮| 又粗又爽又猛毛片免费看| 婷婷精品国产亚洲av在线| 精品电影一区二区在线| 精品人妻1区二区| 国产野战对白在线观看| 日韩欧美精品v在线| 国产一区二区在线观看日韩 | 91九色精品人成在线观看| 可以在线观看毛片的网站| 小蜜桃在线观看免费完整版高清| netflix在线观看网站| 搡老熟女国产l中国老女人| 国产伦在线观看视频一区| 网址你懂的国产日韩在线| 12—13女人毛片做爰片一| 日韩精品青青久久久久久| 成人国产一区最新在线观看| 神马国产精品三级电影在线观看| 日本与韩国留学比较| 久久这里只有精品中国| 91麻豆精品激情在线观看国产| 久久久久久久久久黄片| 日韩三级视频一区二区三区| 久久精品综合一区二区三区| 亚洲狠狠婷婷综合久久图片| 91在线精品国自产拍蜜月 | 九色成人免费人妻av| 嫩草影院精品99| 岛国在线免费视频观看| 国产亚洲精品久久久com| 后天国语完整版免费观看| 在线看三级毛片| 99热这里只有精品一区 | 在线十欧美十亚洲十日本专区| 中文字幕熟女人妻在线| 一个人免费在线观看电影 | 国产1区2区3区精品| 欧美乱色亚洲激情| av福利片在线观看| 成人av一区二区三区在线看| av中文乱码字幕在线| 亚洲美女视频黄频| 波多野结衣高清作品| 偷拍熟女少妇极品色| 国产亚洲av嫩草精品影院| 欧美3d第一页| 国产aⅴ精品一区二区三区波| 免费一级毛片在线播放高清视频| 中文亚洲av片在线观看爽| 久久欧美精品欧美久久欧美| 久久人人精品亚洲av| avwww免费| 国产精品一区二区三区四区久久| 一个人免费在线观看电影 | 又黄又粗又硬又大视频| 精品不卡国产一区二区三区| 日韩人妻高清精品专区| 在线永久观看黄色视频| 国产三级黄色录像| 亚洲精品中文字幕一二三四区| 国产精品久久久久久人妻精品电影| 午夜精品在线福利| 又爽又黄无遮挡网站| 久久热在线av| 免费看光身美女| 亚洲国产高清在线一区二区三| 男人舔女人的私密视频| 少妇丰满av| 中文字幕人妻丝袜一区二区| 亚洲精品粉嫩美女一区| 九九热线精品视视频播放| 午夜亚洲福利在线播放| 国产亚洲av嫩草精品影院| 又爽又黄无遮挡网站| 国内久久婷婷六月综合欲色啪| 男女那种视频在线观看| 国产欧美日韩精品一区二区| 亚洲第一电影网av| 热99re8久久精品国产| 俄罗斯特黄特色一大片| 国产三级在线视频| 亚洲成人免费电影在线观看| 成人永久免费在线观看视频| 老司机在亚洲福利影院| 婷婷精品国产亚洲av| 麻豆成人av在线观看| 悠悠久久av| 精品久久久久久,| 婷婷六月久久综合丁香| 美女黄网站色视频| 黄片小视频在线播放| 亚洲狠狠婷婷综合久久图片| 91在线精品国自产拍蜜月 | 国产午夜精品久久久久久| 国产av不卡久久| 日韩欧美精品v在线| 色吧在线观看| 我要搜黄色片| 久久九九热精品免费| 夜夜夜夜夜久久久久| www.精华液| 亚洲av中文字字幕乱码综合| 国产毛片a区久久久久| 亚洲中文字幕一区二区三区有码在线看 | 亚洲乱码一区二区免费版| 1024香蕉在线观看| 在线观看美女被高潮喷水网站 | 99久久综合精品五月天人人| 日韩大尺度精品在线看网址| 激情在线观看视频在线高清| ponron亚洲| 日韩欧美一区二区三区在线观看| 九九热线精品视视频播放| 午夜福利在线观看吧| 美女 人体艺术 gogo| 国产人伦9x9x在线观看| 韩国av一区二区三区四区| 精品国产超薄肉色丝袜足j| 国产成人系列免费观看| 亚洲av美国av| 在线观看美女被高潮喷水网站 | 久久久久国内视频| aaaaa片日本免费| 中文字幕久久专区| 三级男女做爰猛烈吃奶摸视频| 亚洲精品在线观看二区| 亚洲激情在线av| 欧美成人性av电影在线观看| av女优亚洲男人天堂 | 国产av在哪里看| 国产欧美日韩精品亚洲av| 欧美xxxx黑人xx丫x性爽| 婷婷丁香在线五月| 一区二区三区国产精品乱码| 国产精品久久久久久久电影 | 91av网一区二区| 亚洲成人精品中文字幕电影| 国产一区二区激情短视频| 男人的好看免费观看在线视频| 熟女少妇亚洲综合色aaa.