• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Conversion of Methane by Steam Reforming Using Dielectric-barrier Discharge*

    2009-05-15 00:25:58ZhangXu張旭WangBaowei王保偉LiuYongwei劉永衛(wèi)andXuGenhui許根慧
    關(guān)鍵詞:張旭

    Zhang Xu (張旭), Wang Baowei (王保偉), Liu Yongwei (劉永衛(wèi)) and Xu Genhui (許根慧)

    ?

    Conversion of Methane by Steam Reforming Using Dielectric-barrier Discharge*

    Zhang Xu (張旭), Wang Baowei (王保偉)**, Liu Yongwei (劉永衛(wèi)) and Xu Genhui (許根慧)

    Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering Technology, Tianjin University, Tianjin 300072, China

    Conversion of methane by steam reforming was carried out by means of dielectric-barrier discharge. A systemic procedure was employed to determine the suitable experimental conditions. It was found that one of the plasma generators can match the system best. A higher power input can always bring a higher conversion, but the selectivity to C2H6decreased from 52.48% to 39.43% as the power increased from 20W to 49W. When discharge distance was 4 mm, selectivities to almost all main products reached the max. The inner electrode made of stainless steel and the outer electrode with aluminum foil were one of the best options which can obviously enhance the conversion of methane. A larger flow rate always resulted in a lower conversion of methane. In the most time, 19.93% steam promoted conversion of methane.

    methane, steam, dielectric-barrier discharge, plasma

    1 Introduction

    Methane or natural gas is widely applied in industry to obtain hydrogen or synthesis gas as source materials for the production of raw chemicals [1-6]. Although the steam reforming process has been industrially used to produce synthesis gas from methane recently, there are still problems waiting for being solved [7]. Efforts had been devoted on the catalysts applied in the methane steam reforming [8-12]. Considering the advantages of plasma, many articles also emerged in the field of conversion of methane by using plasma [13-15]. Pati?o. [7] firstly used radio frequency glow discharge to carry out the non-oxidative coupling of CH4/H2mixtures and studied the reforming of methane with CO2, O2, and steam plasma with the same system to produce higher hydrocarbons. Bo. [16] investigated the influence of feed gases proportion on the performance of gliding arc discharge plasma assisted methane reforming with carbon dioxide process, which can effectively convert the reagents into synthesis gas with C2H4and C2H2as the main hydrocarbon compounds. Li. [17] compared the performance of the non-thermal plasma generated by four different electric discharge techniques in the conversion of methane and found that ethane is the major C2product in the dielectric-barrier discharge (DBD) processes. Considerable studies had also been done by our team [18-21]. On the basis of these works, effects of more detail factors, including the match of reactor with plasma generators, discharge frequency, input power, discharge distance, different electrode and source gas were studied in this paper.

    Figure 1 Schematic diagram of DBD reactor

    2 Experimental

    Figure 1 shows the plasma rector which consists of a quartz tube (with a outer diameter of 10mm and a inner diameter of 6 mm, if not mentioned specially), a metal stick (with a diameter of 3 mm, if not mentioned specially) inside it as the inner electrode and a metal foil or net (with a length of 90 mm) around it as the outer electrode. Fig. 2 shows the schematic diagram of the reaction and analysis system. Methane controlled by mass flow controllers (D07-7A/ZMM) was introduced and passed a bottle which was immersed in a water bath and filled with water to carry and mix with steam. The plasma was generated by a high-voltage generator. After reaction and condensation to remove water, the gases from the reactor were analyzed by gas chromatogram (FULI9790II) online. All experiments were carried out at room temperature and atmospheric pressure.

    Figure 2 Flow chart of the experiment 1—CH4; 2—water bath; 3—reactor; 4—condensator; 5—gas chromatogram; 6—flowmeter; 7—plasma generator

    Methane conversion and product selectivity are defined as follows:

    3 Results and Discussion

    3.1 Effect of plasma generators

    Four plasma generators were examined in the same conditions in the experiments. The parameters and the results are listed in Table 1 and Fig. 3, respectively. It is shown that when plasma generator 4 was used, not only the conversion of CH4but also the selectivities to H2and C2H4were highest. The difference of other selectivities was not very obvious and the yields reached the max for all the products. It was declared that plasma generator 4 can match to the reactor best. The reason is that the reactor of DBD is a capacitor in fact and the plasma generator is a circuitry, which includes adjustable capacitor and inductance. The reactor and the plasma generator can produce acceptor resonance or current resonance when the characteristic of the electrical apparatus of reactor matches with the plasma generator, resulting in the highest energy efficiency. At the same time, the appropriate discharge voltage and frequency are needed for conversion of methane and steam. The plasma generator 4 was chosen in the following works.

