• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effects of Temperature on the Preparation of Magnesium Carbonate Hydrates by Reaction of MgCl2 with Na2CO3*

    2009-05-14 12:34:50CHENGWenting程文婷LIZhibao李志寶andGeorgeDemopoulos
    關鍵詞:程文

    CHENG Wenting (程文婷), LI Zhibao (李志寶),** and George P. Demopoulos

    ?

    Effects of Temperature on the Preparation of Magnesium Carbonate Hydrates by Reaction of MgCl2with Na2CO3*

    CHENG Wenting (程文婷)1, LI Zhibao (李志寶)1,**and George P. Demopoulos2

    1Key Laboratory of Green Process and Engineering, Institute of Process Engineering, National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Chinese Academy of Sciences, Beijing 100190, China2Department of Mining, Materials Engineering, McGill University, 3610 University Street, Montreal, Quebec, Canada

    Homogeneous (unseeded) precipitation of magnesium carbonate hydrates by the reaction of MgCl2with Na2CO3in supersaturated solutions between 273 and 363 K was investigated. The compositions, morphologies and filtration characteristics of the precipitates were studied in detail. The magnesium carbonate hydrates obtained at 313 K and in the range of 343-363 K showed good morphologies and filtration characteristics. Magnesium oxides (MgO) with high purity (97.6%-99.4%) were obtained by calcining magnesium carbonate hydrates at 1073 K.

    homogeneous precipitation, magnesium carbonate hydrates, magnesium oxide, filtration characteristic

    1 INTRODUCTION

    The Qinghai salt lakes are well known for their huge reserves of potassium chloride (KCl) and magnesium chloride (MgCl2) in China [1]. In recent years, potassium fertilizer with 1.1 Mt·a-1has been produced and a large amount of magnesium chloride has been left as the by-product or even waste in salt lakes of Qinghai. This has caused not only the waste of magnesium resources, but also the environmental pollution [2]. Therefore, it is imperative to develop an effective utilization of MgCl2by extraction of magnesium from brine. Magnesium is recovered from seawater and brines on a large scale worldwide by the precipitation of its compounds [3]. In these processes, it is necessary to select proper temperatures and target precipitates that have excellent filtration characteristics.

    Solid magnesium carbonate hydrates can exist in several modifications. Some of the compounds are widely used because of their technological importance in various industrial applications [4, 5]. A large number of chemical methods have been developed to generate various morphologies of them. For example, Kloprogge. [6] fabricated two different morphologies of MgCO3·3H2O, a conglomerate consisted of very thin sheetlets and a well-formed needle, at 298 K. Mitsuhashi. [7] developed a procedure to generate needle-like MgCO3·3H2O and microtube Mg5(CO3)4(OH)2·4H2O by the carbonation of an aqueous suspension of magnesium hydroxide with carbon dioxide in the temperature range between 308 and 343 K. Wang. [8] prepared needle-like MgCO3·3H2O by the reaction of MgCl2with (NH4)2CO3in supersaturated solutions. More recently, ATR-FTIR and Raman spectroscopy were employed to monitor the precipitation by mixing Na2CO3solutions in equilibrium with a CO2atmosphere with MgCl2solutions, and MgCO3was obtained in autoclave [9]. It seems that the investigations in the effect of temperature in a wide range on the morphology, size and characteristic of magnesium carbonate hydrates are very limited.

    In this study, homogeneous (unseeded) precipitation by the reaction of MgCl2with Na2CO3in supersaturated solutions is investigated in the range of 273-363 K. The temperatures are chosen in such a way that it favors the operation and energy saving. The composition, morphology and filtration characteristics of the obtained magnesium carbonate hydrates are studied in detail. The aim of the present work is to select proper temperatures and target precipitates with excellent filtration characteristics for extracting magnesium from the brine, and prepare magnesium carbonate hydrates and magnesium oxide with high purity.

    2 EXPERIMENTAL

    2.1 Materials

    All chemical reagents, MgCl2·6H2O, Na2CO3and KCl, used in the experiments were analytical grade without further purification. The water used in all experimental work for solution preparation, dilution, crystal washing,. was double distilled water (conductivity<0.1 μS·cm-1).

    2.2 Experimental procedures

    2.2.1

    The experiments were performed in a 1-liter double-jacketed glass reactor connected with a water circulator as shown in Fig. 1. A standard volume (400 ml) of MgCl2(0.5 mol·L-1) located in the reactor was brought to a desired temperature with the aid of the circular water. Upon attainment of the temperature, addition of Na2CO3solution (400 ml, 0.5 mol·L-1) was started with simultaneous initiation of stirring at 300 r·min-1and the addition speed was 3 ml·min-1. When the addition procedure was completed, stirring continued for 2 h.

    At the end of each cycle the slurry was divided into two parts. One part was filtered and then washed with distilled water for 3 times, to remove any possible ionic remnants, and finally dried in an oven at 323 K for 10 h. A small sample from the dried magnesium carbonate hydrates was subjected to solid analysis. The other part was used for the measurement of filtration characteristics. A small sample from the slurry was used to determine the particle size distribution.

    Figure 1 Experimental setup used in the precipitation process 1—reactor; 2—circular water; 3—thermometer; 4—pH meter; 5—motor-drive; 6—2-blade radial impeller; 7—4 baffles; 8—burette

    2.2.2

    Magnesium oxide (MgO) is an important material for its wide applications in catalyst, toxic waste remediation, refractory material, superconductor products [10], and so on. Many techniques have been established to prepare MgO in various forms, including chemical-vapor-deposition [11], sol-gel processing [12],. However, MgO can be obtained more easily by calcinating their corresponding precursors (magnesium carbonate hydrates) in muffle stove at 1073 K for 4 h [13, 14]. We prepared MgO samples in this way.

