• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Phase Equilibrium of Isobutanol in Supercritical CO2

    2009-05-15 00:25:58WANGLin王琳HAOXiaosong郝小松ZHENGLan鄭嵐andCHENKaixun陳開(kāi)勛
    關(guān)鍵詞:王琳

    WANG Lin (王琳), HAO Xiaosong (郝小松), ZHENG Lan (鄭嵐) and CHEN Kaixun (陳開(kāi)勛),*

    ?

    Phase Equilibrium of Isobutanol in Supercritical CO2

    WANG Lin (王琳)1,2, HAO Xiaosong (郝小松)1, ZHENG Lan (鄭嵐)1and CHEN Kaixun (陳開(kāi)勛)1,*

    1Chemical Engineering College, Northwest University, Xi’an 710069, China2Chemistry and Pharmaceutical Engineering Coll ege, Nanyang Normal University, Nanyang 473061, China

    Vapor-liquid phase equilibrium data including composition, densities, molar volume and equilibrium constant of isobutanol in supercritical carbon dioxide from 313.2 K to 353.2 K were measured in a variable-volume visual cell. The properties of critical point were obtained by extrapolation. The results showed that critical temperature, critical pressure and critical compressibility factor of CO2-isobutanol system decreased with the increase of critical CO2content. The phase equilibrium model was established by Peng-Robinson equation of state and van der Waals-2 mixing regulation, and model parameters were determined by optimization calculation of nonlinear least square method. The correlation between calculated values and the experimental data showed good agreement.

    supercritical carbon dioxide, isobutanol, phase equilibrium model, critical property

    1 INTRODUCTION

    Supercritical fluid extraction technique (SCFE) is used widely in many processes as a new separation method, such as in removal of trace impurities, recovery of substance having high additional value and thermal sensitivity. CO2is the most commonly used supercritical fluid because of its toxicological inertness, low critical temperature, low cost and small impact on the earth’s environment [1-3]. Alcohol existing widely in fermentation wasted water is often used as entrainer to control the polarity of supercritical fluid, or as a modifier for supercritical fluid chromatography [4]. Thus, the study on supercritical CO2and alcohol is becoming increasingly popular. Vapor-liquid equilibrium properties at high pressures are required for engineering application such as in the design and operation of separation processes. There were some phase equilibrium reports on alcohol in CO2up to now [5-9], but fewer studies were on isobutanol in supercritical CO2[10]. In the present study, new vapor-liquid equilibrium data of isobutanol in CO2from 313.2 K to 353.2 K were measured in a variable-volume visual high pressure cell. Meanwhile, Peng-Robinson equation of state and van der Waals mixing rule were applied to predict vapor- liquid equilibria for CO2+isobutanol binary system.

    2 EXPERIMENTAL

    2.1 Materials and apparatus

    2.1.1

    Carbon dioxide was supplied by Shanxi Xinghua BOC Ltd. with a purity of 99.99%. Isobutanol(purity> 99%, by mass) was analytical reagent.

    2.1.2

    A schematic diagram of a variable-volume visual cell was shown in Fig. 1. The cell was produced by Hai’an Petroleum Research Instrument Plant, Nantong, Jiangsu. The apparatus had two visual windows and its internal maximum volume was 60 ml. The maximum operating temperature and pressure of the apparatus were 423 K with an accuracy of 0.1 K and 20 MPa with an accuracy of 0.01 MPa, respectively. The main parts of the apparatus were a variable volume cell, piston and screw-driven pump. The equilibrium pressure in the cell was measured by a differential pressure gauge; cell temperature was controlled by HA120-50-01 constant temperature liquid bath controller and measured by XT-7000 intelligent temperature regulation indicator. A magnetic stirrer was used for mixing the fluid in the cell.

    Figure 1 The schematic diagram of experimental apparatus

    2.2 Experimental procedure

    Before each experiment, the piston was moved to the upper dead position, thus, the volume of the view cell was made maximal. The entire internal loop of the apparatus including the equilibrium cell was rinsed several times with carbon dioxide. Then, the equilibrium cell was evacuated with a vacuum pump. The cell was charged with a given amount of isobutanol. Then, it was slightly pressurized with carbon dioxide to the initial pressure and was heated to the temperature. Different pressures were reached by different initial pressures and moving piston to different places. Once the pressure and temperature were adjusted to pre-set values, the mixture was stirred for a few hours. Then, the stirrer was switched off and after about one hour the coexisting phases were separated completely. Phase interface could be observed by visual window. Samples of vapor and liquid phase were collected respectively with small steel vessel by their own sampling valve.