    Table 1 Parameter of plasma generator

    3.2 Effect of input power

    The input power, which can influence the conversion and product distribution, was tested as one important factor. From Fig. 4 (a), it is shown that as the power increased from 20 W to 49 W, CH4conversion gradually increased when others conditions were constant. The density of free radicals, which is responsible to the reaction rate, increased with the power of plasma. The increasing power leads to an increase in the temperature and density of electrons. Thus, the activity of plasma is enhanced, which accelerates the breakage of the bond of CH4, and finally improves the conversion of CH4.

    The distribution variation shown in Fig. 4 (b) suggests that as the input power increased, the selectivities to H2and C2H4rise from 31.12% to 41.29% and from 4.24% to 7.18%, respectively, but the selectivity to C2H6decreased from 52.62% to 41.29%. The selectivity to CO was less than 4% in all ranges. The change could be attributed to the increasing of the conversion. When more CH4was active in this process, more H? and CH3? were emerged to form more H2and abundant C2H6. However, the larger power also made it likely to transform CH3? to CH2? and H?, which further led to the change of the selectivities to C2H4and H2. After calculation, it is found that a larger power brought a higher yield for every product.

    3.3 Effect of discharge distance

    In order to investigate the effect of discharge distance, the experiments were conducted by changing the diameters of inner electrodes and quartz tubes. The diameters, thickness of tube and discharge distances are shown in Table 2.

    Table 2 Diameters of electrodes and discharge distance

    Figure 5 suggests that the conversion of CH4was reduced from 16.42% to 7.13% by increasing the diameter of the reactor, which directly decreased the average energy carried by elections and the intensity of electric field in the discharge area. All selectivities came through the process of increasing and then decreasing and most of them reached the max when the distance was 4 mm. But as the range of conversion was more obvious, the trends of the yields were as the same as the conversion.

    3.4 Effect of different electrode

    Inner electrodes made of red copper, brass, aluminum and stainless steel were examined with the outer and inner diameters of quartz tube changed to 12 mm and 10 mm, respectively. The results are shown in Table 3. The conversion of CH4varied with the material of electrodes in the following order: stainless steel>red copper>brass>aluminum. Also, the lowest selectivity to H2and highest selectivity to C2H6were obtained when aluminum inner electrode was used and the variety of selectivities was reverse for red copper inner electrode. The differences may be attributed to the catalytic effect of the different metals. In the reaction, the temperature of electrode directly contacted with CH4and steam could reach 200°C and play an important role beside of transferring electron.

    Table 3 Effect of inner electrode on methane conversion and the selectivities of the products (P40 W, steam concentration19.93%,?40 ml·min-1)

    Two kinds of outer electrodes,.., aluminum foil and iron net were examined in the experiment. The results are listed in Table 4. It clearly shows that the former one was better in the activity and selectivity to H2but worse in the selectivities to C2H6and C3H8. Because both of these electrodes did not contact with the gases, there was no catalytic influence. Perhaps compared with the iron net with a lot of meshes, the larger area helped the foil to make a uniform and stable electric field, which led to the higher conversion. However, the net is likely more propitious to focus the energy and form longer hydrocarbons.

    Table 4 Effect of outer electrode on methane conversion and the selectivities of products (P30 W,?40 ml·min-1)

    3.5 Effect of flow rate and steam proportion

    The flow rate and steam proportion were also studied. The influence of steam proportion was not well-regulated. As a whole, when the proportion was 19.93%, the highest conversion was obtained. Fig. 6 shows that the conversion of CH4decreased with the flow rate. It can be explained by the fact that the increase in flow rate leads to the decrease of the residence time. As the power is constant, the number of high-energy electron remains in a stable level, which leads to the average energy of CH4receives declines and results in less chance for the molecule to be excited and the reduction of the conversion.

    The influences of the two factors in the selectivities were listed in Tables 5 (a) and (b) which took the situations of steam proportion were 0 and 19.93% as examples. It is not surprising that when steam was not introduced into the reaction system, there was no CO formation because of absence of O element. The results shown in Table 4 indicate that the variation of selectivities to C2H4and C2H6was as same as discussed above.

    Table 5 (a) Effect of flow rate on product selectivities (pure CH4)

    Table 5 (b) Effect of flow rate on product selectivities (with 19.93% steam concentration)

    4 Conclusions

    Conversion of methane by steam reforming was accomplished by means of DBD and the effects of several factors were discussed. By using plasma generator which can match the reactor, higher yields could be obtained. Higher conversion of methane could be obtained by using higher input power and smaller discharge distance. The electrodes made of stainless steel and aluminum foil with 19.93% steam proportion were favorable for the reaction.