    2.2.3

    Filtration characteristic of the precipitate was measured immediately after the crystallization to avoid any change of properties due to the change of temperature. The filtration was carried out using a press filter under 80 kPa and three pieces of filter paper (10-20mm) of 9 cm diameter. A certain volume (100 ml) slurry was placed in the filter and sealed tightly immediately. Upon bringing the pressure to 80 kPa in the filter and the liquid discharging, the timer started. When the flow of the liquid stopped, the filtration time was recorded.

    2.2.4Measurement of the uptake of K and Na in magnesium carbonate hydrates

    The uptake of K+and Na+in magnesium carbonate hydrates was investigated by the reaction in a mixture of 98% MgCl2and 2% KCl (the total volume was 400 ml, and the total concentration was 0.5 mol·L-1) and Na2CO3(400 ml, 0.5 mol·L-1) at 313 K and 353 K. After the slurry was finally dried in an oven at 323 K for 10 h, a sample from the dried magnesium carbonate hydrates was subjected to solid analysis.

    2.3 Characterization

    The structure and morphology of the synthesized samples were examined using X-ray powder diffraction and scanning electron microscopy. X-ray powder diffraction (XRD, X’Pert PRO MPD, PANalytical, Netherlands) patterns were recorded on a diffractometer (using Cu Kαradiation) operating at 40 kV/30 mA. A scanning rate of 0.02(°)·s-1was applied to record the patterns in the 2angle range from 5° to 90°. The morphology and particle size of the samples were examined by a scanning electron microscopy (SEM, JEOL-JSM-6700F). Particle size distribution was examined by a laser diffraction particle size analyzer (LS-13-320). The uptake of K+and Na+was examined by a flam photometer (FP640). The concentration of magnesium ion in the solution was determined by titration method using standard EDTA solution.

    3 RESULTS AND DISCUSSION

    3.1 XRD observation

    It is generally recognized that the properties of crystals are profoundly influenced by the temperature during their preparation, and at higher temperatures crystal growth occurs with a corresponding change in the properties [15]. The magnesium carbonate solids in an equilibrium solution may transform to other phases at different temperatures [16]. For example, MgCO3·3H2O will easily change to Mg5(CO3)4(OH)2·4H2O at 333K [8]. In this investigation the compositions of magnesium carbonate hydrates prepared between 273 and 363 K were measured by means of X-rays.

    At lower temperature (273-313K), all peaks in the XRD pattern of the sample are in good agreement with the MgCO3·3H2O reference data [17] (JCPDS 70-1433, a-d in Fig. 2). It is evident from Figs. 3 and 4 that 323 K results in the formation of Mg5(CO3)4(OH)2·5H2O, while 333-363 K leads to the formation of hydromagnesite [Mg5(CO3)4(OH)2·4H2O].

    Figure 2 Influence of temperature on XRD pattern of precipitates (a) 273 K; (b) 283 K; (c) 293 K; (d) 303 K; (e) 313 K

    Figure 3 XRD pattern of precipitate at 323K

    Figure 4 Influence of temperature on XRD pattern of precipitates (a) 333 K; (b) 343 K; (c) 353 K; (d) 363 K

    Figure 5 displays the typical XRD pattern of the MgO samples. The diffraction peaks of (111), (200), (220), (331) and (222) are in good agreement with the values in the literature (JCPDS 87-0651). No peaks for other impurities are observed, indicating that the MgO samples are of high purity.

    Figure 5 XRD patterns of MgO by calcination of corresponding precursors prepared at different temperatures (a) 273 K; (b) 283 K; (c) 293 K; (d) 303 K; (e) 313 K; (f) 323 K; (g) 333 K; (h) 343 K; (i) 353 K; (j) 363 K

    3.2 Effect of reaction temperature on morphology

    By carefully adjusting the reaction parameters precipitates can be produced with either the well-formed, relatively large crystallites or, at the other extreme, amorphous or even gel-like products [18]. Therefore, it is important to investigate the effect of reaction temperature on the size and morphology of magnesium carbonate hydrates prepared.

    Figure 6 provides a set of typical SEM images corresponding to the magnesium carbonate hydrates prepared at different temperatures. These morphologies are drastically changed with the variation of reaction temperature. At 273 K, the sample exhibits poor morphology and the surface is covered by many small grain-like crystals [Figs. 6 (a) and (b)]. In the temperature range from 283 to 313 K, needle-like particles are produced and the sizes vary with the reaction temperature [Figs. 6 (c)-(f)]. In the range of 283-293 K, the sizes are non-uniform, the length is in the range of 5-20mm and the axis diameter is in the range of 4-6mm. With the increase of reaction temperature to 303 K, the axis diameter of some particles decreases to 1-2mm. However, further increasing the temperature to 313 K, the length and the axis diameter increase slightly, to 30-50mm, and 3-6mm, respectively. The reason may be that at lower reaction temperature (such as 273-293 K), the nuclei has a lower diffusion rate due to the higher viscosity of initial solution, which greatly hinders their coalescence and self-assembly into needle-like particles. As a result, the growth rate of the nuclei is higher than the nucleation rate, and the particle grows to a larger one. With the increase of temperature (such as 303 K), the viscosity of the solution gradually decreases, which accelerates the collision rate of the nuclei. A higher collision rate brings about more nucleated particles, so it is prone to produce smaller particles. When the temperature reaches 313 K, the higher collision rate may also contribute to an increase in the probability of coalescence, and the particle size increases slightly [19].