    Table 1 Vapor-liquid phase equilibrium data of isobutanol(2) in CO2(1)

    2.3 Analytical method

    The analytical method was applied to determine the phase compositions at different temperatures and different pressures. The small sampling steel vessel was placed in an ice-water bath and connected with a desorption tank by capillary and needle-type valve. After the desorption tank was evacuated, carbon dioxide was desorbed to desorption tank slowly until pressure of the tank did not change; then, the temperature and pressure were recorded. Because the pressure in the desorption tank was far below the atmosphere pressure, the mass of CO2could be calculated by equation of state of ideal gas. The mass of isobutanol was equal to the sample mass minus CO2mass. Finally the molar fractions of two phases could be obtained at given temperature and pressure.

    3 RESULTS AND DISCUSSION

    3.1 Experimental data

    Vapor-liquid equilibrium data of isobutanol in CO2at 313.2 K, 323.2 K, 333.2 K, 343.2 K, 353.2 K were measured and listed in Table 1, where1and2were equilibrium constant of CO2(1) and isobutanol(2), respectively.

    3.2 Results and discussion

    Figure 2 indicated--diagram of CO2-isobutanol at different temperatures. As could be showed from Fig. 2, solubility of CO2would increase in liquid phase and would decrease in vapor phase with increasing pressure at the same temperature. At the same pressure, the solubility of CO2would decrease in liquid phase with increasing temperature, but the solubility of isobutanol would increase in vapor phase because its vapor pressure increased with increasing temperature. Since all thermodynamics properties of vapor phase and liquid phase were equal completely at critical point [11, 12], the composition of vapor and liquid phase must be equal completely at the critical point. Thus, critical point could be obtained by extrapolating vapor and liquid curve to their inflexion point.

    Figure 2--diagram of CO2-isobutanol at different temperatures ●?liquid phase;○?vapor phase;★?estimated critical points/K: 1—313.2; 2—323.2; 3—333.2; 4—343.2; 5—353.2

    Figure 3-diagram of CO2-isobutanol at different temperatures●?liquid phase;○?vapor phase/K: 1—313.2; 2—323.2; 3—333.2; 4—343.2; 5—353.2

    Figure 4 was the-diagram at different temperatures. The results in Fig. 4 showed that the density of the liquid phase decreased with the increasing pressure owing to enhancement of CO2content in liquid phase, but the density of vapor phase increased with increasing pressure. Thus, the densities of vapor and liquid phase would approach gradually and the pressure and density corresponding to the intersecting point of two curves were critical pressure and critical density, respectively.

    Figure 4-diagram of CO2-isobutanol at different temperatures ●?liquid phase;○?vapor phase; ★?calculated critical points/K: 1—313.2; 2—323.2; 3—333.2; 4—343.2; 5—353.2

    The correspondingm--diagram was drawn in Fig. 5, where the thin line indicated isopiestic conjugating line. The intersecting point of vapor phase and liquid phase curves corresponded to critical molar volume and critical composition.

    The critical values obtained from the above figures were summarized in Table 2, in which the critical properties of pure components readily available in the calculation were from literature [13].

    The results in Table 2 showed that the critical temperature of CO2-isobutanol dinary system was between critical temperatures of two pure components and critical pressure was above any of pure components. Moreover, critical temperature and critical pressure decreased with increasing critical composition of CO2, but critical density had a maximum value and critical molar volume had a minimum value in the measurement range.

    Figure 5m--diagram of CO2-isobutanol at different temperature●?liquid phase; ○?vapor phase; ★?calculated critical points

    Table 2 The critical values of CO2-isobutanol

    4 CORRELATION

    If the system arrived to equilibrium state, the partial fugacities were equal for each component in all the phases [14-16].

    For allcomponents, CO2and isobutanol, the fugacity could be calculated using the fugacity coefficient:

    The fugacity coefficient was calculated with Eq. (4):

    Thus, the pressure dependence of thecompressibility factor was necessary. This could be derived from an equation of state (EOS).

    In the work, the cubic Peng-Robinson equation of state, van der Waals-1 and van der Waals-2 mixing rule were chosen to describe vapor-liquid equilibria.

    4.1 Phase equilibrium description model [17-22]

    The expansion of compressibility factorof Peng-Robinson equation of state (PREOS) was Eq.(5)

    The constantsandwere calculated from the pure fluid critical data:

    The parameterwas calculated using, the Pitzer acentric factor:

    van der Waals-1 mixing rule was:

    van der Waals-2 mixing rule was:

    The integral equation of fugacity coefficient with PR and van der Waals-1 mixing rule(PR-1) was calculated by the following formula:

    The integral equation of fugacity coefficient with PR and van der Waals-2 mixing rule(PR-2) was calculated by the following formula:

    The objective function applied in the work was:

    Whereandwere the number of acquired phase equilibrium and the number of components in the system, respectively.was the objective function.