    1 Jasiński, M., Dors, M., Mizeraczyk, J., “Production of hydrogenmethane reforming using atmospheric pressure microwave plasma”,., 181 (1), 41-45 (2008)

    2 Dong, X.F., Zhang, H., Lin, W. M., “Preparation and characterization of a perovskite-type mixed conducting SrFe0.6Cu0.3Ti0.1O3-δmembrane for partial oxidation of methane to syngas”,...., 16 (3), 411-415 (2008).

    3 Wei, W.S., Xu, J., Fang, D.W., Bao, X.J., “Catalytic partial oxidation of methane with air to syngas in a pilot-plant-scale spouted bed reactor”,...., 11 (6), 643-648 (2003).

    4 Xu, J., Wei, W.S., Bao, X.J., “Thermodynamic study on the catalytic partial oxidation of methane to syngas”,...., 10 (1), 56-62 (2002).

    5 Quincoses, C.E., Gonzalez, M.G., “Kinetic study on CO2reforming of methane”,...., 9 (2), 190-195 (2001).

    6 Wu, S.F., Beum, T.H., Yang, J.I., Kim, J.N., “The characteristics of a sorption-enhanced steam-methane reaction for the production of hydrogen using CO2sorbent”,...., 13 (1), 43-47 (2005).

    7 Pati?o, P., Pérez, Y., Caetano, M., “Coupling and reforming of methane by means of low pressure radio-frequency plasma”,, 84 (16), 2008-2014 (2005).

    8 Xu, J.H., Yeung, C.M.Y., Ni, J., Meunier, F., Acerbi, N., Fowles, M., Tsang, S.C., “Methane steam reforming for hydrogen production using low water-ratios without carbon formation over ceria coated Ni catalysts”,.., 345 (2), 119-127 (2008).

    9 Profeti, L.P.R., Ticianelli, E.A., Assaf, E.M., “Co/Al2O3catalysts promoted with noble metals for production of hydrogen by methane steam reforming”,, 87 (10/11), 2076-2081 (2008).

    10 Ma, Y., Xu, Y., Demura, M., “Catalytic stability of Ni3Al powder for methane steam reforming”,.., 80 (1/2), 15-23 (2008).

    11 Maluf, S.S., Assaf, E.M., “Ni catalysts with Mo promoter for methane steam reforming”,, 88 (9), 1547-1553 (2009).

    12 Yoshida, K., Begum, N., Ito, S., Tomishige, K., “Oxidative steam reforming of methane over Ni/α-Al2O3modified with trace noble metals”,.., 358 (2), 186-192 (2009).

    13 Nozaki, T., Hattori, A., Okazaki, K., “Partial oxidation of methane using a microscale non-equilibrium plasma reactor”,., 98 (4), 607-616 (2004).

    14 He, J.X., Han, Y.Y., Gao, A.H., Zhou Y.S., Lu Z.G., “Investigation on methane decomposition and the formation of C2hydrocarbons in DC discharge plasma by emission spectroscopy”,...., 12 (1), 149-151 (2004).

    15 Wang, Y., Liu, C.J., Zhang, Y.P., “Plasma methane conversion in the presence of dimethyl ether using dielectric-barrier discharge”,, 19 (3), 877-881 (2005).

    16 Bo, Z., Yan, J.H., Li, X.D., Chi, Y., Cen, K.F., “Plasma assisted dry methane reforming using gliding arc gas discharge: Effect of feed gases proportion”,.., 33 (20), 5545-5553 (2008).

    17 Li, X.S., Zhu, A.M., Wang, K.J., Xu, Y., Song, Z.M., “Methane conversion to C2hydrocarbons and hydrogen in atmospheric non-thermal plasma generated by different electric discharge techniques”,., 98 (4), 617-624 (2004).

    18 Wang, B.W., Yang, E.C., Xu, G.H., Hao, J.K., “Theoretical study of reaction paths and transition states on conversion methane into C2hydrocarbons through plasma”,...., 15 (1), 44-50 (2007).

    19 Wang, B.W., Xu, G.H., Sun, H.W., “Distribution of electrical field energy for conversion of methane to C2hydrocarbonsdissymmetrical electric field enhanced plasma”,, 15 (2), 115-121 (2006).

    20 Wang, B.W., Yang, K.H., Xu, G.H., “Effect of cooling methods on methane conversiondielectric-barrier discharges”,, 10 (5), 575-580 (2008).