    Figure 6 Typical SEM morphologies for the particles of magnesium carbonate hydrates prepared at different temperatures [(b), (d), (f), (h) and (j) are the magnification image of (a), (c), (e), (g) and (i), respectively]

    Figure 7 Typical SEM morphologies for the particles of magnesium carbonate hydrates prepared at different temperatures [(b), (d), (f), (h) and (j) are the magnification image of (a), (c), (e), (g) and (i), respectively]

    The needle-like particles shown in Fig. 6 indicate that the surface structures of crystals change with the reaction temperature. The surface of the needle-like particles obtained at lower temperature (283 K) is covered by some small rod-like particles. At the reaction temperature of 293 and 303 K, the surfaces are still covered by small lamellar shape crystals. However, the needle-like particles exhibit smooth surfaces at 313 K.

    At the temperature range of 323 to 363 K, the morphologies of the particles change greatly. As can be seen in Figs. 7 (a)-(d), the needle-like particles transform to micro-tubes and consist of many sheet-like particles at 323 K, while they transfer to amorphous at 333 K. Above 343 K, the irregular spherical particles are obtained [Figs. 7 (e)-(j)]. They consist of rosette-like microstructure of irregular- shaped pores with crystalline walls interconnecting to each other. The disperse degree and average size of the spherical particles increase with reaction temperature. It is well known that the morphologies of crystals are determined by the anisotropy of growth rates in different crystallographic directions [20]. Various surface structures in Figs. 6 and 7 illustrate that the reaction temperature has a significant influence on the anisotropy of growth rates, so the particles display different macroscopic shapes with the variation of reaction temperature.

    3.3 Effect of reaction temperature on the filtration characteristics

    Solid-liquid separation by precipitates (crystal, coagulation and flocculation) is an important part in many technical processes [21]. The filtration technique is the most common process used in solid-liquid slurries or mixtures. In this study, the solid and liquid are separated by filtration. The method is stated in Section 2.2.3. For this process to be successful the magnesium carbonate hydrates should have good filtration properties to facilitate removal of the mother liquor.

    It is well know that the forms and properties of particles are closely related. When the form of particle changes, the properties are also altered even for the same substance [22]. Therefore, it is important to measure the filtration characteristics of magnesium carbonate hydrates obtained at different temperatures.

    Figure 8 displays the filtration time of the precipitates obtained in the range of 273-363 K. It is found that the filtration characteristics of crystals are dependent on their size and surface smoothness. It is easier to filter larger crystals than small ones and to filter smooth crystals than coarse ones. At lower temperature (273 K), the slurry is very thick and adheres to the reactor wall. It is more difficult to filter the samples of this slurry although the crystal size is large. From 273 to 283 K, the filtration time has a drastic decrease. The reason is that the transformation of crystal from poor morphology to needle-like one reduces the filtration resistance. In the range of 283-303 K, the sizes of crystals are non-uniform and the surfaces are rough, so that the filtration characteristics of crystals are still not good though the crystals are needle-like. However, at 313 K, the crystal has its well-defined needle-like structure (large size and smooth surface) and the filtration is satisfactory.

    At 323 and 333 K, the slurries become a little sluggish and difficult to filter. Crystals with micro-tube or amorphous morphologies exhibit bad filtration characteristics. Above 343 K, the filtration time is short and decreases with the increase of crystal size. This indicates that crystals present as spherical particles also have good filtration characteristics.

    Temperature has an important influence on the size and morphology of crystals, and it indirectly affects the filtration characteristics of the crystal. Compared of Fig. 8 with Figs. 6 and 7, it can be found that crystals with good morphologies and regular size distribution exhibit good filtration characteristics. It suggests that magnesium carbonate hydrates prepared at 313 K and in the range of 343-363 K are well suited to filtration.

    Figure 8 Influence of reaction temperature on the filtration time of magnesium carbonate hydrates

    3.4 Purity of MgO

    A certain mount of MgO sample is dissolved in slightly excessive hydrochloric acid of low concentration. The concentration of magnesium ion in the solution is determined by titration method using standard EDTA solution. Table 1 provides the purity of MgO by calcination of the corresponding magnesium carbonate hydrates precursors obtained at different reaction temperatures. The purities of MgO are high.

    Table 1 The purities of MgO samples prepared at different reaction temperatures

    Table 2 Uptake of K+ and Na+ in magnesium carbonate hydrates

    3.5 Uptake of impurities (K+ and Na+) in magnesium carbonate hydrates

    Extraction of magnesium from the brine relies upon the physical difference between the magnesium carbonate hydrates and the impurities to facilitate separation. However, when the impurity is bound into the structure of the magnesium carbonate hydrates crystal, such as K+existed in the brine and Na+imputed to the precipitate Na2CO3, the separation can only be achieved by chemical means. Therefore, it is necessary to investigate the uptake of impurities in magnesium carbonate hydrates.

    Table 2 provides the content of K+(based on 100 g magnesium carbonate hydrates) and Na+(based on 100 g magnesium carbonate hydrates) in the magnesium carbonate hydrates prepared at 313 K and 353 K. The uptake of K+and Na+by magnesium carbonate hydrates is slight and can be neglected. Obviously, the ionic impurities can be removed from the magnesium carbonate hydrates by washing with distilled water without further disposal.