    Table 3 Vapor-liquid phase equilibrium calculated results of CO2(1)+isobutanol(2) system

    4.2 Calculated results and discussion

    The simplex optimization was done with metlab7.0 software according to the above-mentioned equations. The optimized model parameters and deviation analysis were summarized in Table 3.

    The results in Table 3 showed that a bigger deviation produced from the value with PR-1 model than from PR-2. Deviation analysis of molar fraction of vapor and liquid in Table 3 also showed that the adaptable model was influenced significantly by mixing rule, and Peng-Robinson equation of state and van der Waals-2 mixing regulation could be applied to better understanding of the phase behavior for CO2+isobutanol dinary system at high pressures and near-critical area. Due to the density of solution increased at high pressure and near-critical area, the short-course repulsive between molecules played a dominant role. It was necessary to revise the parameters representing molecule volume or molecule diameter. Accordingly, van der Waals-2 mixing rule including the two revising parameters was adaptable.

    5 CONCLUSIONS

    The phase equilibrium composition, density, molar volume and equilibrium constant of isobutanol in CO2were measured in a variable-volume visual cell from 313.2 K to 353.2 K. The phase equilibrium model was established by Peng-Robinson equation of state and van der Waals-2 mixing regulation. Consequently, the prediction model was expected to be a useful tool for the process design and operations of isobutanol from solutions including isobutanol with supercritical CO2.

    NOMENCLATURE

    ARD average relative deviation

    f,φpartial fugacity and partial fugacity coefficient ofcomponent

    12,12dinary action parameter

    pressure, MPa

    temperature, K

    mmolar volume, cm3·mol-1

    xmolar fraction ofcomponent in liquid phase

    ymolar fraction ofcomponent in vapor phase

    compressibility factor

    density, g·cm-3

    Superscripts

    liquid phase

    v vapor phase

    Subscripts

    c critical point

    cal calculated value

    exp experimental data

    1 Zhu, Z.Q., “Supercritical fluid extraction”, Supercritical Fluid Technology—The Principle and Application, Chemical Industry Press, Beijing (2001). (in Chinese)

    2 Kamel, K., Paolo, A., Ireneo, K., Abdallah, D., “Solubility of diamines in supercritical carbon dioxide experimental determination and correlation”,.., 41, 10-19 (2007). (in Chinese)

    3 Zhang, J.C., WU, X.Y., CAO, W.L., “Study on critical properties for CO2+cosolvent binary system and ternary system”,...., 10 (2), 223-227 (2002).

    4 Tatsuru, S., Naoki, T., Kunio, N., “Solubilities of ethanol, 1-prjopanol, 2-propanol and 1-butanol in supercritical carbon dioxide at 313 K and 333 K”,, 67, 213-226 (1991).

    5 Catinca, S., Viorel, F., Dan, G., “Phase behavior for carbon dioxide+ethanol system: experimental measurements and modeling with a cubic equation of state”,.., 47, 109-116 (2008).

    6 Hirotoshi, H., Tanimoto, I.Y., “ Phase equilibrium study for the separation of ethanol-water solution using subcritical and supercritical hydrocarbon solvent extraction”,, 84 (1), 297-320 (1993).

    7 Wang, W.L., Zhang, X.D., Liu, X.W., “Phase equilibria calculation for supercritical carbon dioxide and alcohol”,...., 24 (4), 1-3 (2003). (in Chinese)

    8 Luo, Z.C., Wei,Y. L, Hu, Y., “Phase equilibria study for isopropanol extraction from aqueous solution by using supercritical carbon dioxide”,...., 41 (4), 395-401 (1990). (in Chinese)

    9 Tian, Y.L., Han, M., Chen, L., Feng, J., Qin,Y., “Vapor-liquid equilibrium of CO2-ethanol binary system at high pressure”,..., 17 (2), 155-160 (2001).

    10 Yun, Z., Shi, M.R., Shi, J., “High pressure vapor-liquid phase equilibrium for carbon dioxide –-butanol and carbon dioxide--butanol”,.., 24 (1), 87-92 (1996).

    11 Chen, L., “High pressure equilibrium and critical curves of binary systems containing supercritical CO2”, Ph.D.Thesis, Tianjin University, Tianjin (2004). (in Chinese)

    12 Han, B.X., “Mixing supercritical fluid”, Supercritical Fluid Science and Technology, Chinese Petrol Chemical Engineering Press, Beijing (2005). (in Chinese)

    13 Bruce, E.P, John, M.P., John, P.O., The Properties of Gases and Liquids, Chemical Industry Press, Beijing, 260-266 (2006). (in Chinese)

    14 Chen, Z.X., Gu, F.Y., Hu, W.Y., “Vapor-liquid equilibrium”, The Thermodynamics of Chemical Engineering, Chemical Industry Press, Beijing, 183-187 (2005). (in Chinese)

    15 Fleur, B., Jean, P.P., Thierry, C., Roland, T., Jean, F.B., “Modelling solutions of hydrocarbons in dense CO2gas”,...., 21, 1219-1227 (2001).