| 久久久久久久久中文| 国产99白浆流出| 1024香蕉在线观看| 久久久久久久精品吃奶| 日本撒尿小便嘘嘘汇集6| 人妻丰满熟妇av一区二区三区| 日本成人三级电影网站| 国产精品久久久久久久电影 | 在线十欧美十亚洲十日本专区| 国产精品亚洲一级av第二区| 午夜视频精品福利| 成人av一区二区三区在线看| 18禁观看日本| 亚洲熟妇熟女久久| 国产精华一区二区三区| 亚洲男人的天堂狠狠| 国产亚洲精品综合一区在线观看| 亚洲国产高清在线一区二区三| 国产不卡一卡二| 偷拍熟女少妇极品色| 久9热在线精品视频| 日韩欧美国产在线观看| 一个人看视频在线观看www免费 | 欧美激情久久久久久爽电影| 一区二区三区高清视频在线| 男人舔女人下体高潮全视频| 日本免费a在线| 亚洲成人久久爱视频| 伦理电影免费视频| 欧美日韩瑟瑟在线播放| 欧美一区二区精品小视频在线| 在线永久观看黄色视频| 亚洲av第一区精品v没综合| 久久这里只有精品19| 人妻丰满熟妇av一区二区三区| 日韩中文字幕欧美一区二区| 婷婷六月久久综合丁香| 香蕉丝袜av| 亚洲人成伊人成综合网2020| 精品国内亚洲2022精品成人| 麻豆成人av在线观看| 欧美在线黄色| 免费看美女性在线毛片视频| av片东京热男人的天堂| 啦啦啦韩国在线观看视频| 国产午夜福利久久久久久| 色吧在线观看| 精品久久久久久久末码| 日本在线视频免费播放| 精品福利观看| 国产高清激情床上av| 欧美在线一区亚洲| 亚洲第一欧美日韩一区二区三区| 国产成+人综合+亚洲专区| 国产精品久久久久久亚洲av鲁大| 久久香蕉国产精品| bbb黄色大片| 国产激情欧美一区二区| 国产爱豆传媒在线观看| 亚洲国产欧洲综合997久久,| 1024手机看黄色片| 欧美另类亚洲清纯唯美| 99国产精品一区二区三区| 少妇人妻一区二区三区视频| 90打野战视频偷拍视频| 国产淫片久久久久久久久 | 亚洲国产欧美网| 亚洲专区中文字幕在线| 最近视频中文字幕2019在线8| 免费在线观看成人毛片| 亚洲av成人一区二区三| av天堂在线播放| 亚洲九九香蕉| 国产麻豆成人av免费视频| 免费一级毛片在线播放高清视频| 老熟妇仑乱视频hdxx| 久久久久久久午夜电影| 国产成人av教育| 亚洲专区字幕在线| 美女午夜性视频免费| 国产成人精品无人区| svipshipincom国产片| 手机成人av网站| 精品国产三级普通话版| 一边摸一边抽搐一进一小说| 午夜成年电影在线免费观看| 亚洲专区国产一区二区| 丰满人妻一区二区三区视频av | 久久久久久人人人人人| 久久久水蜜桃国产精品网| 免费在线观看亚洲国产| 亚洲自偷自拍图片 自拍| 巨乳人妻的诱惑在线观看| 精品久久久久久久末码| 中文在线观看免费www的网站| 国产亚洲精品久久久久久毛片| 老汉色av国产亚洲站长工具| 国内精品久久久久久久电影| 757午夜福利合集在线观看| 国产一区二区在线观看日韩 | 无遮挡黄片免费观看| 亚洲黑人精品在线| 制服人妻中文乱码| 九九在线视频观看精品| 亚洲熟妇中文字幕五十中出| 99久久国产精品久久久| 又黄又爽又免费观看的视频| 在线永久观看黄色视频| 午夜精品久久久久久毛片777| 亚洲成av人片在线播放无| 18禁黄网站禁片免费观看直播| 国产精品 国内视频| 日日夜夜操网爽| 18禁观看日本| 国产精品久久久久久人妻精品电影| 国产精品一区二区免费欧美| 国产精品99久久99久久久不卡| 国产精品亚洲一级av第二区| 亚洲18禁久久av| 精品一区二区三区四区五区乱码| 久久久久国产精品人妻aⅴ院| 国产91精品成人一区二区三区| 18禁黄网站禁片午夜丰满| 国产精品99久久99久久久不卡| 听说在线观看完整版免费高清| 亚洲欧美精品综合久久99| 精品不卡国产一区二区三区| 日本精品一区二区三区蜜桃| 国产成人一区二区三区免费视频网站| 99国产精品一区二区三区| 国产精品久久久久久精品电影| 国产欧美日韩一区二区精品| 黑人操中国人逼视频| 最新中文字幕久久久久 | 欧美丝袜亚洲另类 | 国产综合懂色| 国产乱人视频| 日韩av在线大香蕉| 欧美最黄视频在线播放免费| 好男人电影高清在线观看| 叶爱在线成人免费视频播放| 