    4 CONCLUSIONS

    Magnesium carbonate hydrates were prepared usinghomogeneous precipitation process at different reaction temperatures. In the range of 273-313K, nesquehonite (MgCO3·3H2O) with needle-like morphology was obtained. Mg5(CO3)4(OH)2·5H2O was formed at 323 K, while hydromagnesite [Mg5(CO3)4(OH)2·4H2O] was formed over the range of 333-363 K. The morphology of the magnesium carbonate hydrates changed from micro-tube to amorphous, and eventually to spherical-like particles with the increase of reaction temperature. The magnesium carbonate hydrates obtained at 313 K and in the range of 343-363 K showed good morphologies and filtration characteristics. The ionic impurities (K+and Na+) could be removed from the magnesium carbonate hydrates by washing with distilled water without further disposal and their uptake in magnesium carbonate hydrates could be neglected. MgO with high purity was obtained by calcining magnesium carbonate hydrates at 1073 K.

    It seems that 313 K and 343-363 K were the appropriate reaction temperatures for extracting magnesium from brine. By the method in this study, magnesium can be effectively extracted from the brine for utilization of MgCl2, and magnesium carbonate hydrates with various morphologies and magnesium oxide with high purity are produced.

    1 Zhang, P.X., Zhang, B.Z., Tang, Y., Yang, C.D., Huang, S.Q., Wu, J.Q., Saline Lake Resources of China and Its Exploitation, Science Press, Beijing, 99-107 (1999). (in Chinese)

    2 Ma, P., “Comprehensive utilization of salt lake resources”,..., 15, 365-375 (2000).

    3 Mullin, J.W., Crystallization, 4th edition, Butterworth-Heinemann, Woburn, MA (2001).

    4 Freitag, F., Kleinebudde, P., “How do roll compaction/dry granulation affect the tableting behaviour of inorganic materials? Comparison of four magnesium carbonates”,...., 19, 281-289 (2003).

    5 Botha, A., Strydom, C.A., “Preparation of a magnesium hydroxy carbonate from magnesium hydroxide”,, 62, 175-183 (2001).

    6 Kloprogge, J.T., Martens, W.N., Nothdurft, L., Duong, L.V., Webb, G.E., “Low temperature synthesis and characterisation of nesquehonite”,...., 22, 825-829 (2003).

    7 Mitsuhashi, K., Tagami, N., Tanabe, K., Ohkubo, T., Sakai, H., Koishi, M., Abe, M., “Synthesis of microtubes with a surface of ‘house of cards’ structureneedlelike particles and control of their pore size”,, 21, 3659-3663 (2005).

    8 Wang, Y., Li, Z.B., Demopoulos, G.P., “Controlled precipitation of nesquehonite by the reaction of MgCl2with (NH4)2CO3at 303 K”,..., 310, 1220-1227 (2007).

    9 Hachen, M., Prigiobbe, V., Baciocchi, R., Mazzotti, M., “Precipitation in the Mg-carbonate system-effects of temperature and CO2pressure”,..., 63, 1012-1028 (2008).

    10 Zhao, Y.N., Zhu, G.C., “Synthesis of MgO microspheres with nanosheets in a mechanical force reactor and its optical property”,..., 142, 93-97 (2007).

    11 Tokita, S., Ohshio, H., Saitoh, H., “Large-area film structure consisted by aggregation of zinc oxide micro-whiskers”,....., 749, 349-354 (2003).

    12 Kordas, G., “Sol-gel preparation of MgO fibers”,..., 10, 1157-1160 (2000).

    13 Lanas, J., Alvarez, J.I., “Dolomitic lime: thermal decomposition of nesquehonite”,.., 421, 123-132 (2004).

    14 Yan, C.L., Xue, D.F., “Novel self-assembled MgO nanosheet and its precursors”,..., 109, 12358-12361 (2005).

    15 Boswell, M.C., Iler, R.K., “Nickel catalysts (I) The effect of the temperature of preparation on the crystal size and composition of nickel oxide”,...., 58, 924-928 (1936).

    16 Li, Z.B., Demopoulos, G.P., “Model-based construction of calcium sulfate phase-transition diagrams in the HCl-CaCl2-H2O system between 0 and 100oC”,...., 45, 4517-4524 (2006).

    17 Giester, G., Lengauer, C.L., Rieck, B., “The crystal structure of nesquehonite, MgCO3·3H2O, from Lavrion, Greece”,.., 70, 153-163 (2000).

    18 Waltion, A.G., The Formation and Properties of Precipitates, Interscience Publishers, New York (1967).

    19 Zhang, Z.P., Zheng, Y.J., Ni, Y.W., Liu, Z.M., Chen, J.P., Liang, X.M., “Temperature- and pH-dependent morphology and FT-IR analysis of magnesium carbonate hydrates”,..., 110, 12969-12973 (2006).

    20 Liang, J.M., Ma, Y., Zheng, Y., Davis, H.T., “Solvent-induced crystal morphology transformation in a ternary soap system: sodium stearate crystalline fibers and platelets”,, 17, 6447-6454 (2001).

    21 Schwarz, S., Jaeger, W., Paulke, B.R., “Cationic flocculants carrying hydrophobic functionalities: Applications for solid/liquid separation”,..., 111, 8649-8654 (2007).

    22 Ohkubo, T., Suzuki, S., Mitsuhashi, K., “Preparation of petaloid microspheres of basic magnesium carbonate”,, 23, 5872-5874 (2007).