    16 Wang, L.S., “The theory progress of generalized van der Waals partition function”, High Pressure Phase Equilibrium and Transport Property of Fluid, Science Press, Beijing, 75-85 (2002). (in Chinese)

    17 John, M.P., Rüdiger, N.L., Edmundo, G.A., “High pressure vapor-liquid equilibrium calculation”, Molecular Thermodynamics of Fluid-Phase Equilibria, Chemical Industry Press, Beijing, 435-441 (2006). (in Chinese)

    18 Abolghasem, J., Chan, H.K., Foster, N.R., “Mathematical representation of solute solubility in supercritical carbon dioxide using empirical expression”,.., 24 (1), 19-35 (2002).

    19 Zhu, H.G., Tian,Y.L., Chen, L., Qin, Y., Feng, J.J., “High-pressure phase equilibria for binary ethanol system containing supercritical CO2”,...., 9 (3), 322-325 (2001).

    20 Wu, J.L., Pan, Q.M., “Prediction of phase behavior for styrene/CO2/ polystyrene mixtures”,...., 10 (6), 706-710 (2002).

    21 Yusuke, S., Toshio, I., “Prediction of vapor-liquid equilibria for supercritical alcohol+fatty acid ester systems by SRK equation of state with Wong-Sandler mixing rule based on COSMO theory”,.., 46, 4-9 (2008).

    22 Berna, A., Chafer, A., Monton, J.B., Subirats, S., “High-pressure solubility data of system ethanol(1)+catechin (2)+CO2(3)”,.., 20, 157-162 (2001).

    2008-12-23,

    2009-04-16.

