• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Measurements of Hydrate Equilibrium Conditions for CH4, CO2, and CH4?+?C2H6?+?C3H8 in Various Systems by Step-heating Method*

    2009-05-14 12:33:08CHENLitao陳立濤SUNChangyu孫長宇CHENGuangjin陳光進(jìn)NIEYunqiang聶運強SUNZhansong孫占松andLIUYantao劉延濤
    關(guān)鍵詞:陳光

    CHEN Litao (陳立濤), SUN Changyu (孫長宇), CHEN Guangjin (陳光進(jìn)), NIE Yunqiang (聶運強), SUN Zhansong (孫占松) and LIU Yantao (劉延濤)

    ?

    Measurements of Hydrate Equilibrium Conditions for CH4, CO2, and CH4+?C2H6+?C3H8in Various Systems by Step-heating Method*

    CHEN Litao (陳立濤), SUN Changyu (孫長宇), CHEN Guangjin (陳光進(jìn))**, NIE Yunqiang (聶運強), SUN Zhansong (孫占松) and LIU Yantao (劉延濤)

    State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China

    Phase equilibrium conditions of gas hydrate in several systems were measured by the step-heating method using the cylindrical transparent sapphire cell device. The experimental data for pure CH4or CO2+?deionized water systems showed good agreement with those in the literatures. This kind of method was then applied to CH4/CO2+?sodium dodecyl sulfate (SDS) aqueous solution, CH4/CO2+?SDS aqueous solution?+?silica sand, and (CH4+?C2H6+?C3H8) gas mixture?+?SDS aqueous solution systems, where SDS was added to increase the hydrate formation rate without evident influence on the equilibrium conditions. The feasibility and reliability of the step-heating method, especially for porous media systems and gas mixtures systems were determined. The experimental data for CO2+?silica sand data shows that the equilibrium pressure will change significantly when the particle size of silica sand is less than 96 μm. The formation equilibrium pressure was also measured by the reformation of hydrate.

    equilibrium condition, hydrate, step-heating, sodium dodecyl sulfate, silica sand

    1 INTRODUCTION

    Gas hydrate is a kind of nonstoichiometric clathrate crystals formed from low molecular weight gases and water under the conditions of low temperature and high pressure. Such gases include light hydrocarbons (CH4, C2H6, C3H8, and C2H4,.), CO2, hydrogen sulfide, and nitrogen,. Natural gas hydrate exists both onshore in permafrost zone and offshore under the ocean bottom widely. It has been considered to be future substitute energy due to its estimated giant amounts in nature [1]. The equilibrium conditions of natural gas hydrate are necessary for locating hydrate occurring regions and estimating the total amount of gas hydrate in nature. Equilibrium conditions of gas hydrate in inhibitor or electrolyte containing systems are also necessary for safe production of gas/oil industries [2, 3].

    In hydrate containing system, the existing phases may include gas (V), ice (I), liquid water (LW), liquid hydrocarbon (LH) and three structures hydrate (sI, sII, sH). According to the Gibbs phase rule, for hydrate formed by pure gas, the number of degrees of freedom is 1 if three phases exist in the system. That is to say the equilibrium pressure is unique at a determined temperature when three phase equilibrium is attained. As to gas mixtures, the equilibrium conditions are related to gases compositions. Three kinds of methods, isothermal pressure searching method, isobaric temperature searching method and isochoric curve method [4-8], are in general used to measure the equilibrium conditions of gas hydrate above ice point. One way of the isochoric curve method, called continuous-heating method, has also been used to measure hydrate equilibrium conditions in porous media systems [9-12].

    In comparison, the other way of the isochoric curve method, called step-heating method, is significantly more reliable and repeatable than conventional continuous-heating method for porous media systems [13-16]. After the formation of hydrate, temperature is set to an interest value and the system pressure is adjusted to be slightly below the estimated dissociation pressure of the hydrate. Part of hydrate dissociates to establish the H-I-V or the H-LW-V equilibrium at a certain temperature. Afterward, the temperature is raised to another interest value and new pressure-temperature equilibrium is determined.