    2008-11-28,

    2009-02-28.

    the National Natural Science Foundation of China (20876161) and the National Basic Research Program of China (2007CB613501, 2009CB219904).

    ** To whom correspondence should be addressed. E-mail: zhibaoli@home.ipe.ac.cn

    猜你喜歡
    程文
    為糖屈膝
    為糖屈膝
    《室內空間設計》
    青年文學家(2022年2期)2022-03-17 21:57:14
    為糖屈膝
    湖北工程學院新技術學院教師程文娟作品
    獻給綠化合肥的圓夢者
    安徽園林(2018年3期)2018-10-09 05:36:24
    CRE Solvability,Nonlocal Symmetry and Exact Interaction Solutions of the Fifth-Order Modi fied Korteweg-de Vries Equation?
    男子接連犯罪,只為離婚
    中外文摘(2016年5期)2016-10-21 10:08:14
    “軟男”的奇葩選擇,5次犯罪為離婚
    “軟男”的奇葩選擇,5次犯罪為離婚
    亚洲精品国产av蜜桃| 老司机影院毛片| 99视频精品全部免费 在线| 国产女主播在线喷水免费视频网站| 日本色播在线视频| 99九九线精品视频在线观看视频| 男人爽女人下面视频在线观看| 久久久久久久大尺度免费视频| 精品视频人人做人人爽| 99精国产麻豆久久婷婷| 搡女人真爽免费视频火全软件| 久久久久人妻精品一区果冻| 亚洲欧美日韩另类电影网站| 精品一区二区三卡| 老司机影院毛片| 亚洲欧洲国产日韩| 国国产精品蜜臀av免费| 欧美日韩av久久| 99热这里只有是精品50| 肉色欧美久久久久久久蜜桃| 国产精品人妻久久久影院| 午夜91福利影院| 纯流量卡能插随身wifi吗| 亚洲无线观看免费| 亚洲精品乱码久久久久久按摩| 七月丁香在线播放| 2021少妇久久久久久久久久久| 蜜桃久久精品国产亚洲av| 18+在线观看网站| 成年美女黄网站色视频大全免费 | 亚洲伊人久久精品综合| 精品卡一卡二卡四卡免费| 特大巨黑吊av在线直播| 欧美日本中文国产一区发布| 国产欧美日韩综合在线一区二区 | 一级爰片在线观看| 高清黄色对白视频在线免费看 | 国产伦精品一区二区三区四那| 欧美区成人在线视频| 一级,二级,三级黄色视频| 国产午夜精品久久久久久一区二区三区| 女人久久www免费人成看片| 久久国产精品大桥未久av | 我的老师免费观看完整版| 99视频精品全部免费 在线| 久久人妻熟女aⅴ| 日韩av不卡免费在线播放| 国产精品成人在线| 日本vs欧美在线观看视频 | 亚洲国产精品国产精品| 80岁老熟妇乱子伦牲交| 精品国产露脸久久av麻豆| 成人国产麻豆网| 日日爽夜夜爽网站| 伊人久久国产一区二区| 免费大片黄手机在线观看| 欧美日韩视频精品一区| 91精品国产国语对白视频| 欧美日韩亚洲高清精品| 色网站视频免费| 日日撸夜夜添| 在线 av 中文字幕| 亚洲人成网站在线观看播放| 日本av免费视频播放| 偷拍熟女少妇极品色| 人妻少妇偷人精品九色| 久久毛片免费看一区二区三区| 大话2 男鬼变身卡| 免费久久久久久久精品成人欧美视频 | 人妻 亚洲 视频| av网站免费在线观看视频| 国产男女内射视频| 亚洲欧美中文字幕日韩二区| 97超碰精品成人国产| 久久久午夜欧美精品| 成人特级av手机在线观看| 成年人午夜在线观看视频| 成人综合一区亚洲| 男女边摸边吃奶| 精品一区在线观看国产| 日本黄色片子视频| 伊人久久精品亚洲午夜| 91aial.com中文字幕在线观看| 激情五月婷婷亚洲| 嘟嘟电影网在线观看| 成年人免费黄色播放视频 | 亚洲四区av| 国产成人精品一,二区| 日韩欧美 国产精品| 国国产精品蜜臀av免费| 如何舔出高潮| 久久久久久久久久久免费av| 久热久热在线精品观看| 久久久久久久久久人人人人人人| 久久久久精品久久久久真实原创| 免费观看无遮挡的男女| 新久久久久国产一级毛片| 高清午夜精品一区二区三区| 一级片'在线观看视频| 亚洲国产色片| 久久久久久久亚洲中文字幕| 久久热精品热| 成人漫画全彩无遮挡| 嘟嘟电影网在线观看| 三级经典国产精品| 又粗又硬又长又爽又黄的视频| 午夜老司机福利剧场| 亚洲av在线观看美女高潮| 色网站视频免费| 五月玫瑰六月丁香| 狂野欧美激情性bbbbbb| 