    * To whom correspondence should be addressed. E-mail: kxchen@nwu.edu.cn

    猜你喜歡
    王琳
    敦煌壁畫(huà)里的“她們”
    云鬢簪花入畫(huà)來(lái)
    Influence of carbon sources on the performance of carbon-coated nano-silicon
    Cabbage Connections
    找出隱含的全等三角形
    王琳油畫(huà)作品
    大眾文藝(2020年22期)2020-12-13 11:37:14
    一年級(jí)下冊(cè)第二單元檢測(cè)題
    王琳等
    王琳
    王琳
    日本vs欧美在线观看视频| 国产成人aa在线观看| 久久久久久伊人网av| 国产精品偷伦视频观看了| 国产成人一区二区在线| 日日摸夜夜添夜夜添av毛片| 日韩电影二区| a级片在线免费高清观看视频| 久久毛片免费看一区二区三区| 日日摸夜夜添夜夜添av毛片| 久久久久国产网址| 日韩熟女老妇一区二区性免费视频| 欧美日本中文国产一区发布| 国产免费现黄频在线看| 一级毛片黄色毛片免费观看视频| 亚洲精品aⅴ在线观看| av播播在线观看一区| 五月伊人婷婷丁香| 看非洲黑人一级黄片| 国产成人免费观看mmmm| 亚洲欧美成人综合另类久久久| 两个人的视频大全免费| 成年美女黄网站色视频大全免费 | 午夜福利,免费看| 成人综合一区亚洲| 国产精品久久久久久久久免| 亚洲熟女精品中文字幕| 日本与韩国留学比较| 国产一区二区三区av在线| 一区二区av电影网| 亚洲一级一片aⅴ在线观看| 亚洲怡红院男人天堂| 视频区图区小说| 欧美日韩在线观看h| 男女免费视频国产| 久久久久久久久久久久大奶| 国产精品国产三级专区第一集| av在线观看视频网站免费| 欧美亚洲 丝袜 人妻 在线| 国产黄频视频在线观看| 午夜av观看不卡| 少妇人妻 视频| 欧美精品国产亚洲| 91久久精品国产一区二区三区| 视频中文字幕在线观看| 久久97久久精品| 久久韩国三级中文字幕| 成人无遮挡网站| 国内精品宾馆在线| 久久久久国产精品人妻一区二区| 丰满饥渴人妻一区二区三| 亚洲精品乱码久久久v下载方式| av在线app专区| 特大巨黑吊av在线直播| 久久精品国产a三级三级三级| 亚洲欧美色中文字幕在线| 亚洲精品一区蜜桃| 国产深夜福利视频在线观看| 成人午夜精彩视频在线观看| 蜜臀久久99精品久久宅男| 91久久精品国产一区二区三区| 少妇 在线观看| 久久久精品免费免费高清| 永久免费av网站大全| 高清av免费在线| 亚洲欧美中文字幕日韩二区| 久久av网站| 91久久精品电影网| 日韩三级伦理在线观看| 国产片特级美女逼逼视频| 免费人成在线观看视频色| 亚洲av欧美aⅴ国产| 2018国产大陆天天弄谢| 国产视频内射| 精品人妻熟女毛片av久久网站| 大香蕉久久成人网| 亚洲成人手机| 欧美一级a爱片免费观看看| 欧美xxⅹ黑人| 制服人妻中文乱码| 人妻系列 视频| 亚洲精华国产精华液的使用体验| 最黄视频免费看| 日日爽夜夜爽网站| 高清毛片免费看| 亚洲人成77777在线视频| 少妇人妻久久综合中文| 亚洲国产色片| 高清视频免费观看一区二区| 69精品国产乱码久久久| 视频中文字幕在线观看| 国产片特级美女逼逼视频| 国产日韩欧美在线精品| 免费人成在线观看视频色| 亚洲,一卡二卡三卡| 欧美日韩av久久| 精品久久久噜噜| 国产成人精品福利久久| 男女边摸边吃奶| 精品久久久久久久久av| 精品卡一卡二卡四卡免费| 成年av动漫网址| 少妇高潮的动态图| 汤姆久久久久久久影院中文字幕| 久久久久视频综合| 国产黄片视频在线免费观看| 欧美xxxx性猛交bbbb| 日韩电影二区| 伊人亚洲综合成人网| 欧美精品一区二区免费开放| 最近最新中文字幕免费大全7| av一本久久久久| 在线 av 中文字幕| 国产精品蜜桃在线观看| 精品视频人人做人人爽| videosex国产| 五月伊人婷婷丁香| 黑人欧美特级aaaaaa片| 在现免费观看毛片| 久久久久久久国产电影| 在线播放无遮挡| 插逼视频在线观看| 亚洲精品视频女| 亚洲一级一片aⅴ在线观看| 午夜激情久久久久久久| 午夜免费鲁丝| 亚洲不卡免费看| 全区人妻精品视频| 亚洲情色 制服丝袜| 国产一级毛片在线| 国产熟女欧美一区二区| 满18在线观看网站| 另类亚洲欧美激情| 国产精品一区www在线观看| 成年人午夜在线观看视频| 老司机亚洲免费影院| 超碰97精品在线观看| 赤兔流量卡办理| 纵有疾风起免费观看全集完整版| 菩萨蛮人人尽说江南好唐韦庄| 免费观看性生交大片5| 亚洲四区av| 狠狠精品人妻久久久久久综合| 一级爰片在线观看| 十八禁网站网址无遮挡| 天堂中文最新版在线下载| 五月伊人婷婷丁香| 一级片'在线观看视频| 日日摸夜夜添夜夜爱| 建设人人有责人人尽责人人享有的| 中文字幕人妻熟人妻熟丝袜美| 国产精品.