    In this work, step-heating method was applied to bulk water, silica sand, and gas mixture hydrate systems. A kind of anionic surfactant was added to shorten the hydrate formation time. Hydrate equilibrium conditions were also measured by the reformation of hydrates. For gas mixture system, compositions of gas at every equilibrium stage were analyzed. This kind of measurement method exactly fits the meaning of “phase equilibrium” and it is expected to become a common method for hydrate equilibrium conditions measurement.

    2 EXPERIMENTAL

    2.1 Apparatus

    The experimental apparatus used in this work is similar to that used in our previous papers [8, 17-19], and the schematic diagram is shown in Fig. 1. The volume of the cylindrical transparent sapphire cell, which is the critical part of the apparatus, is about 50 cm3(the inner diameter is 25.4 mm and the length is 100 mm). As shown in Fig. 1, the sapphire cell is held by two flanges with gas inlet, liquid inlet, and thermal resistance ports. A movable piston driven by a hand volume pump is used to change the volume of the cell or compact the sample. The usually used hydraulic transmission fluid is aqueous solution of glycol. A magnetic stirrer for accelerating the equilibrium process could be chosen for aqueous liquid systems. The pressure is measured by MIDA-OEM pressure transducer manufactured by AdAstrA Company (Russia) with a precision of 0.1%. Temperature in the sapphire cell is measured by PT-100 platinum resistance thermometer with the precision of 0.1 K. The air bath temperature could be stable within ±0.1 K.

    Figure 1 Schematic of experimental apparatus

    2.2 Materials and preparation of samples

    Analytical grade CH4(99.99%), C2H6(99.95%), C3H8(99.95%), and CO2(99.95%) supplied by Beifen Gas Industry Corporation were used in preparing the gas phase component. For gas mixtures system, a Hewlett-Packard gas chromatograph (HP 6890) was used to analyze the composition. The sodium dodecyl sulfate (SDS, analytical reagent) was supplied by Beijing Reagents Corporation. An electronic balance with a precision of ±0.1 mg was used in measuring SDS weight. Deionized distilled water was used in preparing the aqueous solution. The silica sand of various meshes came from natural river sand.

    2.3 Experimental procedure

    Firstly, a desired quantity of the experimental samples, such as deionized distilled water, surfactant (SDS) aqueous solution, and/or SDS aqueous solution saturated silica sand with different size, was filled in the sapphire cell according to different experimental purpose. Afterward, the sapphire cell was sealed with flanges and equipped in the air bath. The gas space of the cell was purged with the prepared feed gas and evacuated to ensure the absence of air. Then the air-bath temperature was adjusted to the desired value. Once the cell temperature was kept constant, the gas sample was charged into the cell until the desired pressure was achieved. The gas sample might be pure CH4, pure CO2, or mixtures of CH4(89.3%, by mol)?+?C2H6(7.8%, by mol)?+?C3H8(2.9%, by mol) in different runs. The feed pressure was much higher than the estimated equilibrium pressure value at the specified temperature to ensure the hydrate formation. The estimated equilibrium pressure is calculated by CSMGem [1]. If it was bulk deionized water, the magnetic stirrer could be turned on to induce and accelerate the hydrate formation.

    After the pressure drop was less than 0.01 MPa·h-1, at which hydrate growth was thought at a very low rate, the system pressure was decreased slowly by discharging the remaining gas in the cell. In the first dissociation stage, the system pressure was decreased to about 0.5 MPa lower than the estimated equilibrium pressure at the first experimental temperature. The top valve of the cell was then closed to make it be an enclosed system. Part of the hydrate would then dissociate into gas and water. The changes of system pressure and temperature of the samples with elapsed time were recorded on-line by computer. If the system pressure increased less than 0.01 MPa in three hours, the enclosed system was then considered as approaching equilibrium. And the current temperature and pressure was then deemed as a set of equilibrium condition data.

    Afterward, the temperature of air bath was raised to the next experimental point. The residual hydrate would continue to dissociate because of the increasing temperature, and another group of-data would be obtained when equilibrium was attained. The experimental procedure was terminated until hydrate thoroughly dissociated. During the whole measurement process, gas was discharged only before the first dissociation stage. Therefore, the system was kept enclosed during the whole measurement process.