不卡视频在线观看欧美| xxx大片免费视频| 麻豆成人午夜福利视频| 99国产精品免费福利视频| 国产熟女午夜一区二区三区 | 久久99热6这里只有精品| 97超碰精品成人国产| 欧美日韩视频精品一区| 精品久久久精品久久久| 免费少妇av软件| 美女大奶头黄色视频| 搡老乐熟女国产| 精品卡一卡二卡四卡免费| 嘟嘟电影网在线观看| 欧美成人精品欧美一级黄| h日本视频在线播放| 美女主播在线视频| 一级毛片我不卡| 黄色欧美视频在线观看| 免费观看a级毛片全部| 91精品国产国语对白视频| 涩涩av久久男人的天堂| 我的老师免费观看完整版| 色哟哟·www| 日韩 亚洲 欧美在线| av视频免费观看在线观看| 在线观看免费日韩欧美大片 | 少妇熟女欧美另类| 人体艺术视频欧美日本| 又粗又硬又长又爽又黄的视频| 国产 精品1| 国产伦理片在线播放av一区| 久久久久久伊人网av| 麻豆成人午夜福利视频| 女性生殖器流出的白浆| √禁漫天堂资源中文www| 麻豆乱淫一区二区| 交换朋友夫妻互换小说| 丰满乱子伦码专区| 极品教师在线视频| 永久网站在线| 亚洲国产精品一区三区| 国产精品久久久久久久久免| 国产免费一级a男人的天堂| 大片电影免费在线观看免费| 嘟嘟电影网在线观看| 九九在线视频观看精品| 国产成人精品婷婷| 亚洲精品国产av蜜桃| 国产男女超爽视频在线观看| 男人舔奶头视频| 成人国产麻豆网| 高清av免费在线| 亚洲精品久久午夜乱码| 亚洲人与动物交配视频| 在线观看人妻少妇| 你懂的网址亚洲精品在线观看| 视频区图区小说| 一区二区三区免费毛片| 极品教师在线视频| 国产毛片在线视频| 一区二区三区精品91| 日韩成人av中文字幕在线观看| 国产日韩欧美视频二区| 久久亚洲国产成人精品v| av播播在线观看一区| 日韩成人av中文字幕在线观看| 亚洲av综合色区一区| 亚洲国产欧美日韩在线播放 | 国产国拍精品亚洲av在线观看| 中文字幕精品免费在线观看视频 | 91在线精品国自产拍蜜月| 啦啦啦啦在线视频资源| a级片在线免费高清观看视频| 国产成人精品久久久久久| 亚洲av男天堂| 亚洲国产最新在线播放| 少妇猛男粗大的猛烈进出视频| 久热久热在线精品观看| 亚洲精品一二三| 边亲边吃奶的免费视频| 大码成人一级视频| 亚洲自偷自拍三级| 91久久精品国产一区二区成人| 亚洲人与动物交配视频| 黄色欧美视频在线观看| av网站免费在线观看视频| 久久久精品94久久精品| 99久国产av精品国产电影| 夜夜骑夜夜射夜夜干| 91精品国产九色| 午夜视频国产福利| 夜夜看夜夜爽夜夜摸| 免费看光身美女| 亚洲精品亚洲一区二区| 国产亚洲欧美精品永久| 毛片一级片免费看久久久久| 99热6这里只有精品| 欧美变态另类bdsm刘玥| 肉色欧美久久久久久久蜜桃| 少妇人妻久久综合中文| 成人无遮挡网站| 欧美成人午夜免费资源| 日韩熟女老妇一区二区性免费视频| 欧美亚洲 丝袜 人妻 在线| 丰满乱子伦码专区| 精品一区二区三区视频在线| 亚洲精品久久午夜乱码| 亚洲国产欧美日韩在线播放 | 一区二区av电影网| 久久精品久久精品一区二区三区| 国产淫片久久久久久久久| av不卡在线播放| 精品亚洲乱码少妇综合久久| 人妻制服诱惑在线中文字幕| 亚洲精品乱码久久久久久按摩| 亚洲内射少妇av| 国内揄拍国产精品人妻在线| 在线观看美女被高潮喷水网站| 国产乱来视频区| 熟女av电影| 欧美日韩视频精品一区| av卡一久久| 性色avwww在线观看| 中文字幕免费在线视频6| 日日摸夜夜添夜夜添av毛片| 只有这里有精品99| 97在线视频观看| 日韩亚洲欧美综合| 亚洲av成人精品一区久久| 日韩,欧美,国产一区二区三区| av网站免费在线观看视频| 国产精品欧美亚洲77777| 久久久久网色| www.色视频.com| 天美传媒精品一区二区| 麻豆精品久久久久久蜜桃| 女的被弄到高潮叫床怎么办| 少妇高潮的动态图| 国内揄拍国产精品人妻在线| 久久青草综合色| 亚洲精品一区蜜桃| 国产有黄有色有爽视频| 五月玫瑰六月丁香| 在现免费观看毛片| 午夜影院在线不卡| av网站免费在线观看视频| 国产亚洲最大av| 99热全是精品| 久久精品国产亚洲av涩爱| 亚洲美女视频黄频| 一区二区三区免费毛片| 伦精品一区二区三区| 亚洲内射少妇av| 精品99又大又爽又粗少妇毛片| 免费观看av网站的网址| 男男h啪啪无遮挡| 尾随美女入室| 免费av中文字幕在线| 国产乱人偷精品视频| 在线观看免费日韩欧美大片 | 亚洲国产成人一精品久久久| 深夜a级毛片| 国产片特级美女逼逼视频| 看十八女毛片水多多多| 精品一区在线观看国产| 久热这里只有精品99| 亚洲av男天堂| 精品亚洲乱码少妇综合久久| 亚洲av成人精品一二三区| 另类精品久久| 亚洲精品久久久久久婷婷小说| 久久午夜福利片| 久久亚洲国产成人精品v| 国产男人的电影天堂91| 亚洲av综合色区一区| 黄色一级大片看看| 日韩精品有码人妻一区| 男男h啪啪无遮挡| 国产色爽女视频免费观看| av有码第一页| 桃花免费在线播放| a 毛片基地| 国产伦在线观看视频一区| 国产欧美亚洲国产| 亚洲av.av天堂| 久久国内精品自在自线图片| 午夜视频国产福利| 在线观看av片永久免费下载| 国产亚洲91精品色在线| 老司机影院成人| 免费看不卡的av| 日韩中字成人| 亚洲,一卡二卡三卡| 少妇精品久久久久久久| 国产黄色免费在线视频| 免费观看性生交大片5| 九九爱精品视频在线观看| 日韩欧美 国产精品| 日日爽夜夜爽网站| 国产av一区二区精品久久| 日韩不卡一区二区三区视频在线| 中文字幕精品免费在线观看视频 | 国产高清有码在线观看视频| 亚洲国产精品国产精品| 日日啪夜夜撸| 亚洲国产最新在线播放| 日韩一区二区视频免费看| 国产成人freesex在线| 99久久精品热视频| 一区二区三区四区激情视频| 亚洲av不卡在线观看| 中文字幕制服av| 夫妻性生交免费视频一级片| 一级片'在线观看视频| 免费黄色在线免费观看| 亚洲无线观看免费| 欧美日韩视频精品一区| 性色avwww在线观看| 在线观看免费视频网站a站| 亚洲精品日韩av片在线观看| 日韩欧美精品免费久久| 精品一品国产午夜福利视频| 一区在线观看完整版| 人人澡人人妻人| 亚洲精品乱码久久久v下载方式| 精品国产一区二区三区久久久樱花| 亚洲美女视频黄频| 日日摸夜夜添夜夜爱| 久久久a久久爽久久v久久| 亚洲av国产av综合av卡| 亚洲高清免费不卡视频| 久热这里只有精品99| 亚洲美女视频黄频| 久久久久网色| 看免费成人av毛片| www.色视频.com| 精品人妻熟女av久视频| 两个人免费观看高清视频 | 热re99久久国产66热| 十八禁高潮呻吟视频 | 观看av在线不卡| 老司机亚洲免费影院| 欧美日本中文国产一区发布| 国产精品三级大全| 三上悠亚av全集在线观看 | 好男人视频免费观看在线| 亚洲人成网站在线观看播放| 超碰97精品在线观看| 久久久久久久久久成人| 国产成人免费观看mmmm| 99热6这里只有精品| 少妇高潮的动态图| 一本色道久久久久久精品综合| 午夜激情福利司机影院| 性高湖久久久久久久久免费观看| 亚洲精品色激情综合| 久久99热6这里只有精品| 伦精品一区二区三区| 丰满人妻一区二区三区视频av| 久久人人爽人人片av| 国产有黄有色有爽视频| 噜噜噜噜噜久久久久久91| 美女视频免费永久观看网站| 免费观看av网站的网址| 亚洲欧洲精品一区二区精品久久久 | 赤兔流量卡办理| 2022亚洲国产成人精品| av国产精品久久久久影院| 免费看光身美女| 青青草视频在线视频观看| 人妻一区二区av| 亚洲av电影在线观看一区二区三区| 国产伦精品一区二区三区四那| 日韩中文字幕视频在线看片| 秋霞伦理黄片| 伦理电影免费视频| 伦精品一区二区三区| 日本av手机在线免费观看| 伊人久久精品亚洲午夜| 亚洲,一卡二卡三卡| 国产精品.久久久| 六月丁香七月| 国产熟女欧美一区二区| 中文乱码字字幕精品一区二区三区| 一级毛片黄色毛片免费观看视频| 免费观看的影片在线观看| 国产高清不卡午夜福利| 美女cb高潮喷水在线观看| 99视频精品全部免费 在线| 久久午夜福利片| 黄色日韩在线| 一级毛片我不卡| 欧美三级亚洲精品| 乱系列少妇在线播放| 国产永久视频网站| 我要看黄色一级片免费的| 国产成人精品福利久久| 国产精品免费大片| 亚洲人成网站在线播| 成年美女黄网站色视频大全免费 | 国国产精品蜜臀av免费| 97在线人人人人妻| 自拍偷自拍亚洲精品老妇| 好男人视频免费观看在线| 日日摸夜夜添夜夜添av毛片| av又黄又爽大尺度在线免费看| 三级国产精品片| 亚洲,欧美,日韩| 亚洲国产欧美在线一区| 99热这里只有精品一区| 交换朋友夫妻互换小说| 成人无遮挡网站| 高清视频免费观看一区二区| 久久国产亚洲av麻豆专区| 色网站视频免费| 人妻人人澡人人爽人人| 国产在线视频一区二区| 国产精品免费大片| 黑人巨大精品欧美一区二区蜜桃 | 国产日韩欧美视频二区| 九九在线视频观看精品| 我要看日韩黄色一级片| 18禁动态无遮挡网站| 国产女主播在线喷水免费视频网站| 国国产精品蜜臀av免费| 又爽又黄a免费视频| 汤姆久久久久久久影院中文字幕| av在线播放精品| 国产淫语在线视频| 日韩中字成人| 99久国产av精品国产电影| 国产成人精品福利久久| 久久ye,这里只有精品| 亚洲国产毛片av蜜桃av| 精品久久久久久久久亚洲| 丝袜脚勾引网站| 国产熟女欧美一区二区| 王馨瑶露胸无遮挡在线观看| 两个人的视频大全免费| 亚洲精品成人av观看孕妇| 欧美精品一区二区免费开放| 老熟女久久久| 国产精品免费大片| 十八禁网站网址无遮挡 | 岛国毛片在线播放| 伦理电影大哥的女人| 亚洲欧洲精品一区二区精品久久久 | 国产高清不卡午夜福利| 人人妻人人添人人爽欧美一区卜| 国产在线男女| 女人精品久久久久毛片| 久久久久久久大尺度免费视频| 亚洲av日韩在线播放| 午夜91福利影院| 成人免费观看视频高清| 在线观看美女被高潮喷水网站| 日韩一区二区视频免费看| 爱豆传媒免费全集在线观看| 精品亚洲成a人片在线观看| 亚洲国产精品专区欧美| 日韩精品免费视频一区二区三区 | freevideosex欧美| 蜜桃久久精品国产亚洲av| 久久久久久伊人网av| 国产欧美日韩精品一区二区| 久久影院123| 三级经典国产精品| 曰老女人黄片| 如日韩欧美国产精品一区二区三区 | 人妻少妇偷人精品九色| 国产熟女午夜一区二区三区 | 免费看日本二区| 一级,二级,三级黄色视频| 久久久久网色| 欧美xxⅹ黑人| 高清欧美精品videossex| av有码第一页| 一区二区三区四区激情视频| 久久毛片免费看一区二区三区| 亚洲精品色激情综合| 老女人水多毛片| 人人妻人人澡人人看| 啦啦啦视频在线资源免费观看| 亚洲国产毛片av蜜桃av| 黑人高潮一二区| 久久精品熟女亚洲av麻豆精品| 欧美另类一区| 少妇被粗大的猛进出69影院 | 纯流量卡能插随身wifi吗| 成人毛片a级毛片在线播放| 最近2019中文字幕mv第一页| 最新中文字幕久久久久| 在线观看一区二区三区激情| av天堂久久9| 夫妻性生交免费视频一级片| 狂野欧美白嫩少妇大欣赏| 亚洲熟女精品中文字幕| 午夜影院在线不卡| 18禁在线播放成人免费| .国产精品久久| 国产老妇伦熟女老妇高清| 国产精品成人在线| 又黄又爽又刺激的免费视频.| 一边亲一边摸免费视频| 精品少妇黑人巨大在线播放| 99久久精品国产国产毛片| 国产精品福利在线免费观看| 日本91视频免费播放| 成人影院久久| 色网站视频免费| 一级黄片播放器| 国产熟女午夜一区二区三区 | 老司机影院毛片| 久久精品夜色国产| 日韩制服骚丝袜av| 人人妻人人看人人澡| 亚洲高清免费不卡视频| 亚洲av国产av综合av卡| 日日啪夜夜爽| 国产精品欧美亚洲77777| 女性生殖器流出的白浆| 欧美xxxx性猛交bbbb| 精华霜和精华液先用哪个| 成人综合一区亚洲| 国精品久久久久久国模美| 国产女主播在线喷水免费视频网站| 国产高清国产精品国产三级| 两个人免费观看高清视频 | 内射极品少妇av片p| 18禁在线无遮挡免费观看视频| 日本-黄色视频高清免费观看| 麻豆乱淫一区二区| 中国三级夫妇交换| 日韩成人伦理影院| 精品久久久精品久久久| 中文欧美无线码| 欧美精品高潮呻吟av久久| 天美传媒精品一区二区| 精品熟女少妇av免费看| 国产精品久久久久久久久免| 啦啦啦在线观看免费高清www| 亚洲,欧美,日韩| 人妻人人澡人人爽人人| 亚洲美女黄色视频免费看| 一个人免费看片子| 久久综合国产亚洲精品| 日本黄大片高清| 最近的中文字幕免费完整| 亚洲国产精品专区欧美| 亚洲性久久影院| 一本大道久久a久久精品| 少妇人妻一区二区三区视频| 国产高清三级在线| 久久人人爽av亚洲精品天堂| 男女免费视频国产| 国产精品蜜桃在线观看| 欧美国产精品一级二级三级 | av女优亚洲男人天堂| 免费观看a级毛片全部| 成年女人在线观看亚洲视频| 美女内射精品一级片tv| 亚洲精品,欧美精品| 少妇精品久久久久久久| 亚洲色图综合在线观看| 久久久亚洲精品成人影院| 极品少妇高潮喷水抽搐| 人人妻人人添人人爽欧美一区卜| 日本-黄色视频高清免费观看| 国产69精品久久久久777片| 亚洲一级一片aⅴ在线观看| 日本黄色日本黄色录像| 曰老女人黄片| 亚洲伊人久久精品综合| 国产精品99久久久久久久久| 99久国产av精品国产电影| 26uuu在线亚洲综合色| 国产成人午夜福利电影在线观看| videossex国产| 国产一区二区三区av在线| 日韩精品免费视频一区二区三区 | 亚洲av成人精品一二三区| 在线播放无遮挡| 国产免费一区二区三区四区乱码| 日韩一本色道免费dvd| 中文在线观看免费www的网站| 美女xxoo啪啪120秒动态图| 久久99一区二区三区| 自线自在国产av| 99九九线精品视频在线观看视频| 你懂的网址亚洲精品在线观看| 妹子高潮喷水视频| 一级a做视频免费观看| 九九在线视频观看精品| 性色av一级| 啦啦啦在线观看免费高清www| 国产欧美亚洲国产| 久久人人爽人人片av| 亚洲国产av新网站| 成年女人在线观看亚洲视频| 人人澡人人妻人| 欧美最新免费一区二区三区| 久久国内精品自在自线图片| 在线观看av片永久免费下载|