久久久| 18在线观看网站| 国产亚洲欧美精品永久| av卡一久久| 日韩一区二区三区影片| av在线老鸭窝| 国产高清不卡午夜福利| 精品国产一区二区久久| 有码 亚洲区| 亚洲人与动物交配视频| 免费少妇av软件| 国产免费福利视频在线观看| 成人黄色视频免费在线看| 全区人妻精品视频| 亚洲伊人久久精品综合| √禁漫天堂资源中文www| av电影中文网址| 亚洲人成网站在线播| 少妇高潮的动态图| 极品人妻少妇av视频| 国产高清有码在线观看视频| 热re99久久精品国产66热6| 国产在线视频一区二区| 一级,二级,三级黄色视频| 制服人妻中文乱码| 老司机影院成人| 乱人伦中国视频| 不卡视频在线观看欧美| 国产精品国产三级专区第一集| 欧美精品国产亚洲| 一本久久精品| 亚洲美女搞黄在线观看| 国产伦理片在线播放av一区| 狠狠婷婷综合久久久久久88av| 国产精品无大码| 在线观看国产h片| 久久久久精品性色| 免费少妇av软件| 精品熟女少妇av免费看| 午夜av观看不卡| 九色亚洲精品在线播放| 国产色爽女视频免费观看| 国产精品国产av在线观看| 边亲边吃奶的免费视频| 99久久综合免费| 国产精品久久久久久久久免| 波野结衣二区三区在线| 综合色丁香网| 免费少妇av软件| 亚洲精品日韩av片在线观看| 国产精品99久久99久久久不卡 | 亚洲av福利一区| 欧美丝袜亚洲另类| 欧美精品人与动牲交sv欧美| 亚洲成人手机| 欧美激情国产日韩精品一区| 日本猛色少妇xxxxx猛交久久| 国产精品蜜桃在线观看| 日产精品乱码卡一卡2卡三| 精品国产国语对白av| 久久久精品免费免费高清| 亚洲欧美成人综合另类久久久| 精品人妻熟女av久视频| 在线天堂最新版资源| 99九九线精品视频在线观看视频| 中文字幕久久专区| 美女国产视频在线观看| 国产精品蜜桃在线观看| av在线观看视频网站免费| 亚洲综合精品二区| 亚洲丝袜综合中文字幕| 视频在线观看一区二区三区| 精品一区在线观看国产| 成年人午夜在线观看视频| av在线老鸭窝| 插逼视频在线观看| xxx大片免费视频| 狂野欧美激情性bbbbbb| 秋霞伦理黄片| 汤姆久久久久久久影院中文字幕| 中国国产av一级| 亚洲精品第二区| 亚洲精品久久成人aⅴ小说 | 又粗又硬又长又爽又黄的视频| 美女国产高潮福利片在线看| 精品亚洲成a人片在线观看| 美女脱内裤让男人舔精品视频| 国产熟女午夜一区二区三区 | 热99久久久久精品小说推荐| 日韩av不卡免费在线播放| 一级a做视频免费观看| 亚洲国产精品成人久久小说| 精品亚洲成a人片在线观看| 麻豆成人av视频| 国产一区二区在线观看日韩| 国产成人a∨麻豆精品| 亚洲精品一区蜜桃| 我的老师免费观看完整版| 国产黄片视频在线免费观看| 欧美老熟妇乱子伦牲交| 国产男女内射视频| 亚洲av成人精品一区久久| 日韩中字成人| 另类精品久久| 国产精品国产三级专区第一集| 高清欧美精品videossex| 国产欧美亚洲国产| 精品一区在线观看国产| 飞空精品影院首页| 欧美日韩一区二区视频在线观看视频在线| 亚洲欧洲日产国产| 久久国内精品自在自线图片| 男女无遮挡免费网站观看| 久久99一区二区三区| 一本—道久久a久久精品蜜桃钙片| 2021少妇久久久久久久久久久| 欧美97在线视频| 欧美精品一区二区免费开放| 国产黄片视频在线免费观看| 一边摸一边做爽爽视频免费| 亚洲久久久国产精品| 国产黄频视频在线观看| 少妇猛男粗大的猛烈进出视频| 亚洲少妇的诱惑av| 久久99一区二区三区| 亚州av有码| 99热全是精品| 男的添女的下面高潮视频| 18禁在线无遮挡免费观看视频| 欧美激情 高清一区二区三区| 免费不卡的大黄色大毛片视频在线观看| 国产无遮挡羞羞视频在线观看| 久久久久久久久久久久大奶| a级毛片黄视频| 国产男女超爽视频在线观看| 热re99久久国产66热| 久久久久久久久久成人| 国产精品欧美亚洲77777| 高清在线视频一区二区三区| 国产伦精品一区二区三区视频9| 亚洲成人一二三区av| 日韩av不卡免费在线播放| 国产亚洲精品久久久com| 国产在线免费精品| 国产高清有码在线观看视频| 日韩,欧美,国产一区二区三区| 国产亚洲最大av| 中文字幕久久专区| 久久人人爽人人爽人人片va| 在线观看一区二区三区激情| 一本色道久久久久久精品综合| 熟妇人妻不卡中文字幕| 久久精品久久久久久噜噜老黄| 日本黄色片子视频| 午夜日本视频在线| 最近的中文字幕免费完整| 亚洲欧美精品自产自拍| 国产精品熟女久久久久浪| 成人亚洲欧美一区二区av| 最近中文字幕高清免费大全6| 国产精品国产av在线观看| 大片电影免费在线观看免费| 日本91视频免费播放| 国产精品秋霞免费鲁丝片| 蜜桃国产av成人99| 日本午夜av视频| 国产视频内射| 中文欧美无线码| 欧美xxxx性猛交bbbb| 亚洲精品aⅴ在线观看| 我要看黄色一级片免费的| 免费av不卡在线播放| 中文字幕av电影在线播放| 在线精品无人区一区二区三| 综合色丁香网| 国产成人freesex在线| 9色porny在线观看| 99re6热这里在线精品视频| 亚洲欧洲精品一区二区精品久久久 | 啦啦啦视频在线资源免费观看| 久久久久精品性色| 国产毛片在线视频| 草草在线视频免费看| 国产黄片视频在线免费观看| 又黄又爽又刺激的免费视频.| 午夜福利在线观看免费完整高清在| 亚洲欧洲日产国产| 亚洲欧洲精品一区二区精品久久久 | 五月玫瑰六月丁香| 麻豆精品久久久久久蜜桃| 亚洲成色77777| 久久综合国产亚洲精品| 91成人精品电影| 国产极品天堂在线| a 毛片基地| 成人毛片60女人毛片免费| 欧美 亚洲 国产 日韩一| 久久久久久久久久人人人人人人| 精品少妇内射三级| .国产精品久久| 99久久综合免费| 亚洲经典国产精华液单| 性色avwww在线观看| 波野结衣二区三区在线| 国产在视频线精品| 国产成人精品久久久久久| 欧美 亚洲 国产 日韩一| 你懂的网址亚洲精品在线观看| 99九九在线精品视频| 久久久国产精品麻豆| 少妇猛男粗大的猛烈进出视频| 国产在线免费精品| 91精品国产国语对白视频| 大香蕉久久网| 国产免费一区二区三区四区乱码| 九九在线视频观看精品| 中文字幕精品免费在线观看视频 | 各种免费的搞黄视频| 老女人水多毛片| 女人精品久久久久毛片| 熟妇人妻不卡中文字幕| 18在线观看网站| 国内精品宾馆在线| 久久久精品免费免费高清| 免费观看无遮挡的男女| 老熟女久久久| 寂寞人妻少妇视频99o| 中文字幕最新亚洲高清| 欧美成人精品欧美一级黄| 亚洲欧美一区二区三区黑人 | 考比视频在线观看| 美女国产视频在线观看| a级毛色黄片| 美女脱内裤让男人舔精品视频| 一级二级三级毛片免费看| 国产乱人偷精品视频| 日本av免费视频播放| 春色校园在线视频观看| a级片在线免费高清观看视频| 久久久久视频综合| 嘟嘟电影网在线观看| 亚洲欧美一区二区三区黑人 | 亚洲一区二区三区欧美精品| 91精品伊人久久大香线蕉| 另类亚洲欧美激情| 国产精品人妻久久久影院| 久久久久久久大尺度免费视频| 日韩av在线免费看完整版不卡| 午夜91福利影院| 亚洲,欧美,日韩| 国产一区亚洲一区在线观看| 熟妇人妻不卡中文字幕| 一级毛片 在线播放| 乱码一卡2卡4卡精品| 免费不卡的大黄色大毛片视频在线观看| 国产日韩欧美在线精品| 男女国产视频网站| 不卡视频在线观看欧美| 亚洲成人手机| 欧美xxⅹ黑人| 在线免费观看不下载黄p国产| 精品人妻偷拍中文字幕| 插阴视频在线观看视频| 国产精品.久久久| www.av在线官网国产| 在线观看三级黄色| 99热这里只有是精品在线观看| 久久人妻熟女aⅴ| 99九九线精品视频在线观看视频| 久久久a久久爽久久v久久| 日本av免费视频播放| 97精品久久久久久久久久精品| 午夜福利在线观看免费完整高清在| 热re99久久国产66热| 性高湖久久久久久久久免费观看| 最近中文字幕高清免费大全6| 尾随美女入室| 午夜久久久在线观看| 午夜福利视频在线观看免费| 精品国产乱码久久久久久小说| 简卡轻食公司| 免费观看av网站的网址| 亚洲色图综合在线观看| 两个人免费观看高清视频| 大码成人一级视频| 99久久人妻综合| 国产极品粉嫩免费观看在线 | 亚洲国产成人一精品久久久| 亚洲色图 男人天堂 中文字幕 | 午夜福利视频精品| 伦精品一区二区三区| 亚洲欧洲精品一区二区精品久久久 | 秋霞伦理黄片| 人人妻人人添人人爽欧美一区卜| 成人亚洲精品一区在线观看| av卡一久久| 国产白丝娇喘喷水9色精品| 欧美精品国产亚洲| 丰满迷人的少妇在线观看| 精品亚洲乱码少妇综合久久| 亚洲精品日韩av片在线观看| 狂野欧美激情性bbbbbb| 