    For some groups of experiments, after hydrate thoroughly dissociated, the air bath temperature was decreased to reform hydrate step by step. Similar to dissociation process, formation equilibrium was attained when pressure decreased less than 0.01 MPa in three hours. The-equilibrium data was then determined by the hydrate reformation. The reformation experiment was terminated when reaching the initial dissociation temperature.

    For gas mixture systems, the compositions of gas mixtures changed with hydrate formation/dissociation because of the distillation of hydrate [20]. The composition of gas phase was no longer the same as the initial feed gas. In this work, gas compositions analyzed by gas chromatogram at the end of each equilibrium stage was assumed as the equilibrium composition at the equilibrium pressure and temperature.

    3 RESULTS AND DISCUSSION

    3.1 Pure gas?+?deionized water system

    The equilibrium conditions of pure CH4and CO2hydrate in deionized water were firstly measured to verify the reliability of the experimental method. The initial formation conditions were 273.4 K, 8.00 MPa for CH4system and 273.4 K, 3.30 MPa for CO2system, respectively. With the higher driving force, most of the water transformed to hydrate in 1-2 days. The coexistence of hydrate, liquid water and gas in the transparent sapphire cell was observed by naked eyes. The equilibrium conditions were obtained according to the above experimental procedure described in Section 2.3. The corresponding variations of pressure and temperature with time for CH4hydrate dissociation are shown in Fig. 2.

    Table 1 Equilibrium conditions measured in this work

    Table 1 (Continued)

    Note: DP, phase equilibrium data determined by dissociation process; RP, phase equilibrium data determined by reformation process.

    Figure 3 Comparison of measured equilibrium conditions in deionized water with literature data [1]■?CH4measured;○?CH4literature;▲?CO2measured;▽?CO2literature

    Figure 5 Comparison of equilibrium conditions for CO2+?deionized water system■?dissociation;△?reformation

    The obtained-equilibrium data for pure CH4and CO2in deionized water system are listed in Table 1 and shown in Fig. 3. The literature data [1] for the two systems are also depicted in Fig. 3 for comparison. The measured data and those in literatures are in good agreement. It is known that almost all the available literature data are measured either by isothermal pressure searching method or by isobaric temperature searching method [4-8]. These two methods have the common procedure of “searching” by changing either the pressure or temperature. It will take a long time on approaching the final pressure or temperature equilibrium. It may need 1-2 days to obtain a group of-data. In addition, the equilibrium conditions obtained from these two methods are determined by observing the existence of trace hydrate formation or dissociation. It is actually the formation conditions but not the equilibrium conditions although the difference among them is small and could always be neglected. The step-heating method, however, exactly determines the equilibrium conditions.

    For CO2+?deionized water hydrate system, hydrate was reformed to check the measured dissociation equilibrium-data. The variation of pressure and temperature with time, and the equilibrium data obtained are shown in Fig. 4 and Fig. 5, respectively. It could be found that the formation equilibrium conditions are coincided with dissociation equilibrium conditions, except a longer time is needed for one set of-data during the reformation process.

    3.2 Pure gas?+?SDS aqueous solution system

    SDS is a kind of hydrate formation promoter used to shorten the induction time and enhance the formation rate of hydrate [21-24]. For the step-heating method, adequate amount of hydrate should be prepared for the subsequent procedure. For bulk water system, the formation rate is slow and a great deal of hydrate is hard to be prepared quickly even stirring is used. For porous media system, stirring is impossible. SDS could be added in water to form hydrate quickly. The influence of SDS on the hydrate equilibrium condition was firstly checked.

    The equilibrium condition data of CH4+?0.065% (by mass) SDS aqueous solution and CO2+?0.065% (by mass) SDS aqueous solution are listed in Table 1 and shown in Fig. 6. In comparison, the experimental results of CH4and CO2in deionized water systems are also illustrated. It could be found that, in the experimental temperature and pressure range, equilibrium pressures hardly change after adding SDS at the same temperatures. This has been affirmed in CH4+?0.02% (by mass) SDS aqueous solution system by other researchers [25]. Therefore, 0.065% (by mass) SDS aqueous solution was used in the subsequent measurementassuming it having no influence on the phase equilibrium. During the measurements, it was found that the nucleation and growth of hydrate occurred readily.

    Hydrate was reformed in CO2+?0.065% (by mass) SDS aqueous solution system. The profiles of pressure and temperature during the whole dissociation and reformation processes are shown in Fig. 7, and the equilibrium data obtained from dissociation and reformation are shown in Fig. 8. It could be seen that good agreements are obtained for the two measurement process as shown in deionized water system.

    Figure 6 Comparison of CH4/CO2hydrate equilibrium conditions between SDS aqueous solutions and deionized water systems■?CH4+?deionized water;○?CH4+?0.065% (by mass) SDS aqueous solution;▲?CO2+?deionized water;◇?CO2+?0.065% (by mass) SDS aqueous solution

    Figure 8 Hydrate equilibrium conditions of CO2+?0.065% (by mass) SDS aqueous solution system■?dissociation;○?reformation equilibrium

    3.3 Pure gas?+?SDS?+?silica sand system

    It is well known that the existing searching methods mainly focus on the bulk water system, of which the hydrate formation and dissociation could be observed and confirmed by naked eye. For porous media system, the formation of hydrate can not be observed directly, so step-heating/continuous-heating method is then used. Equilibrium conditions of CH4/CO2+?silica sand systems were determined accordingly in this work. The sand used were 380-830 μm, 150-180 μm for CH4system and 96-109 μm, 80-96 μm for CO2system, respectively. SDS was used to enhance the hydrate formation rate with a concentration of 0.065% (by mass). Hydrate was reformed after dissociation for CH4system. The equilibrium conditions of CH4/CO2+?0.065% (by mass) SDS aqueous solution?+?silica sand system determined by dissociation and reformation process are listed in Table 1 and shown in Figs. 9 and 10. Excellent coincidence could be found.

    Figure 9 Hydrate equilibrium conditions of CH4+?0.065% (by mass) SDS aqueous solution?+?silica sand system ■?150-180 μm, dissociation;○?150-180 μm, reformation; ▼?380-830 μm, dissociation;▲?380-830 μm, reformation;△?bulk water

    Figure 10 Hydrate equilibrium conditions of CO2+?0.065% (by mass) SDS aqueous solution?+?(80-96) μm/(96-109) μm silica sand system ■?96-109 μm;○?80-96 μm;△?no silica sand

    3.4 Gas mixtures?+?0.065% (by mass) SDS aqueous solution system

    The measured equilibrium conditions of CH4+?C2H6+?C3H8+?0.065% (by mass) SDS aqueous solutions at 275.2 K are listed in Table 2. The initial composition of the mixture is CH4(89.3%, by mol)?+?C2H6(7.8%, by mol)?+?C3H8(2.9%, by mol). Equilibrium gas compositions at the equilibrium pressure and temperature are also listed in Table 2. It could be found that the C3H8mole fraction increases as hydrate dissociates. The lowest mole fraction of C3H8is 0.45% at the first equilibrium stage. Table 2 also lists the equilibrium pressures at every stage calculated by CSMGem [1]. The largest difference between measured and calculated pressure is 0.17 MPa at the first equilibrium. The relative larger difference at the first stage might be due to the coexistence of sI and sII hydrate for the mixture with higher CH4and lower C3H8contents [26].

    4 CONCLUSIONS

    Step-heating method was applied to several systems using the cylindrical transparent sapphire cell device. The systems include: CH4/CO2+?deionized water, CH4/CO2+?SDS aqueous solution, CH4/CO2+?SDS aqueous solution?+?silica sand, (CH4+?C2H6+?C3H8)?+?SDS aqueous solution. Comparisons of experimental data with the literature value show the feasibility and reliability of the step-heating method, especially for porous media systems and gas mixtures systems. Besides, it could be applied to almost all kinds of systems, this kind of measurement method is also simpler and less time consumption compared with the other searching methods.

    Table 2 Hydrate equilibrium conditions of CH4?+?C2H6?+C3H8?+?0.065% (by mass) SDS aqueous solutions at 275.2 K

    1 Sloan, E.D., Koh, C.A., Clathrate Hydrates of Natural Gases, 3rd edition, CRC Press, New York (2008).

    2 Makogon, Y.F., Hydrates of Hydrocarbons, Pennwell Publishing Company, Tulsa Oklahoma (1997).

    3 Qiu, J.H., Guo, T.M., “Kinetics of methane hydrate formation in pure water and inhibitor containing systems”,...., 10 (3), 316-322 (2002).

    4 Nixdorf, J., Oellrich, L.R., “Experimental determination of hydrate equilibrium conditions for pure gases, binary and ternary mixtures and natural gases”,, 139, 325-333 (1997).

    5 Kang, S.P., Chun, M.K., Lee, H., “Phase equilibria of methane and carbon dioxide hydrates in the aqueous MgCl2solutions”,, 147, 229-238 (1998).

    6 Fan, S.S, Liang, D.Q., Guo, K.H., “Hydrate equilibrium conditions for cyclopentane and a quaternary cyclopentane-rich mixture”,..., 46 (4), 930-932 (2001).

    7 Majumdar, A., Mahmoodaghdam, E., Bishnoi, P.R., “Equilibrium hydrate formation conditions for hydrogen sulfide, carbon dioxide, and ethane in aqueous solutions of ethylene glycol and sodium chloride”,..., 45, 20-22 (2000).

    8 Sun, C.Y., Chen, G.J., Lin, W., Guo, T.M., “Hydrate formation conditions of sour natural gases”,..., 48, 600-602 (2003).

    9 Cha, S.B., Ouar, H., Wildeman, T.R., Sloan, E.D., “A third-surface effect on hydrate formation”,..., 92, 6492-6494 (1988).

    10 Uchida, T., Ebinuma, T., Ishizaki, T., “Dissociation condition measurements of methane hydrate in confined small pores of porous glass”,..., 103, 3659-3662 (1999).

    11 Seo, Y.T., Lee, H., “Multiple-phase hydrate equilibria of the ternary carbon dioxide, methane, and water mixtures”,..., 105, 10084-10090 (2001).

    12 Dicharry, C., Gayet, P., Marion, G., Graciaa, A., Nesterov, A.N., “Modeling heating curve for gas hydrate dissociation in porous media”,..., 109, 17205-17211 (2005).

    13 Anderson, R., Llamedo, M., Tohidi, B., Burgass, R.W., “Experimental measurement of methane and carbon dioxide clathrate hydrate equilibria in mesoporous silica”,..., 107, 3507-3514 (2003).

    14 Handa, Y.P., Stupin, D., “Thermodynamic properties and dissociation characteristics of methane and propane hydrates in 70? radius silica gel pores”,..., 96, 8599-8603 (1992).

    15 Zhang, W., Wilder, J.W., Smith, D.H., “Methane hydrate-ice equilibria in porous media”,..., 107, 13084-13089 (2003).

    16 Seshadri, K., Wilder, J.W., Smith, D.H., “Measurements of equilibrium pressures and temperatures for propane Hydrate in silica gels with different pore-size distributions”,..., 105, 2627-2631 (2001).

    17 Ma, C.F., Chen, G.J., Wang, F., Sun, C.Y., Guo, T.M., “Hydrate formation of (CH4+?C2H4) and (CH4+?C3H6) gas mixtures”,, 191, 41-47 (2001).

    18 Zhang, L.W., Huang, Q., Sun, C.Y., Ma, Q.L., Chen, G.J., “Hydrate formation conditions of methane?+?ethylene?+?tetrahydrofuran?+?water systems”,..., 51, 419-422 (2006).

    19 Huang, Q., Sun, C.Y., Chen, G.J., Yang, L.Y., “Hydrate formation conditions of (CH4+?CO2+?H2S) ternary sour natural gases”,.... (), 56 (7), 1159-1163 (2005). (in Chinese)

    20 Luo, Y.T., Zhu, J.H., Chen, G.J., “Numerical simulation of separating gas mixtures via hydrate formation in bubble column”,...., 15 (3), 345-352 (2007).

    21 Zhong, Y., Rogers, R.E., “Surfactant effects on gas hydrate formation”,..., 55, 4175-4187 (2000).

    22 Karaaslan, U., Uluneye, E., Parlaktuna, M., “Effect of an anionic surfactant on different type of hydrate structures”,...., 35, 49-57 (2002).

    23 Lin, W., Chen, G.J., Sun, C.Y., Guo, X.Q., Wu, Z.K., Liang, M.Y., Chen, L.T., Yang, L.Y., “Effect of surfactant on the formation and dissociation kinetic behavior of methane hydrate”,..., 59, 4449-4455 (2004).

    24 Sun, C.Y., Chen, G.J., Ma, C.F., Huang, Q., Luo, H., Li, Q.P., “The growth kinetics of hydrate film on the surface of gas bubble suspended in water or aqueous surfactant solution”,.., 306, 491-499 (2007).

    25 Gayet, P., Dicharry, C., Marion, G., Graciaa, A., Lachaise, J., Nesterov, A., “Experimental determination of methane hydrate dissociation curve up to 55 MPa by using a small amount of surfactant as hydrate promoter”,..., 60, 5751-5758 (2005).

    26 Schicks, J.M., Naumann, R., Erzinger, J., Hester, K.C., Koh, C.A., Sloan, E.D., “Phase transitions in mixed gas hydrates: Experimental observations versus calculated data”,..., 110, 11468-11474 (2006).

    2008-10-06,

    2009-04-17.

    the National Natural Science Foundation of China (20676145, U0633003), the National Basic Research Program of China (2009CB219504) and the Program for New Century Excellent Talents in University of the State Ministry of Education.

    ** To whom correspondence should be addressed. E-mail: gjchen@cup.edu.cn

    猜你喜歡
    陳光
    錚錚鐵骨陳光和
    鐵軍(2022年11期)2022-11-03 02:48:12
    我們是好朋友
    夢究竟意味著什么
    我是你的眼
    陳光中:理工男變身“披薩達(dá)人”
    海峽姐妹(2018年1期)2018-04-12 06:44:17
    歷史的誤會——戰(zhàn)將陳光的最后歲月
    文史博覽(2016年6期)2016-11-22 06:30:57
    陳光中:立言者
    東西南北(2016年18期)2016-10-14 03:49:21
    我是你的眼
    林彪與“救命恩人”陳光的恩怨
    新傳奇(2015年1期)2015-04-29 03:46:41
    我供爸爸上大學(xué)
    婷婷色综合大香蕉| 高清欧美精品videossex| 交换朋友夫妻互换小说| 不卡视频在线观看欧美| 18禁国产床啪视频网站| 捣出白浆h1v1| 伦理电影大哥的女人| kizo精华| 18禁国产床啪视频网站| 亚洲欧美成人精品一区二区| 在线天堂中文资源库| 久久鲁丝午夜福利片| 日韩欧美一区视频在线观看| 欧美激情 高清一区二区三区| 99国产精品免费福利视频| 日韩一本色道免费dvd| 日韩制服骚丝袜av| 久久久精品94久久精品| 男人爽女人下面视频在线观看| 在线免费观看不下载黄p国产| 成人综合一区亚洲| 亚洲性久久影院| 国产av精品麻豆| 精品人妻偷拍中文字幕| 伦理电影免费视频| 亚洲人与动物交配视频| 99热这里只有是精品在线观看| 人妻 亚洲 视频| 亚洲国产精品一区二区三区在线| 大片电影免费在线观看免费| 成年人午夜在线观看视频| 熟女人妻精品中文字幕| 老熟女久久久| 人人妻人人爽人人添夜夜欢视频| 国产免费福利视频在线观看| 日本wwww免费看| 国产av国产精品国产| 婷婷色av中文字幕| 国产探花极品一区二区| 亚洲天堂av无毛| 国产视频首页在线观看| 日韩一区二区三区影片| 久久久a久久爽久久v久久| 欧美最新免费一区二区三区| 久久久久精品久久久久真实原创| 黄色毛片三级朝国网站| 精品人妻一区二区三区麻豆| 日本黄大片高清| 18禁裸乳无遮挡动漫免费视频| videossex国产| 乱人伦中国视频| 看十八女毛片水多多多| 亚洲一区二区三区欧美精品| 欧美少妇被猛烈插入视频| 国产精品99久久99久久久不卡 | 亚洲国产精品专区欧美| 观看美女的网站| 国产精品欧美亚洲77777| 制服人妻中文乱码| videossex国产| 青春草国产在线视频| 黑人巨大精品欧美一区二区蜜桃 | 卡戴珊不雅视频在线播放| 天堂俺去俺来也www色官网| 18禁国产床啪视频网站| 永久免费av网站大全| 亚洲综合色惰| 欧美人与性动交α欧美软件 | 亚洲精品国产色婷婷电影| 欧美日韩国产mv在线观看视频| 欧美3d第一页| 尾随美女入室| 哪个播放器可以免费观看大片| 黑人欧美特级aaaaaa片| 国产精品蜜桃在线观看| 国产欧美亚洲国产| 十分钟在线观看高清视频www| 午夜福利影视在线免费观看| 午夜免费观看性视频| 交换朋友夫妻互换小说| 视频中文字幕在线观看| 9热在线视频观看99| 国产免费又黄又爽又色| 国产黄频视频在线观看| 激情五月婷婷亚洲| 999精品在线视频| 亚洲,欧美精品.| 国产黄频视频在线观看| 视频中文字幕在线观看| 免费黄色在线免费观看| 日本91视频免费播放| av有码第一页| av又黄又爽大尺度在线免费看| 欧美 亚洲 国产 日韩一| 在线观看一区二区三区激情| freevideosex欧美| 美女内射精品一级片tv| 天天影视国产精品| 在线看a的网站| 精品久久国产蜜桃| 蜜桃国产av成人99| 99国产综合亚洲精品| 国产成人免费观看mmmm| 日韩免费高清中文字幕av| 国产精品麻豆人妻色哟哟久久| 免费av不卡在线播放| 最黄视频免费看| 亚洲精品国产色婷婷电影| 王馨瑶露胸无遮挡在线观看| 亚洲欧美成人综合另类久久久| 人妻少妇偷人精品九色| 激情五月婷婷亚洲| 激情五月婷婷亚洲| 亚洲精品av麻豆狂野| 日韩免费高清中文字幕av| 99热全是精品| 免费黄网站久久成人精品| 亚洲丝袜综合中文字幕| 日韩在线高清观看一区二区三区| 一级毛片黄色毛片免费观看视频| 黄片无遮挡物在线观看| 中国三级夫妇交换| 欧美性感艳星| 亚洲精品国产av成人精品| 晚上一个人看的免费电影| 亚洲丝袜综合中文字幕| videosex国产| 久久精品人人爽人人爽视色| 日韩伦理黄色片| 日日爽夜夜爽网站| 一个人免费看片子| 熟女电影av网| 在线观看国产h片| 国产精品久久久久久久久免| 久久久国产精品麻豆| 极品人妻少妇av视频| 国产在视频线精品| 男女无遮挡免费网站观看| 视频在线观看一区二区三区| 午夜福利视频精品| 青春草视频在线免费观看| 99视频精品全部免费 在线| 91aial.com中文字幕在线观看| 一级片'在线观看视频| 18禁在线无遮挡免费观看视频| 亚洲成人一二三区av| av在线播放精品| 一级毛片电影观看| 亚洲欧洲国产日韩| 高清黄色对白视频在线免费看| 亚洲成国产人片在线观看| 国产欧美另类精品又又久久亚洲欧美| 一区二区三区四区激情视频| 亚洲五月色婷婷综合| 少妇精品久久久久久久| 国产在线视频一区二区| 国产福利在线免费观看视频| 欧美日韩视频精品一区| av又黄又爽大尺度在线免费看| 视频中文字幕在线观看| 精品一区二区三区视频在线| 18禁动态无遮挡网站| 考比视频在线观看| 久久女婷五月综合色啪小说| 制服诱惑二区| av片东京热男人的天堂| 国产1区2区3区精品| 麻豆乱淫一区二区| 如何舔出高潮| 亚洲性久久影院| freevideosex欧美| 日韩中文字幕视频在线看片| 日韩欧美精品免费久久| 天天躁夜夜躁狠狠躁躁| 十八禁网站网址无遮挡| 欧美精品一区二区免费开放| 狂野欧美激情性xxxx在线观看| 热99国产精品久久久久久7| 天天影视国产精品| 亚洲欧美精品自产自拍| 大香蕉久久成人网| 国产福利在线免费观看视频| 一区二区av电影网| 中文字幕av电影在线播放| 久久精品国产a三级三级三级| 亚洲第一区二区三区不卡| 丰满乱子伦码专区| 欧美成人午夜免费资源| av网站免费在线观看视频| 亚洲情色 制服丝袜| 成年av动漫网址| 你懂的网址亚洲精品在线观看| √禁漫天堂资源中文www| 欧美丝袜亚洲另类| 亚洲国产精品一区二区三区在线| 日日摸夜夜添夜夜爱| 亚洲欧美色中文字幕在线| 蜜臀久久99精品久久宅男| 国产1区2区3区精品| 天天影视国产精品| 国产麻豆69| 精品一区二区三区视频在线| 大香蕉久久网| √禁漫天堂资源中文www| 精品99又大又爽又粗少妇毛片| 日本免费在线观看一区| 黑人猛操日本美女一级片| 久久久久久久大尺度免费视频| 日本免费在线观看一区| 美女福利国产在线| 97超碰精品成人国产| 美女主播在线视频| 9热在线视频观看99| 亚洲精品美女久久av网站| 日韩大片免费观看网站| 久久精品夜色国产| 99视频精品全部免费 在线| 中文字幕最新亚洲高清| 少妇精品久久久久久久| 69精品国产乱码久久久| 日韩免费高清中文字幕av| 熟女av电影| 免费播放大片免费观看视频在线观看| 久久韩国三级中文字幕| 久久久久久久国产电影| 亚洲第一av免费看| h视频一区二区三区| 欧美+日韩+精品| 1024视频免费在线观看| 美女国产视频在线观看| 黄色怎么调成土黄色| 亚洲五月色婷婷综合| 成人午夜精彩视频在线观看| 肉色欧美久久久久久久蜜桃| 日本vs欧美在线观看视频| 精品少妇久久久久久888优播| 另类精品久久| 91精品三级在线观看| 制服诱惑二区| 午夜免费鲁丝| 激情视频va一区二区三区| 国产精品人妻久久久久久| 成人毛片a级毛片在线播放| 99久久中文字幕三级久久日本| 一区二区三区乱码不卡18| 国产在线一区二区三区精| 国产一区二区三区综合在线观看 | 午夜激情久久久久久久| 热99国产精品久久久久久7| 国产精品麻豆人妻色哟哟久久| 日本黄大片高清| 久久人人爽人人爽人人片va| 咕卡用的链子| 两个人免费观看高清视频| 蜜臀久久99精品久久宅男| 国产综合精华液| 999精品在线视频| a级毛片黄视频| 人妻人人澡人人爽人人| av不卡在线播放| 国产深夜福利视频在线观看| 成人免费观看视频高清| 欧美精品一区二区免费开放| 成人漫画全彩无遮挡| 亚洲人与动物交配视频| 少妇的逼水好多| 最近最新中文字幕大全免费视频 | 91在线精品国自产拍蜜月| 亚洲av综合色区一区| 久久精品国产亚洲av涩爱| 香蕉国产在线看| 久久综合国产亚洲精品| 9热在线视频观看99| 少妇被粗大的猛进出69影院 | 亚洲国产精品一区三区| 中文字幕亚洲精品专区| 久久鲁丝午夜福利片| 少妇被粗大猛烈的视频| 免费观看在线日韩| 少妇的丰满在线观看| 日韩 亚洲 欧美在线| 免费在线观看完整版高清| 久久久久久伊人网av| 亚洲精品日本国产第一区| 午夜免费观看性视频| freevideosex欧美| 综合色丁香网| 女的被弄到高潮叫床怎么办| 免费女性裸体啪啪无遮挡网站| 在线观看三级黄色| 激情视频va一区二区三区| 色94色欧美一区二区| 桃花免费在线播放| 人妻人人澡人人爽人人| 欧美97在线视频| 亚洲一区二区三区欧美精品| 久久综合国产亚洲精品| 亚洲图色成人| 免费观看av网站的网址| 久久久精品94久久精品| 一边摸一边做爽爽视频免费| 国产免费现黄频在线看| 18禁裸乳无遮挡动漫免费视频| 久久99热6这里只有精品| 精品酒店卫生间| 亚洲一级一片aