• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    二萘嵌苯二酰亞胺衍生物的半導(dǎo)體性質(zhì)

    2010-03-06 04:44:26齊冬冬張躍興邊永忠姜建壯
    物理化學(xué)學(xué)報(bào) 2010年4期
    關(guān)鍵詞:化學(xué)系北京科技大學(xué)酰亞胺

    蔡 雪 齊冬冬 張躍興 邊永忠 姜建壯,*

    (1北京科技大學(xué)化學(xué)系,北京 100083;2牡丹江師范學(xué)院化學(xué)系,黑龍江牡丹江 157012)

    Organic field effect transistors(OFETs)have attracted increasing research interests[1]due to their great potential applications in the field of low-cost electronic devices,integrated circuits,and flexibledisplayssincetheirfirstreportin1986[2].Perylene diimide (PDI)semiconductors have been among the most intensively studied semiconductor materials.In recent years,the synthesis of n-type PDI-based organic semiconductors with good OFET performance has achieved great progress.Air-stable n-channel organicsemiconductorbasedona substituted perylene core(PDI-8CN2)wasreported[3].Twon-channelperylenediimide derivatives without strong electron-withdrawing groups have been studied[4]. The charge carrier mobility of PBI-F2and PBI-F4single crystalbased OFETs were revealed to reach up to 0.34 and 0.032 cm2· V-1·s-1[5].Two core-cyanated PDI derivatived,PDI-CN2and PDIFCN2,also exhibited air-stable n-type OFET carrier mobilities[6].

    In addition to the intensive experimental studies over the preparation and fabrication of OFETs,theoretical and computational efforts have been paid to these perylene diimide semiconductors.For example,the semiconducting properties of N-fluoroalkylated dicyanoperylene-3,4∶9,10-bis(dicaboximides)(PDIFCN2)were investigated using DFT method[7].

    In the present paper,as an extension of our research interests in OFETs[8-11],the charge transfer properties of chlorobenzyl or fluorobenzyl substituted PDI derivatives in crystal were investigated using density functional theory(DFT)calculations.The transfr integral in all the possible dimers composed of two neighboring PDI molecules for 1-4 is also studied.

    1 Computational method and details

    According to Marcus theory,the charge transfer can be described as a self-exchange electron-transfer reaction between a neutral molecule and a neighboring cation or anion.The holetransfer or electron-transfer process between spatially neighboring separated molecules can be represented by either of the following reactions:

    where M represents neutral molecule undergoing charge transfer,and M+or M-means cation or anion,respectively.In this situation,the charge transport can be described as a sequential electron hopping process between consecutive molecules.As a result,the hoping rate(Wi)can then be modeled by classical Marcus theory:

    where λ±is the reorganization energy,V the transfer integral,i a specific transfer pathway,kBthe Boltzmann constant,? Planck constant,and T the temperature.

    The reorganization energy λ+or λ-for hole or electron transfer,respectively,which is not dependent on the relative positions of neighboring molecules,is calculated as the sum of the relaxation energies for neutral and positive radicals.The higher the reorganization energy is,the slower the hopping rates are. The reorganization energy λ+(λ-)is due to geometric relaxation accompanying charge transfer.The internal reorganization energies λ±can be defined as shown in Fig.S1(Supporting Information).

    The transfer integral V depends on the relative arrangement of the molecules in the solid state and describes the intermolecular transfer integral,which needs to be maximized to achieve high charge carrier mobility.In all calculations,one PDI molecule is randomly chosen from the crystal structure as the middle molecule for a charge to diffuse and the nearest neighbor molecules in the crystals were taken to evaluate the transfer integrals.All possible intermolecular hopping pathways were generated.It is worth noting that only the nearest neighbor molecules in the crystals of 1-4 were taken to evaluate the transfer integrals and the direct dimer Hamiltonian evaluation method was used.The transfer integral for hole/electron transfer in the direct method can be written as[12-14]:

    where Φ0,site10000000HOMO/LUMOand Φ0,site20000000HOMO/LUMOare the HOMO or LUMO of isolated molecules 1 and 2 of the dimer,respectively,and F0is the Fock operator for the dimer for a fixed pathway,in which the suffix of zero indicates that the molecular orbitals appearing in the operator(the density matrix,for instance)are unperturbed.The Fock matrix is evaluated as:

    where S is the overlap matrix for the dimer,and the Kohn-Sham orbital C and eigenvalue ε are obtained by the zeroth-order Fock matrix without any self-consistent field iteration.

    The diffusion coefficient can be evaluated from the hopping rates as[15]:

    In the above equation,i represents a specific transfer pathway with ribeing the transfer distance(intermolecular center to center distance),Withe hopping rate due to charge carrier to the its neighbor,and n the spatial dimension,which is equal to 3 for the crystal.Piis the relative probability for its neighbor.The assumption is that the charge transfer is a slow process in which the molecules have enough time to become equilibrium.This is pertinent for the soft organic system.

    Fig.1 Schematic molecular structures of compounds 1-4 The drift mobility(μ)of hopping is evaluated from the Einstein relaxation,

    The molecular structures of the series of PDI compounds 1-4 are shown in Fig.1.The neutral molecules,cations,and anions of 1-4wereoptimizedatthesame set,that is,the hybrid density functional B3LYP(Becke-Lee-Young-Parr composite of exchangecorrelation functional)method and the 6-31G(d)basis set,which has been proved suitable for calculating large molecules in the previous work[7].Reorganization energies of 1-4 are provided by carrying out series of single point energy calculations on the basis of the optimized structures.Transfer integrals in all the possible dimers composed of two neighboring PDI molecules for 1-4 were studied according to the direct method[12-14].All the calculations were performed using the Gaussian 03 program[16]in the IBM P690 system at the Shandong Province High Performance Computing Center.

    2 Results and discussion

    2.1 Energy level of HOMO and LUMO and ionization energy and electron affinities

    The calculated HOMO and LUMO energies together with the HOMO-LUMO gap for 1-4 are tabulated in Table 1.Introduction of chlorobenzyl or fluorobenzyl groups onto the PDI molecule leads to a little decrease in the HOMO and LUMO energies from -6.111 and-3.571 eV for 1 to-6.117--6.177 eV and-3.572--3.653 eV for 2-4,and a slight change in their HOMO-LUMO gap.Due to the n-type semiconductor property revealed for 1[17], compounds 2-4 should also be potential n-type semiconductor in terms of their frontier molecular energy levels.

    The adiabatic and vertical ionization energies(IEaand IEv)and the adiabatic and vertical electron affinities(EAaand EAv)for the series of compounds 1-4 are calculated and the results are orga-nized in Table 2,which can provide more direct information for hole and electron injection from the Au source-drain electrode to the semiconductor layers than frontier molecular orbital energy. Accordingtopreviousresearches[18],semiconductormaterialswith the electronic affinity being in the range of 3.0-4.0 eV can ensure both efficient electron injection from common Au sourcedrain electrode and enough ambient stability and therefore show advantage as n-type semiconductors for OFETs.In line with the energy change of HOMO and LUMO,introduction of chlorobenzyl or fluorobenzyl groups leads to a high EAaof 2.543,2.495, and 2.578 eV for 2-4,respectively,which are larger than that of 2.395 eV for 1.The EAaof 2-4,2.50-2.58 eV,approaches the suggested electronic affinity for n-type semiconductor,suggesting the n-type nature of these three compounds.This is in line with the experimental result that N,N′-bis(4-trifluoromethybenzyl)perylene-3,4,9,10-tetracarboxylic diimide(PTCDI-TFB)exhibites n-type semiconducting properties[19].

    Table 1 Energies of frontier orbitals and HOMO-LUMO gaps of 1-4

    2.2 Reorganized energy(λ±)

    The calculated reorganization energies(λ±)for hole-transport and electron-transport process of the four compounds are listed in Table 3.The reorganization energy for electron(λ-)of 2-4, 0.3083,0.2920,and 0.2954 eV,respectively,is larger than that of 1,0.2450 eV,suggesting the smaller mobility of electrontransport for the three compounds than 1 in terms of reorganizationenergy(λ-).Thecomputedreorganizationenergyof1,0.2450 eV,corresponds well with the previous findings that reorganization energy for electron of PDI-C8,7is 0.25 eV using B3LYP functional with 6-311g(d,p)basis set[20].

    Due to the strong coupling between the geometric and electronic structures,the small reorganization energy of these PDI compounds can be rationalized by the small geometric change of the neutral molecule when removing an electron from the HOMO or adding an electron into the LUMO[21].To further understand the change in the internal reorganization energy of these compounds,the geometry deformation of the neutral molecule upon reduction for 4 is studied(Fig.S2 and Table S1 (Supporting Information)).It is well known that the degree of geometry change for 4 upon reduction correlates to the orbital composition of LUMO.As can be seen from Fig.2,the LUMO of 4 mainly distributes over the carbon atoms of perylene core,the four oxygen atoms,and carbon atoms of diimide.The nitrogen,fluorin,hydrogen,and carbon atoms of benzene ring have no contribution to the LUMO of 4.As a consequence,one election reduction leads to structure change mainly in the C—C and C—O bond length for 1,with the largest bond length difference of 0.0834 and 0.119 nm.Upon reduction,the largest bond length modification for both C—C and C—O in 4 in compari-son with neutral molecule is 0.302 and 0.118 nm.As expected,variation in the C—H,C—N,and C—F bond lengths for 4,0.0101, 0.0615,and 0.0484 nm,respectively,is negligible.This is also true for 2 and 3.The larger geometric change for 4 upon reduction in comparison with 1 well rationalizes the larger reorganization energy for electron transfer process in 4 than in 1.

    Table 2 Vertical and adiabatic ionization energies and electron affinities of 1-4

    Table 3 Reorganization energies of hole-and electrontransport processes for 1-4

    Fig.2 Molecular orbital maps of LUMO for compound 4

    2.3 Intermolecular transfer integral(V)and charge transfer mobility(μ)in crystal

    Compounds 1-4 all adopt herring-bone packing manner.The crystal structure and the hopping routes for 3(space group P21/a) are displayed in Fig.3 and Fig.4,respectively,as an example.All the possible transfer routes in the crystal of 1-4 are given in Table 4.Charge transfer integrals between one randomly selected PDI molecule(m0)(middle molecule in purple in Figs.(3,4)) and all its neighboring PDI molecules(m1-m15)are calculated on the basis of the experimental crystal structure of 3.According to the transfer distance,we divided the fifteen dimers between m0 and m1-m15 into six types.The nearest distance from m0 to m5,m8,m9,m11 is about 73 nm in type I.The second nearest distance is 120 nm from m0 to m6 and m7 in type II. As can be seen from Table 4,the farthest distance is 183 nm from m0 to m4 and m13 in type III.The center mass distance in the dimers composed of m0 and m2,m3,m10,m12 is 142 nm in type IV.Compared with type III,the second farthest distance is 180.3 nm from m0 to m1 and m15 in type V.According to the calculation,the distance between middle molecule and m14 is 138.5 nm and the intermolecular transfer integral is 0 meV in type VI.Among the six types of dimers,the largest transfer integral for electron is obtained for type I,about 19.1 meV,indicating the most favorable route for electron transfer in type I due to the largest overlapped stacking mode of molecules m5,m8,m9,and m11 relative to m0 in type I,Fig.5.As can be seen from Table 4,type V displays the second smallest transfer integral of only 0.012 meV for electron,indicating the most unfavorable route for electron transfer in type V due to the smallest overlapped stacking mode of molecules m1 and m15 relative to m0,Fig.6.

    Fig.3 Crystal structure of 3(space group P21/a)in the crystalleft:side view;right:top view

    Fig.4 The hopping route of 3(space group P21/a)in the crystalleft:side view;right:top view

    Table 4 The hopping pathways,center mass distance,and transfer integral of 1-4

    Fig.5 The hopping route of m0→m5 for 3 in the crystalleft:side view;right:top view

    Fig.6 The hopping route of m0→m1 for 3 in the crystal

    Table 5 Space group and mobility(μ-)of 1-4

    The hopping pathways,center mass distance(D),intermolecular transfer integral(V),and mobility(μ)of 1-4 are also tabulated in Tables 4 and 5.As can be seen from Table 4,the largest transfer integral for electron among all the possible routes in the crystal of 1 is 182.98 meV,which is much larger than the largest transfer integral in the crystals of 2-4.These results indicate that the LUMO orbital coupling in the crystal of 1 is much stronger than that in the crystals of 2-4.

    On the basis of the calculated transfer integral,intrinsic charge transfer mobility for electron in the crystals of 1-4 is calculated.The calculated intrinsic mobility in the crystal of 1-4 for electron is 5.39,0.59,0.023,and 0.17 cm2·V-1·s-1,respectively,indicating that the series of PDI compounds are good ntype semiconductors[22-25].The transfer mobility for electron in the crystal of 1 is much larger than those of 2-4,consistent with the trend for the largest transfer integral.Corresponding well with the experimental findings that the electron mobility of N,N′-bis (4-trifluoromethybenzyl)perylene-3,4,9,10-tetracarboxylic diimide (PTCDI-TFB),0.041 cm2·V-1·s-1,was obtained in air for the thin film[19],compounds 3 shows good n-type semiconductor property with the calculated intrinsic charge transfer mobility for electron of 0.023 cm2·V-1·s-1.

    3 Conclusions

    In summary,the charge transfer properties of a series of PDI derivatives for OFET applications were studied by density functional theory(DFT)calculations.Introduction of the chlorobenzyl or fluorobenzyl groups onto PDI is revealed to lower the HOMO and LUMO energy level and increase the electron affinity.The transfer integral and charge mobility values for the series of compounds with known crystal structure were also calculated.The calculation results reveal that the series of PDI derivatives are good n-type semiconducting materials with intrinsic mobility achieving 5.39,0.59,0.023 and 0.17 cm2·V-1·s-1for electron,respectively.And the charge transfer mobility for electron calculated for 3 corresponds well with the previous experimental findings.The present work will be helpful in developing novel PDI semiconducting materials for practical OFET applications.

    Supporting Information Available: Illustration of the internal reorganization energies of charge self-exchange process, atom labels of 4,and B3LYP/6-31G(d)optimized geometries of neutral and anion of 4 have been included.This information is available free of charge via the internet at http://www.whxb.pku. edu.cn.

    1 Dimitrakopoulos,C.D.;Malenfant,P.R.L.Adv.Mater.,2002, 14:99

    2 Tsumura,A.;Koezuka,H.;Ando,T.Appl.Phys.Lett.,1986,49: 1210

    3 Jones,B.A.;Antonio,F.;Wasielewski,M.R.;Marks,T.J.J.Am. Chem.Soc.,2007,129:15259

    4 Ling,M.M.;Erk,P.;Gomez,M.;Bao,Z.N.Adv.Mater.,2007, 19:1123

    5 Schmide,R.;Ling,M.M.;Hak,O.J.;Bao,Z.N.Adv.Mater., 2007,19:3692

    6 Jones,B.A.;Ahrens,M.J.;Yoon,M.H.;Facchetti,A.;Marks,T. J.;Wasielewski,M.R.Angew.Chem.Int.Edit.,2004,43:6363

    7 Kuo,M.Y.;Chen,H.Y.;Chao,I.Chem.-Eur.J.,2007,13:4750

    8 Cai,X.;Zhang,Y.X.;Qi,D.D.;Jiang,J.Z.J.Phys.Chem.A, 2009,113:2500

    9 Zhang,Y.X.;Cai,X.;Bian,Y.Z.;Li,X.Y.;Jiang,J.Z.J.Phys. Chem.C,2008,112:5148

    10 Zhang,Y.X.;Cai,X.;Qi,D.D.;Bian,Y.Z.;Jiang,J.Z.J.Phys. Chem.C,2008,112:14579

    11 Cai,X.;Zhang,Y.X.;Qi,D.D.;Jiang,J.Z.Sci.China Ser.BChem.,2009,39:393 [蔡 雪,張躍興,齊冬冬,姜建壯.中國科學(xué)B輯:化學(xué),2009,39:393]

    12 Yang,X.D.;Wang,L.J.;Shuai,Z.G.Chem.Mater.,2008,20: 3205

    13 Yin,S.;Yi,Y.;Li,Q.;Yu,G.;Liu,Y.;Shuai,Z.G.J.Phys.Chem. A,2006,110:7138

    14 Wang,L.J.;Nan,G.J.;Yang,X.D.;Peng,Q.;Li,Q.K.;Shuai,Z. G.Chem.Soc.Rev.,2010,DOI:10.1039/b816406c

    15 Yang,X.;Li,Q.;Shuai,Z.G.Nanotechnology,2007,18:4240299

    16 Frisch,M.J.;Trucks,G.W.;Schlegel,H.B.;et al.Gaussian 03. Revision B.05.Pittsburgh,PA:Gaussian Inc.,2003

    17 Chen,Z.J.;Debije,M.G.;Debaerdemaeker,T.;Osswald,P.; Würthner,F.ChemPhysChem,2004,5:137

    18 Newman,C.R.;Frisbie,C.D.;da Silva,D.A.;Bredas,J.L.; Ewbank,P.C.;Mann,K.R.Chem.Mater.,2004,16:4436

    19 Hosoi,Y.;Tsunami,D.;Ishii,H.;Furukawa,Y.Chemical Physics Letters,2007,436:139

    20 Marcon,V.;Pisula,W.;Dahl,J.;Kirkpatrick,J.;Patwardhan,S.; Grozema,F.;Andrienko,D.J.Am.Chem.Soc.,2009,131:11426

    21 Brédas,J.L.;Street,G.Acc.Chem.Res.,1985,18:309

    22 Unni,K.N.N.;Pandey,A.K.;Alem,S.;Nunzi,J.M.Chemical Physics Letters,2006,421:554

    23 Tatemichi,S.;Ichikawa,M.;Koyama,T.;Taniguchi,Y.Applied Physics Letters,2006,89:112108

    24 Jung,T.;Yoo,B.;Wang,L.;Dodabalapur,A.Applied Physics Letters,2006,88:183102

    25 Singh,T.B.;Erten,S.;Zafer,C.;Turkmen,G.;Kuban,B.;Teoman, Y.;Sariciftci,N.S.;Icli,S.Organic Electronics,2006,7:480

    猜你喜歡
    化學(xué)系北京科技大學(xué)酰亞胺
    《北京科技大學(xué)學(xué)報(bào)(社會(huì)科學(xué)版)》
    理論縱橫(2024年1期)2024-01-11 07:56:12
    一種鎘基配位聚合物的合成及其對2,4,6-三硝基苯酚的熒光識別
    《北京科技大學(xué)學(xué)報(bào)(社會(huì)科學(xué)版)》
    理論縱橫(2022年6期)2022-12-06 04:27:50
    《北京科技大學(xué)學(xué)報(bào)》(社會(huì)科學(xué)版)
    理論縱橫(2022年1期)2022-02-16 07:26:06
    改性雙馬來酰亞胺樹脂預(yù)浸料性能研究
    首都師范大學(xué)化學(xué)系自充電功能材料研究取得重要進(jìn)展
    一個(gè)二重互穿的鎘配合物:合成、結(jié)構(gòu)和雙功能熒光傳感性質(zhì)
    雙馬來酰亞胺對丙烯酸酯結(jié)構(gòu)膠的改性研究
    中國塑料(2017年2期)2017-05-17 06:13:21
    田永訴北京科技大學(xué)拒絕頒發(fā)畢業(yè)證、學(xué)位證案
    EG/DMMP阻燃聚氨酯-酰亞胺泡沫塑料的研究
    中國塑料(2015年6期)2015-11-13 03:02:49
    欧美成人免费av一区二区三区| 色尼玛亚洲综合影院| 亚洲精品久久国产高清桃花| 毛片一级片免费看久久久久 | 国内精品久久久久久久电影| 国产69精品久久久久777片| 黄色欧美视频在线观看| 欧美日韩黄片免| 国内揄拍国产精品人妻在线| 69人妻影院| 成年免费大片在线观看| 亚洲成av人片在线播放无| 悠悠久久av| 色综合亚洲欧美另类图片| 一区二区三区四区激情视频 | 桃红色精品国产亚洲av| 又爽又黄a免费视频| 婷婷亚洲欧美| 男女做爰动态图高潮gif福利片| 超碰av人人做人人爽久久| 99精品久久久久人妻精品| 久久人妻av系列| 网址你懂的国产日韩在线| 3wmmmm亚洲av在线观看| 少妇猛男粗大的猛烈进出视频 | 热99re8久久精品国产| 成人综合一区亚洲| 成人av一区二区三区在线看| 亚洲精品粉嫩美女一区| 乱系列少妇在线播放| 国产探花在线观看一区二区| 欧美+亚洲+日韩+国产| 99在线人妻在线中文字幕| 18禁裸乳无遮挡免费网站照片| 亚洲不卡免费看| 天天一区二区日本电影三级| 亚洲美女黄片视频| 男女之事视频高清在线观看| 亚洲图色成人| 久久香蕉精品热| www.色视频.com| 99久久无色码亚洲精品果冻| 精品人妻一区二区三区麻豆 | 国产老妇女一区| 午夜福利高清视频| av中文乱码字幕在线| 精华霜和精华液先用哪个| 俄罗斯特黄特色一大片| 少妇人妻精品综合一区二区 | 精品无人区乱码1区二区| 国产av麻豆久久久久久久| 色哟哟哟哟哟哟| 精品乱码久久久久久99久播| 免费观看的影片在线观看| 国产亚洲91精品色在线| 免费观看人在逋| xxxwww97欧美| 国产亚洲精品综合一区在线观看| 少妇人妻一区二区三区视频| 日韩av在线大香蕉| 久久久久精品国产欧美久久久| 国语自产精品视频在线第100页| 少妇被粗大猛烈的视频| 欧美xxxx黑人xx丫x性爽| 日韩欧美在线二视频| 日韩国内少妇激情av| 国产真实伦视频高清在线观看 | 九九在线视频观看精品| 国产成人福利小说| 日本撒尿小便嘘嘘汇集6| 欧美高清成人免费视频www| 亚洲专区中文字幕在线| 制服丝袜大香蕉在线| 色视频www国产| 久久久久免费精品人妻一区二区| 一区福利在线观看| 国产亚洲精品久久久com| 精品久久久噜噜| 精品一区二区三区视频在线观看免费| 天堂动漫精品| 午夜激情欧美在线| 日韩国内少妇激情av| 少妇丰满av| 免费搜索国产男女视频| 一本精品99久久精品77| 身体一侧抽搐| 天堂√8在线中文| 99在线视频只有这里精品首页| 啦啦啦观看免费观看视频高清| 1000部很黄的大片| 极品教师在线免费播放| 亚洲av电影不卡..在线观看| 在线天堂最新版资源| 亚州av有码| 午夜精品在线福利| 亚洲无线观看免费| 最新中文字幕久久久久| 久久国内精品自在自线图片| 中文字幕高清在线视频| 成人三级黄色视频| 性色avwww在线观看| 成人美女网站在线观看视频| 午夜免费成人在线视频| 最近中文字幕高清免费大全6 | 久久久午夜欧美精品| 免费观看人在逋| 一卡2卡三卡四卡精品乱码亚洲| 黄色配什么色好看| 一a级毛片在线观看| 中亚洲国语对白在线视频| 中文字幕人妻熟人妻熟丝袜美| 亚洲成人免费电影在线观看| 国产一区二区亚洲精品在线观看| 中出人妻视频一区二区| 永久网站在线| 国产精品爽爽va在线观看网站| 能在线免费观看的黄片| 少妇熟女aⅴ在线视频| 国产不卡一卡二| 97热精品久久久久久| 国产色爽女视频免费观看| 91久久精品电影网| 精品免费久久久久久久清纯| 久久久精品大字幕| 成人特级黄色片久久久久久久| 日韩欧美三级三区| 久久午夜福利片| 国产麻豆成人av免费视频| 99热这里只有精品一区| 色尼玛亚洲综合影院| 人人妻人人看人人澡| 国产视频一区二区在线看| 日本精品一区二区三区蜜桃| 国产亚洲欧美98| 看免费成人av毛片| 国产成年人精品一区二区| 在线免费十八禁| 免费av观看视频| 午夜福利18| 久久久久久久精品吃奶| 国产成人a区在线观看| 国内少妇人妻偷人精品xxx网站| av在线天堂中文字幕| 特大巨黑吊av在线直播| 999久久久精品免费观看国产| 色哟哟·www| 性欧美人与动物交配| 在线观看66精品国产| 精品午夜福利在线看| 18禁黄网站禁片午夜丰满| 亚洲性久久影院| avwww免费| 一本久久中文字幕| 欧美绝顶高潮抽搐喷水| 国产成年人精品一区二区| 午夜激情福利司机影院| .国产精品久久| 亚洲内射少妇av| 97超级碰碰碰精品色视频在线观看| 成人高潮视频无遮挡免费网站| 国产蜜桃级精品一区二区三区| 麻豆国产av国片精品| 中文资源天堂在线| 91av网一区二区| 午夜福利在线观看吧| 国内精品久久久久精免费| 日韩欧美国产一区二区入口| 狠狠狠狠99中文字幕| 国产大屁股一区二区在线视频| 两个人的视频大全免费| 日本a在线网址| av黄色大香蕉| 深夜a级毛片| 欧美成人一区二区免费高清观看| 看黄色毛片网站| 97人妻精品一区二区三区麻豆| 嫩草影院入口| 亚洲av中文字字幕乱码综合| 99久久精品热视频| 午夜激情福利司机影院| 欧美三级亚洲精品| 校园人妻丝袜中文字幕| 大又大粗又爽又黄少妇毛片口| 村上凉子中文字幕在线| 国产精品嫩草影院av在线观看 | 亚洲自偷自拍三级| 精品日产1卡2卡| 精品一区二区三区人妻视频| а√天堂www在线а√下载| 国产在线精品亚洲第一网站| 日本色播在线视频| 狂野欧美白嫩少妇大欣赏| 成人高潮视频无遮挡免费网站| 国产成年人精品一区二区| 日本黄色片子视频| 国产极品精品免费视频能看的| 亚洲av日韩精品久久久久久密| 欧美另类亚洲清纯唯美| а√天堂www在线а√下载| 最近最新中文字幕大全电影3| 亚洲精品亚洲一区二区| 亚洲最大成人手机在线| 欧美人与善性xxx| 日韩欧美三级三区| 久久久国产成人精品二区| 亚洲成人免费电影在线观看| 嫩草影院精品99| 国产久久久一区二区三区| 大型黄色视频在线免费观看| 日日干狠狠操夜夜爽| 亚洲人成网站高清观看| 国产精品av视频在线免费观看| 亚洲人与动物交配视频| 日本成人三级电影网站| 亚洲av熟女| 亚洲在线观看片| 搡老岳熟女国产| 99久久无色码亚洲精品果冻| 精品日产1卡2卡| 看免费成人av毛片| 久久人人爽人人爽人人片va| 免费黄网站久久成人精品| 久久久久久九九精品二区国产| 亚洲国产精品成人综合色| 久久久久久久亚洲中文字幕| 一级a爱片免费观看的视频| 给我免费播放毛片高清在线观看| 国语自产精品视频在线第100页| 欧美一区二区国产精品久久精品| 国内久久婷婷六月综合欲色啪| 波多野结衣高清无吗| 亚洲精华国产精华精| 在线播放无遮挡| 免费av毛片视频| 最新在线观看一区二区三区| 日韩欧美 国产精品| 成人午夜高清在线视频| 午夜免费男女啪啪视频观看 | 久久久久九九精品影院| 亚洲av五月六月丁香网| 欧美性感艳星| 免费人成在线观看视频色| 国产主播在线观看一区二区| 国产69精品久久久久777片| 国产午夜福利久久久久久| 天美传媒精品一区二区| 啦啦啦韩国在线观看视频| 精品久久久久久久久亚洲 | 精品人妻视频免费看| 亚洲最大成人手机在线| 又紧又爽又黄一区二区| 两个人视频免费观看高清| 看片在线看免费视频| 亚洲综合色惰| 久久精品国产亚洲av天美| 亚洲av中文av极速乱 | 成人国产一区最新在线观看| 久久九九热精品免费| 不卡视频在线观看欧美| 国产一区二区三区在线臀色熟女| 亚洲在线观看片| 亚洲美女视频黄频| 成人亚洲精品av一区二区| 日韩欧美国产一区二区入口| 午夜爱爱视频在线播放| 99视频精品全部免费 在线| 最近视频中文字幕2019在线8| 国产大屁股一区二区在线视频| 精华霜和精华液先用哪个| 国产麻豆成人av免费视频| 日本黄色视频三级网站网址| 男女视频在线观看网站免费| 老司机深夜福利视频在线观看| 国产一区二区激情短视频| 国产aⅴ精品一区二区三区波| 精品人妻视频免费看| 国产成人aa在线观看| 国产高清不卡午夜福利| 啪啪无遮挡十八禁网站| 亚洲在线观看片| 久久欧美精品欧美久久欧美| 久久久成人免费电影| 桃红色精品国产亚洲av| 在线a可以看的网站| 精品免费久久久久久久清纯| 亚洲,欧美,日韩| 国产一区二区激情短视频| 最近最新中文字幕大全电影3| 日韩中字成人| 如何舔出高潮| 精华霜和精华液先用哪个| 很黄的视频免费| 永久网站在线| 亚洲最大成人手机在线| 免费观看在线日韩| 18禁裸乳无遮挡免费网站照片| 国产精品乱码一区二三区的特点| 国产精品自产拍在线观看55亚洲| 日韩欧美在线乱码| 亚洲国产欧美人成| 联通29元200g的流量卡| 免费高清视频大片| 亚洲三级黄色毛片| 哪里可以看免费的av片| 99精品在免费线老司机午夜| 国产精品人妻久久久影院| 内地一区二区视频在线| 午夜a级毛片| 国产69精品久久久久777片| 欧美+亚洲+日韩+国产| 真人一进一出gif抽搐免费| 欧美区成人在线视频| 免费人成视频x8x8入口观看| 伊人久久精品亚洲午夜| 极品教师在线免费播放| 91狼人影院| 国产一区二区亚洲精品在线观看| 免费一级毛片在线播放高清视频| 99久久中文字幕三级久久日本| 欧美高清性xxxxhd video| 亚洲自拍偷在线| 免费在线观看成人毛片| 自拍偷自拍亚洲精品老妇| 国产成人av教育| 国产精品一区二区性色av| 欧美xxxx黑人xx丫x性爽| 伦理电影大哥的女人| 亚洲av一区综合| 色综合婷婷激情| АⅤ资源中文在线天堂| 窝窝影院91人妻| 波多野结衣高清作品| 九色国产91popny在线| 久久精品夜夜夜夜夜久久蜜豆| 日本黄色片子视频| 成人三级黄色视频| 成熟少妇高潮喷水视频| 日本 av在线| 老司机午夜福利在线观看视频| 日日啪夜夜撸| xxxwww97欧美| 亚洲成人精品中文字幕电影| 国产精品久久久久久久久免| 91av网一区二区| 欧美中文日本在线观看视频| 亚洲精品日韩av片在线观看| 桃色一区二区三区在线观看| 国产真实伦视频高清在线观看 | 成人国产麻豆网| 成年女人毛片免费观看观看9| 精品人妻1区二区| x7x7x7水蜜桃| 婷婷精品国产亚洲av在线| 欧美xxxx性猛交bbbb| 亚洲成人久久性| 麻豆国产av国片精品| 国内精品美女久久久久久| 国产亚洲av嫩草精品影院| 亚洲国产高清在线一区二区三| 国产成人影院久久av| 国产视频一区二区在线看| 久久久久国内视频| 国产午夜福利久久久久久| 毛片女人毛片| 国产高潮美女av| 别揉我奶头~嗯~啊~动态视频| 免费在线观看影片大全网站| 成人性生交大片免费视频hd| 日韩人妻高清精品专区| 麻豆精品久久久久久蜜桃| 日本五十路高清| 99热6这里只有精品| 午夜福利高清视频| 欧美色欧美亚洲另类二区| av中文乱码字幕在线| 中文字幕熟女人妻在线| 国产亚洲精品综合一区在线观看| 免费大片18禁| 成人国产综合亚洲| 亚洲五月天丁香| av福利片在线观看| 91久久精品国产一区二区成人| 日本熟妇午夜| 免费人成视频x8x8入口观看| 女同久久另类99精品国产91| 久久久色成人| 嫩草影视91久久| 热99re8久久精品国产| 国产三级中文精品| 久久久久性生活片| 欧美日韩精品成人综合77777| 成熟少妇高潮喷水视频| 他把我摸到了高潮在线观看| 亚洲不卡免费看| 日韩欧美一区二区三区在线观看| 国产精品一区二区免费欧美| 女生性感内裤真人,穿戴方法视频| 真人做人爱边吃奶动态| 免费大片18禁| 亚洲色图av天堂| 一个人观看的视频www高清免费观看| 看免费成人av毛片| 97热精品久久久久久| 国产精品久久久久久久电影| 成人av在线播放网站| 91午夜精品亚洲一区二区三区 | 99久久精品热视频| 淫妇啪啪啪对白视频| 九色成人免费人妻av| 亚洲中文日韩欧美视频| 校园人妻丝袜中文字幕| 波野结衣二区三区在线| 嫁个100分男人电影在线观看| 日本-黄色视频高清免费观看| 99在线视频只有这里精品首页| 在线观看av片永久免费下载| aaaaa片日本免费| 亚洲乱码一区二区免费版| 婷婷丁香在线五月| 91麻豆精品激情在线观看国产| 成人美女网站在线观看视频| a级毛片免费高清观看在线播放| 在线播放无遮挡| 国产伦人伦偷精品视频| 看十八女毛片水多多多| 禁无遮挡网站| 我的老师免费观看完整版| 人妻少妇偷人精品九色| 免费看a级黄色片| 成人二区视频| 国内揄拍国产精品人妻在线| 成人美女网站在线观看视频| 欧美日韩中文字幕国产精品一区二区三区| 熟妇人妻久久中文字幕3abv| videossex国产| 国产精品久久久久久久电影| 可以在线观看的亚洲视频| 亚洲 国产 在线| 女人被狂操c到高潮| 久久亚洲精品不卡| 天堂网av新在线| 久久久久久大精品| 一个人看视频在线观看www免费| 夜夜爽天天搞| 人妻夜夜爽99麻豆av| 亚洲人成伊人成综合网2020| 亚洲成人中文字幕在线播放| 国产aⅴ精品一区二区三区波| 美女被艹到高潮喷水动态| 成年女人永久免费观看视频| 尾随美女入室| 欧美成人a在线观看| 国产午夜福利久久久久久| 亚洲人与动物交配视频| 3wmmmm亚洲av在线观看| 国产综合懂色| 九九热线精品视视频播放| 91狼人影院| 夜夜爽天天搞| 成人av一区二区三区在线看| 久久久国产成人精品二区| 国产伦精品一区二区三区视频9| 国产大屁股一区二区在线视频| 麻豆国产97在线/欧美| netflix在线观看网站| 欧美zozozo另类| 日本黄色视频三级网站网址| 久久精品国产亚洲网站| 国产高清激情床上av| av在线老鸭窝| 久久久久久大精品| 看十八女毛片水多多多| 久久午夜福利片| 免费av不卡在线播放| 亚洲欧美日韩卡通动漫| 久久久久国产精品人妻aⅴ院| 国产黄色小视频在线观看| 日韩国内少妇激情av| 嫩草影院新地址| 在线播放无遮挡| 久久久久久久午夜电影| 日本一本二区三区精品| 一进一出好大好爽视频| 内地一区二区视频在线| 一a级毛片在线观看| 男人狂女人下面高潮的视频| 久久精品人妻少妇| 美女cb高潮喷水在线观看| 国产精品98久久久久久宅男小说| 91麻豆精品激情在线观看国产| 国产综合懂色| 国产男人的电影天堂91| 在线播放国产精品三级| 少妇被粗大猛烈的视频| 亚洲成a人片在线一区二区| 网址你懂的国产日韩在线| 亚洲欧美日韩卡通动漫| 欧美激情国产日韩精品一区| 欧美性猛交╳xxx乱大交人| 午夜日韩欧美国产| 久久久久久国产a免费观看| 国产伦精品一区二区三区四那| 亚洲熟妇中文字幕五十中出| 精品久久久久久久久久免费视频| 精品乱码久久久久久99久播| 国产又黄又爽又无遮挡在线| 我的女老师完整版在线观看| 中文在线观看免费www的网站| 一进一出好大好爽视频| 级片在线观看| 热99在线观看视频| 亚洲avbb在线观看| 热99在线观看视频| 直男gayav资源| 草草在线视频免费看| 午夜久久久久精精品| 我的女老师完整版在线观看| 观看免费一级毛片| 亚洲18禁久久av| 久久久久久久亚洲中文字幕| 五月玫瑰六月丁香| netflix在线观看网站| 午夜福利在线观看吧| 嫩草影视91久久| 别揉我奶头 嗯啊视频| 琪琪午夜伦伦电影理论片6080| 99久久九九国产精品国产免费| 国产淫片久久久久久久久| 日本色播在线视频| 中文字幕久久专区| 一个人免费在线观看电影| 中文亚洲av片在线观看爽| 亚洲成a人片在线一区二区| 亚洲av.av天堂| 久久久久久久久中文| 亚洲黑人精品在线| 精品一区二区三区人妻视频| 欧美成人免费av一区二区三区| 久久人人爽人人爽人人片va| 国产毛片a区久久久久| 成人性生交大片免费视频hd| 成人国产麻豆网| 波多野结衣巨乳人妻| 亚洲五月天丁香| 神马国产精品三级电影在线观看| 黄色丝袜av网址大全| 嫩草影院精品99| 全区人妻精品视频| 国产精品伦人一区二区| 国产国拍精品亚洲av在线观看| 色5月婷婷丁香| 欧美在线一区亚洲| 国产视频一区二区在线看| 欧美一区二区精品小视频在线| 日韩av在线大香蕉| 中国美白少妇内射xxxbb| 狂野欧美激情性xxxx在线观看| 中文字幕高清在线视频| 亚洲av日韩精品久久久久久密| 18+在线观看网站| 97热精品久久久久久| 自拍偷自拍亚洲精品老妇| 国产在线精品亚洲第一网站| 69人妻影院| 国内少妇人妻偷人精品xxx网站| 男人狂女人下面高潮的视频| 99在线人妻在线中文字幕| 白带黄色成豆腐渣| 国产麻豆成人av免费视频| 久久久久久久久大av| 国产亚洲精品综合一区在线观看| 午夜老司机福利剧场| 男人舔奶头视频| 国产久久久一区二区三区| 我要看日韩黄色一级片| 999久久久精品免费观看国产| 国产v大片淫在线免费观看| АⅤ资源中文在线天堂| 亚洲va日本ⅴa欧美va伊人久久| 国产成人影院久久av| 91av网一区二区| 国产激情偷乱视频一区二区| 午夜老司机福利剧场| 少妇人妻一区二区三区视频| 国产欧美日韩精品一区二区| 一边摸一边抽搐一进一小说| 亚洲欧美日韩无卡精品| 日日摸夜夜添夜夜添小说| 最后的刺客免费高清国语| 91av网一区二区| 麻豆久久精品国产亚洲av| 亚洲精品乱码久久久v下载方式| 黄色视频,在线免费观看| 国内精品美女久久久久久| 亚洲久久久久久中文字幕| 国产精品自产拍在线观看55亚洲| 999久久久精品免费观看国产| 中文字幕免费在线视频6| 丰满乱子伦码专区| 一区二区三区激情视频| 校园春色视频在线观看| 黄色视频,在线免费观看| 人妻夜夜爽99麻豆av| 亚洲第一电影网av| 免费观看人在逋| 中文字幕av成人在线电影| 真实男女啪啪啪动态图| а√天堂www在线а√下载| 亚洲精品亚洲一区二区| 亚洲av成人精品一区久久| 毛片一级片免费看久久久久 | 我要搜黄色片| 欧美一区二区精品小视频在线| 一本精品99久久精品77| 久久6这里有精品|