    21 Wang, B.W., Zhang, X., Liu, Y.W., Xu, G.H., “Conversion of CH4, steam and O2to syngas and hydrocarbonsdielectric barrier discharge”,, 18 (1), 94-97 (2009).

    2009-01-12,

    2009-06-26.

    the National Natural Science Foundation of China (20606023, 20490203).

    ** To whom correspondence should be addressed. E-mail: wangbw@tju.edu.cn

    猜你喜歡
    張旭
    THE TIME DECAY RATES OF THE CLASSICAL SOLUTION TO THE POISSON-NERNST-PLANCK-FOURIER EQUATIONS IN R3*
    《古詩(shī)四帖》與晚明鑒藏家的“張旭”概念
    書(shū)法家肚子痛
    Effects of Froude number and geometry on water entry of a 2-D ellipse *
    The Three-Pion Decays of the a1(1260)?
    張旭典藏欣賞
    寶藏(2017年10期)2018-01-03 01:53:02
    『脫發(fā)』的大樹(shù)
    淺談氧化還原反應(yīng)的實(shí)際應(yīng)用
    許淇·中國(guó)畫(huà)《張旭》
    散文詩(shī)(2017年2期)2017-06-05 15:11:09
    打針
    久久久久久久久久人人人人人人| 久久久午夜欧美精品| 久久久a久久爽久久v久久| 涩涩av久久男人的天堂| 国产综合懂色| 99久久九九国产精品国产免费| 久久久欧美国产精品| 久久精品熟女亚洲av麻豆精品| 97超碰精品成人国产| 日韩一区二区视频免费看| 一级毛片黄色毛片免费观看视频| 18禁裸乳无遮挡动漫免费视频 | 女人久久www免费人成看片| 国产男女超爽视频在线观看| 国产亚洲5aaaaa淫片| 97人妻精品一区二区三区麻豆| 亚洲婷婷狠狠爱综合网| 亚洲欧美成人综合另类久久久| 在线天堂最新版资源| 永久免费av网站大全| 免费电影在线观看免费观看| 一本一本综合久久| 亚洲国产精品成人久久小说| 欧美一级a爱片免费观看看| 欧美日韩综合久久久久久| 婷婷色综合大香蕉| 一个人观看的视频www高清免费观看| 国产v大片淫在线免费观看| 中国美白少妇内射xxxbb| 亚洲精品亚洲一区二区| 欧美一区二区亚洲| 特大巨黑吊av在线直播| 亚洲成色77777| 男女下面进入的视频免费午夜| 久久99热这里只频精品6学生| 天堂俺去俺来也www色官网| 另类亚洲欧美激情| 在线观看av片永久免费下载| 国产高清国产精品国产三级 | 免费黄网站久久成人精品| 一个人看视频在线观看www免费| 自拍偷自拍亚洲精品老妇| 亚洲精品国产成人久久av| 黄色视频在线播放观看不卡| 91精品一卡2卡3卡4卡| 亚洲一区二区三区欧美精品 | 人妻制服诱惑在线中文字幕| eeuss影院久久| 日本av手机在线免费观看| 干丝袜人妻中文字幕| 亚洲性久久影院| 国产精品成人在线| 欧美激情在线99| 亚洲综合精品二区| 国产淫语在线视频| av在线观看视频网站免费| 噜噜噜噜噜久久久久久91| 免费黄色在线免费观看| 久久久久久久久久成人| 哪个播放器可以免费观看大片| 国产精品女同一区二区软件| 久久久久久久国产电影| 国产午夜精品久久久久久一区二区三区| av一本久久久久| 51国产日韩欧美| 精品久久久久久久人妻蜜臀av| 