久久久久精品国产欧美久久久| 欧美一区二区精品小视频在线| 国产高清有码在线观看视频| 久久热在线av| 午夜影院日韩av| 男人的好看免费观看在线视频| 欧美日本视频| 国内揄拍国产精品人妻在线| 午夜精品久久久久久毛片777| 不卡av一区二区三区| 五月玫瑰六月丁香| 国产精品亚洲av一区麻豆| 日韩中文字幕欧美一区二区| 欧美性猛交黑人性爽| 高清在线国产一区| 97碰自拍视频| 午夜福利视频1000在线观看| 欧美绝顶高潮抽搐喷水| 男女床上黄色一级片免费看| 成年女人毛片免费观看观看9| 身体一侧抽搐| 亚洲av熟女| 中文字幕高清在线视频| 国产免费av片在线观看野外av| 在线免费观看不下载黄p国产 | 久久精品亚洲精品国产色婷小说| 丰满的人妻完整版| 国产97色在线日韩免费| 色哟哟哟哟哟哟| 岛国在线免费视频观看| 亚洲 欧美一区二区三区| 男女下面进入的视频免费午夜| 十八禁人妻一区二区| 久久久久免费精品人妻一区二区| 在线免费观看的www视频| 免费看日本二区| 久久久久久九九精品二区国产| 亚洲五月天丁香| 国产伦一二天堂av在线观看| 国产精品,欧美在线| 少妇的丰满在线观看| 黄色 视频免费看| 天天躁日日操中文字幕| 欧美乱码精品一区二区三区| 久久99热这里只有精品18| 日韩有码中文字幕| 日本成人三级电影网站| 国产黄色小视频在线观看| 日日夜夜操网爽| 最新中文字幕久久久久 | 好男人在线观看高清免费视频| 日本熟妇午夜| 一个人免费在线观看的高清视频| 精品久久久久久久久久免费视频| 一区福利在线观看| 好男人在线观看高清免费视频| 日韩精品中文字幕看吧| 国产成年人精品一区二区| 婷婷丁香在线五月| 亚洲真实伦在线观看| 一级作爱视频免费观看| av天堂中文字幕网| 18禁美女被吸乳视频| 免费一级毛片在线播放高清视频| 亚洲国产精品sss在线观看| 中文字幕熟女人妻在线| e午夜精品久久久久久久| 黑人操中国人逼视频| 人妻夜夜爽99麻豆av| 日韩欧美三级三区| 免费看十八禁软件| www国产在线视频色| 99久久精品一区二区三区| 日本 av在线| 国产日本99.免费观看| 国产精品综合久久久久久久免费| 欧美成人一区二区免费高清观看 | 国产精品九九99| 两个人看的免费小视频| 香蕉av资源在线| 国产久久久一区二区三区| 欧美在线黄色| 久久精品国产99精品国产亚洲性色| 日韩精品青青久久久久久| 欧美日韩福利视频一区二区| 国产99白浆流出| 毛片女人毛片| 成年女人看的毛片在线观看| 一边摸一边抽搐一进一小说| h日本视频在线播放| 制服丝袜大香蕉在线| 国产伦一二天堂av在线观看| 成年女人永久免费观看视频| 午夜精品一区二区三区免费看| 在线永久观看黄色视频| 国产精品 欧美亚洲| 一区福利在线观看| 校园春色视频在线观看| 在线观看一区二区三区| 精品午夜福利视频在线观看一区| 人人妻人人澡欧美一区二区| 亚洲欧美激情综合另类| 伊人久久大香线蕉亚洲五| 国产精品美女特级片免费视频播放器 | 日本免费一区二区三区高清不卡| tocl精华| 99久久久亚洲精品蜜臀av| 久久久色成人| 国产一级毛片七仙女欲春2| 国产精品 国内视频| 国产精品98久久久久久宅男小说| 91久久精品国产一区二区成人 | 别揉我奶头~嗯~啊~动态视频| 亚洲精品中文字幕一二三四区| 天天一区二区日本电影三级| 国产黄色小视频在线观看| 国产伦在线观看视频一区| 舔av片在线| 老司机深夜福利视频在线观看| 午夜亚洲福利在线播放| 日韩国内少妇激情av| av视频在线观看入口| 欧美日韩精品网址| 亚洲欧美日韩卡通动漫| 婷婷亚洲欧美| 国产精品久久久久久人妻精品电影| 国产成+人综合+亚洲专区| 黄频高清免费视频| 少妇的逼水好多| 久久久水蜜桃国产精品网| 国产激情偷乱视频一区二区| 综合色av麻豆| 香蕉久久夜色| 最近最新中文字幕大全免费视频| 国产精品一区二区三区四区免费观看 | 少妇裸体淫交视频免费看高清| 91在线观看av| 国产午夜精品久久久久久| 亚洲avbb在线观看| 精华霜和精华液先用哪个| 99久国产av精品| 久久久久久九九精品二区国产|