免费观看av网站的网址| 亚洲成人手机| 岛国毛片在线播放| 啦啦啦中文免费视频观看日本| 免费观看av网站的网址| 美女xxoo啪啪120秒动态图| 少妇的逼水好多| 大码成人一级视频| 啦啦啦啦在线视频资源| 永久免费av网站大全| 午夜福利影视在线免费观看| 亚洲经典国产精华液单| av国产精品久久久久影院| 亚洲在久久综合| 天堂8中文在线网| 免费黄频网站在线观看国产| 亚洲国产精品999| 黑人高潮一二区| 内地一区二区视频在线| 五月伊人婷婷丁香| 欧美丝袜亚洲另类| 2022亚洲国产成人精品| 亚洲精品日本国产第一区| 国产高清不卡午夜福利| 色视频在线一区二区三区| 免费看不卡的av| 欧美少妇被猛烈插入视频| 国产淫语在线视频| 亚洲国产欧美在线一区| 日日啪夜夜爽| 汤姆久久久久久久影院中文字幕| 国产乱来视频区| 少妇人妻 视频| 大又大粗又爽又黄少妇毛片口| 一级二级三级毛片免费看| 久久久国产精品麻豆| 在线 av 中文字幕| 国产精品无大码| 新久久久久国产一级毛片| 国国产精品蜜臀av免费| 五月开心婷婷网| 五月天丁香电影| av播播在线观看一区| 97在线人人人人妻| 男女国产视频网站| 亚洲经典国产精华液单| 欧美精品亚洲一区二区| 99热国产这里只有精品6| 夜夜爽夜夜爽视频| 久久人人爽av亚洲精品天堂| 亚洲经典国产精华液单| 狂野欧美激情性bbbbbb| 日韩不卡一区二区三区视频在线| 亚洲精品久久成人aⅴ小说 | 国产深夜福利视频在线观看| 欧美国产精品一级二级三级| 大香蕉久久网| 黄色视频在线播放观看不卡| 99热国产这里只有精品6| 大又大粗又爽又黄少妇毛片口| 黄色怎么调成土黄色| av.在线天堂| 亚洲人成网站在线播| 亚洲国产精品专区欧美| 国产精品人妻久久久久久| 丝袜美足系列| 日韩av不卡免费在线播放| 亚洲人成网站在线播| 一边亲一边摸免费视频| 岛国毛片在线播放| 嫩草影院入口| 免费高清在线观看日韩| 国语对白做爰xxxⅹ性视频网站| 欧美成人午夜免费资源| 久久鲁丝午夜福利片| 亚洲国产精品一区三区| 秋霞伦理黄片| 国国产精品蜜臀av免费| 日韩欧美一区视频在线观看| 男女边吃奶边做爰视频| 国产不卡av网站在线观看| 搡老乐熟女国产| 久久av网站| 91在线精品国自产拍蜜月| 日韩熟女老妇一区二区性免费视频| 精品少妇内射三级| 日本免费在线观看一区| 春色校园在线视频观看| 91国产中文字幕| 国产高清三级在线| 丰满乱子伦码专区| 91精品三级在线观看| 亚洲精品av麻豆狂野| 久久国产精品大桥未久av| 久久久久久久精品精品| 一级黄片播放器| 最新的欧美精品一区二区| 婷婷成人精品国产| 一区二区av电影网| 97在线人人人人妻| 日韩中字成人| 九色亚洲精品在线播放| 国产一区二区三区av在线| 精品人妻熟女av久视频| 国产精品无大码| 97在线人人人人妻| 亚洲伊人久久精品综合| 国产深夜福利视频在线观看| 99久久中文字幕三级久久日本| 97在线人人人人妻| 欧美人与性动交α欧美精品济南到 | 亚洲精品国产av蜜桃| 如日韩欧美国产精品一区二区三区 | 最近2019中文字幕mv第一页| 如日韩欧美国产精品一区二区三区 | 少妇精品久久久久久久| 亚洲天堂av无毛| 99热全是精品| 国产精品一国产av| 特大巨黑吊av在线直播| 亚洲国产精品专区欧美| 日韩精品免费视频一区二区三区 | 亚洲第一区二区三区不卡| 亚洲五月色婷婷综合| 哪个播放器可以免费观看大片| 午夜精品国产一区二区电影| 日韩三级伦理在线观看| 国产精品国产av在线观看| 国产日韩一区二区三区精品不卡 | 久久久午夜欧美精品| 内地一区二区视频在线| xxx大片免费视频| 中国美白少妇内射xxxbb| 亚洲婷婷狠狠爱综合网| 狠狠婷婷综合久久久久久88av| 狂野欧美激情性bbbbbb| 美女主播在线视频| 极品少妇高潮喷水抽搐| 亚洲欧洲日产国产| 亚洲,欧美,日韩| 大片免费播放器 马上看| 制服丝袜香蕉在线| 亚洲欧美一区二区三区国产| 如日韩欧美国产精品一区二区三区 | 91精品国产九色| www.色视频.com| 精品视频人人做人人爽| 丰满迷人的少妇在线观看| 女人久久www免费人成看片| 日韩免费高清中文字幕av| 日韩av不卡免费在线播放| 超碰97精品在线观看| 99久久中文字幕三级久久日本| 在线观看免费视频网站a站| 青青草视频在线视频观看| 在线看a的网站| 亚洲av在线观看美女高潮| 日韩成人av中文字幕在线观看| 国产精品 国内视频| 丝袜喷水一区| 久久国产亚洲av麻豆专区| 中文天堂在线官网|