日韩av不卡免费在线播放| av又黄又爽大尺度在线免费看| 国产一区二区三区av在线| 国产 精品1| 午夜福利视频精品| av在线播放精品| av卡一久久| 综合色丁香网| 亚洲高清免费不卡视频| 在线 av 中文字幕| 中文字幕亚洲精品专区| 欧美潮喷喷水| 看十八女毛片水多多多| 亚洲av欧美aⅴ国产| 免费播放大片免费观看视频在线观看| 国产av不卡久久| 国精品久久久久久国模美| 久久久久网色| 国产v大片淫在线免费观看| 成人一区二区视频在线观看| 三级男女做爰猛烈吃奶摸视频| 神马国产精品三级电影在线观看| 日韩中字成人| 色播亚洲综合网| 亚洲图色成人| 制服丝袜香蕉在线| 欧美一区二区亚洲| 精品99又大又爽又粗少妇毛片| 国产白丝娇喘喷水9色精品| 亚洲怡红院男人天堂| 欧美成人一区二区免费高清观看| 男女无遮挡免费网站观看| 国产乱人视频| 黄片无遮挡物在线观看| 性色av一级| 人妻系列 视频| 又爽又黄无遮挡网站| 在线精品无人区一区二区三 | 视频区图区小说| 男男h啪啪无遮挡| 直男gayav资源| .国产精品久久| 免费电影在线观看免费观看| 99热全是精品| 老司机影院毛片| 亚洲精品色激情综合| av女优亚洲男人天堂| 午夜免费观看性视频| 亚洲精品日韩在线中文字幕| 一个人观看的视频www高清免费观看| 中文字幕人妻熟人妻熟丝袜美| 全区人妻精品视频| 精品久久久久久久久av| 一级av片app| 伊人久久精品亚洲午夜| 高清日韩中文字幕在线| 日本av手机在线免费观看| 美女cb高潮喷水在线观看| 亚洲成人久久爱视频| 国产成人a区在线观看| 三级经典国产精品| 日本色播在线视频| 九色成人免费人妻av| 男插女下体视频免费在线播放| 久久久久久久亚洲中文字幕| 国内少妇人妻偷人精品xxx网站| 舔av片在线| 嘟嘟电影网在线观看| 免费大片黄手机在线观看| 亚洲av.av天堂| 老司机影院成人| 欧美变态另类bdsm刘玥| 3wmmmm亚洲av在线观看| 插阴视频在线观看视频| 特大巨黑吊av在线直播| 国产精品99久久久久久久久| 亚洲av欧美aⅴ国产| 一边亲一边摸免费视频| 欧美xxxx黑人xx丫x性爽| 国产精品国产三级国产专区5o| 国产一区有黄有色的免费视频| 在线看a的网站| 久久久精品欧美日韩精品| 欧美成人精品欧美一级黄| 看十八女毛片水多多多| 国产男女内射视频| 如何舔出高潮| av.在线天堂| 久久久久久久午夜电影| 国产精品久久久久久精品古装| 老司机影院毛片| 777米奇影视久久| 一级黄片播放器| www.av在线官网国产| 一本色道久久久久久精品综合| 国产精品99久久99久久久不卡 | 在线观看美女被高潮喷水网站| 成年av动漫网址| 亚洲av日韩在线播放| 久久影院123| 精品99又大又爽又粗少妇毛片| 国产免费福利视频在线观看| 听说在线观看完整版免费高清| 午夜精品国产一区二区电影 | 免费观看无遮挡的男女| 另类亚洲欧美激情| 亚洲一级一片aⅴ在线观看| 亚洲成人久久爱视频| 亚洲欧美日韩东京热| 国产精品国产三级国产av玫瑰| 在线免费观看不下载黄p国产| 天天一区二区日本电影三级| 精品午夜福利在线看| 少妇熟女欧美另类| 日本-黄色视频高清免费观看| 国产精品爽爽va在线观看网站| 久久久久久久大尺度免费视频| 夜夜看夜夜爽夜夜摸| 嫩草影院精品99| 九九爱精品视频在线观看| 人妻夜夜爽99麻豆av| 日韩成人av中文字幕在线观看| 亚洲国产精品国产精品| 国产欧美日韩精品一区二区| 亚洲精品亚洲一区二区| 国产亚洲av嫩草精品影院| 欧美高清成人免费视频www| 男女下面进入的视频免费午夜| 亚洲精品日本国产第一区| 色5月婷婷丁香| 久久久久久久久大av| 少妇人妻精品综合一区二区| 国产有黄有色有爽视频| 免费观看无遮挡的男女| 日韩成人伦理影院| 免费电影在线观看免费观看| 亚洲av不卡在线观看| 国内精品美女久久久久久| 综合色丁香网| 精品久久久噜噜| 国产 一区精品| 美女cb高潮喷水在线观看| 伦精品一区二区三区| 高清日韩中文字幕在线| 韩国高清视频一区二区三区| 我的老师免费观看完整版| 午夜亚洲福利在线播放| 国产伦精品一区二区三区四那| 亚洲欧美日韩无卡精品| 水蜜桃什么品种好| 大陆偷拍与自拍| 国产视频首页在线观看| 国产一区有黄有色的免费视频| 日韩欧美精品v在线| 2021少妇久久久久久久久久久| 亚洲在久久综合| 啦啦啦在线观看免费高清www| 国产亚洲av嫩草精品影院| 欧美一级a爱片免费观看看| 日韩欧美精品v在线| 青春草亚洲视频在线观看| 蜜桃亚洲精品一区二区三区| 成人亚洲精品一区在线观看 | 大码成人一级视频| 男女边吃奶边做爰视频| 好男人在线观看高清免费视频| 一级爰片在线观看| 夫妻性生交免费视频一级片| 哪个播放器可以免费观看大片| 美女xxoo啪啪120秒动态图| 99热这里只有是精品在线观看| 丝袜喷水一区| 欧美激情久久久久久爽电影| 日韩中字成人| 日本av手机在线免费观看| 一级爰片在线观看| 日韩制服骚丝袜av| 亚洲精品中文字幕在线视频 | 日日撸夜夜添| 久久人人爽人人片av| 人体艺术视频欧美日本| 免费大片18禁| 免费看不卡的av| 亚洲av男天堂| 欧美高清性xxxxhd video| av网站免费在线观看视频| 亚洲精品影视一区二区三区av| 欧美老熟妇乱子伦牲交| 久久久久久久午夜电影| 国产探花在线观看一区二区| 日韩大片免费观看网站| 91精品国产九色| 男的添女的下面高潮视频| 亚洲精品影视一区二区三区av| 免费看不卡的av| 黑人高潮一二区| 美女视频免费永久观看网站| 亚洲av国产av综合av卡| 日韩亚洲欧美综合| 亚洲国产高清在线一区二区三| 亚洲欧美日韩卡通动漫| 日韩国内少妇激情av| 亚洲精品乱久久久久久| 亚洲国产精品国产精品| 精品国产三级普通话版| 嘟嘟电影网在线观看| 日韩av不卡免费在线播放| 最近手机中文字幕大全| 国产精品.久久久| 在线观看国产h片| 在线观看一区二区三区激情| 中国三级夫妇交换| 亚洲精品一区蜜桃| 免费播放大片免费观看视频在线观看| 久热久热在线精品观看| 国产一区二区三区av在线| 国产黄色视频一区二区在线观看| 身体一侧抽搐| 久久国内精品自在自线图片| 在线a可以看的网站| 综合色丁香网| 亚洲,欧美,日韩| 久久精品综合一区二区三区| 国产高清三级在线| 成人国产av品久久久| 看非洲黑人一级黄片| 国产中年淑女户外野战色| 免费观看在线日韩| 高清欧美精品videossex| 白带黄色成豆腐渣| 亚洲aⅴ乱码一区二区在线播放| 午夜免费男女啪啪视频观看| 麻豆国产97在线/欧美| 中文字幕人妻熟人妻熟丝袜美| 黄片wwwwww| 成年免费大片在线观看| 日日啪夜夜撸| 午夜激情福利司机影院| 亚洲精品视频女| 18禁裸乳无遮挡免费网站照片| 五月开心婷婷网| 深爱激情五月婷婷| 亚洲精品一二三| 国产成人精品婷婷| 精品一区二区三卡| 高清av免费在线| 亚洲天堂国产精品一区在线| 菩萨蛮人人尽说江南好唐韦庄| 欧美成人精品欧美一级黄| 一区二区三区精品91| 亚洲人与动物交配视频| 久久久久久九九精品二区国产| 免费观看的影片在线观看| 成人亚洲精品一区在线观看 | 毛片女人毛片| 国产精品久久久久久久电影| 亚洲高清免费不卡视频| 夫妻性生交免费视频一级片| videossex国产| 日韩,欧美,国产一区二区三区| 国产亚洲最大av| 男人添女人高潮全过程视频| 国产国拍精品亚洲av在线观看| 真实男女啪啪啪动态图| 国产成人免费观看mmmm| 亚洲天堂国产精品一区在线| 18禁裸乳无遮挡动漫免费视频 | 激情五月婷婷亚洲| 国产又色又爽无遮挡免| 久久影院123| 看黄色毛片网站| 亚洲内射少妇av| 国产高清三级在线| 中文精品一卡2卡3卡4更新| 新久久久久国产一级毛片| 免费播放大片免费观看视频在线观看| 丝瓜视频免费看黄片| 五月伊人婷婷丁香| 亚洲人成网站在线播| 少妇人妻一区二区三区视频| 国产精品久久久久久精品古装| 2021天堂中文幕一二区在线观| 欧美高清成人免费视频www| 国产国拍精品亚洲av在线观看| 中文在线观看免费www的网站| 精品国产三级普通话版| 别揉我奶头 嗯啊视频| 免费观看a级毛片全部| 日韩一区二区三区影片| 日韩av不卡免费在线播放| 下体分泌物呈黄色| 久久久亚洲精品成人影院| 国产精品久久久久久精品电影小说 | 久久精品国产亚洲av天美| 亚洲天堂av无毛| 嘟嘟电影网在线观看| 亚洲熟女精品中文字幕| 成年av动漫网址| 日韩精品有码人妻一区| 97在线人人人人妻| 国产欧美另类精品又又久久亚洲欧美| 国产精品麻豆人妻色哟哟久久| 日日撸夜夜添| 国产免费又黄又爽又色| 男女边吃奶边做爰视频| 亚洲欧美成人精品一区二区| 深爱激情五月婷婷| 成人高潮视频无遮挡免费网站| 免费观看性生交大片5| 十八禁网站网址无遮挡 | 91久久精品国产一区二区三区| 午夜免费观看性视频| 久久久久久国产a免费观看| 可以在线观看毛片的网站| 爱豆传媒免费全集在线观看| 美女高潮的动态| 三级国产精品欧美在线观看| 国产 精品1| 精品国产一区二区三区久久久樱花 | 久久久成人免费电影| 丝瓜视频免费看黄片| 日韩制服骚丝袜av| 99热这里只有是精品50| 国产国拍精品亚洲av在线观看| 免费人成在线观看视频色| 国产男女内射视频| 欧美高清成人免费视频www| 成人漫画全彩无遮挡| 国产毛片在线视频| 亚洲aⅴ乱码一区二区在线播放| 久久久久久久久久久免费av| 日韩免费高清中文字幕av| 国产精品久久久久久久电影| 大香蕉97超碰在线| 亚洲av欧美aⅴ国产| 最近的中文字幕免费完整| 亚洲精品亚洲一区二区| 亚洲精品456在线播放app| 国产一区二区在线观看日韩| 伊人久久国产一区二区| 国产男人的电影天堂91| 99久久精品一区二区三区| 久久久精品94久久精品| 亚洲在久久综合| 91久久精品国产一区二区成人| 白带黄色成豆腐渣| 午夜福利视频1000在线观看| 国产高潮美女av| 亚洲欧美一区二区三区国产| 亚洲成人精品中文字幕电影| 熟妇人妻不卡中文字幕| 各种免费的搞黄视频| 国产淫语在线视频| 一级二级三级毛片免费看| 亚洲,欧美,日韩| 免费观看无遮挡的男女| 一级毛片黄色毛片免费观看视频| 熟女人妻精品中文字幕| 亚洲自拍偷在线| 男人狂女人下面高潮的视频| 久久99热这里只有精品18| av在线老鸭窝| 91久久精品国产一区二区三区| 人人妻人人爽人人添夜夜欢视频 | 婷婷色综合大香蕉| 涩涩av久久男人的天堂| 国产精品三级大全| av在线亚洲专区| 日日摸夜夜添夜夜爱| 人人妻人人澡人人爽人人夜夜| 午夜福利视频1000在线观看| 亚洲av中文av极速乱| 一级av片app| 亚洲怡红院男人天堂| 日本一本二区三区精品| 国产精品爽爽va在线观看网站| 亚洲,欧美,日韩| 天天躁日日操中文字幕| 国产成人精品久久久久久| 亚洲人与动物交配视频| 五月伊人婷婷丁香| av在线老鸭窝| 亚洲最大成人av| 久久精品国产亚洲av涩爱| 91久久精品国产一区二区成人| 精品国产露脸久久av麻豆| 久久久久精品性色| 日本与韩国留学比较| 中文字幕亚洲精品专区| 亚洲自偷自拍三级| 在线播放无遮挡| 免费观看性生交大片5| 国产大屁股一区二区在线视频| 免费不卡的大黄色大毛片视频在线观看| 青春草视频在线免费观看| 国产高清国产精品国产三级 | 亚洲欧洲国产日韩| 欧美97在线视频| 激情 狠狠 欧美| 亚洲最大成人中文| 亚洲欧美清纯卡通| 汤姆久久久久久久影院中文字幕| 九九爱精品视频在线观看| 99久久中文字幕三级久久日本| 日韩一区二区视频免费看| 欧美日韩视频高清一区二区三区二| 色综合色国产| 在线 av 中文字幕| 一区二区三区精品91| 欧美高清性xxxxhd video| av又黄又爽大尺度在线免费看| 国产又色又爽无遮挡免| 男男h啪啪无遮挡| 麻豆久久精品国产亚洲av| 少妇人妻精品综合一区二区| 日韩精品有码人妻一区| 精品视频人人做人人爽| 黄色怎么调成土黄色| 国产av码专区亚洲av| 狂野欧美白嫩少妇大欣赏| 精品久久久久久久久亚洲| 真实男女啪啪啪动态图| 嫩草影院精品99| 亚洲av二区三区四区| 亚洲国产精品成人久久小说| 97人妻精品一区二区三区麻豆| 国产 一区 欧美 日韩| 国产视频首页在线观看| 黄色日韩在线| 欧美xxxx性猛交bbbb| av国产免费在线观看| 又黄又爽又刺激的免费视频.| 欧美少妇被猛烈插入视频| 久久久久国产网址| 国产精品嫩草影院av在线观看| 汤姆久久久久久久影院中文字幕| 亚洲精品一区蜜桃| a级毛片免费高清观看在线播放| 看免费成人av毛片| 久久久久网色| 婷婷色综合大香蕉| 大又大粗又爽又黄少妇毛片口| 欧美一区二区亚洲| 你懂的网址亚洲精品在线观看| 免费在线观看成人毛片| 国产精品av视频在线免费观看| 亚洲丝袜综合中文字幕| 国产黄片视频在线免费观看| 日本黄大片高清| 啦啦啦啦在线视频资源| 日韩大片免费观看网站| 国产毛片在线视频| 男插女下体视频免费在线播放| 日日啪夜夜撸| 中文在线观看免费www的网站| 日韩强制内射视频| 波野结衣二区三区在线| 一级黄片播放器| 精品一区二区免费观看| 赤兔流量卡办理| 大片免费播放器 马上看| 国产乱人视频| 99久久人妻综合| 欧美少妇被猛烈插入视频| 看十八女毛片水多多多| 少妇 在线观看| 久久99热这里只有精品18| 另类亚洲欧美激情| 欧美日韩国产mv在线观看视频 | 免费大片18禁| 午夜福利在线观看免费完整高清在| 色视频www国产| 高清日韩中文字幕在线| 亚洲性久久影院| 日本一二三区视频观看| 亚洲熟女精品中文字幕| 联通29元200g的流量卡| 日日摸夜夜添夜夜爱| 国内少妇人妻偷人精品xxx网站| 熟妇人妻不卡中文字幕| 成人特级av手机在线观看| .国产精品久久| 成人二区视频| 自拍欧美九色日韩亚洲蝌蚪91 | 97超碰精品成人国产| 精品久久久精品久久久| 国产黄频视频在线观看| 亚洲av成人精品一区久久| 日本爱情动作片www.在线观看| 日本黄大片高清| 欧美日韩亚洲高清精品| 亚洲国产精品专区欧美| 国产伦理片在线播放av一区| 毛片女人毛片| 3wmmmm亚洲av在线观看| 久久久精品免费免费高清| 一个人观看的视频www高清免费观看| 国产乱人视频| 新久久久久国产一级毛片| 欧美一区二区亚洲| 国内精品美女久久久久久| 中文字幕亚洲精品专区| 激情五月婷婷亚洲| 国产有黄有色有爽视频| 国产v大片淫在线免费观看| 国产男女内射视频| 免费av不卡在线播放| 国产视频内射| 自拍欧美九色日韩亚洲蝌蚪91 | 国产精品99久久久久久久久| 最后的刺客免费高清国语| 国产午夜精品久久久久久一区二区三区| 一级爰片在线观看| 丝袜美腿在线中文| 午夜日本视频在线| 最近最新中文字幕大全电影3| 日本av手机在线免费观看| 成人毛片a级毛片在线播放| 国产久久久一区二区三区| 亚洲精品国产色婷婷电影| 日本免费在线观看一区| 国产精品伦人一区二区| 日本猛色少妇xxxxx猛交久久| .国产精品久久| 美女高潮的动态| 九色成人免费人妻av| 老司机影院毛片| 又爽又黄无遮挡网站| 亚洲欧洲日产国产| 人人妻人人澡人人爽人人夜夜| 成年免费大片在线观看| 少妇的逼好多水| 亚洲av二区三区四区| 热re99久久精品国产66热6| 国产成人精品婷婷| 免费av不卡在线播放| 又爽又黄无遮挡网站| 男女边吃奶边做爰视频| 国产熟女欧美一区二区| 亚洲av不卡在线观看| 久久ye,这里只有精品| 亚洲欧美精品自产自拍| 亚洲美女搞黄在线观看| 免费大片18禁| 22中文网久久字幕| 又爽又黄a免费视频| 91在线精品国自产拍蜜月| 亚洲av中文av极速乱| 欧美一级a爱片免费观看看|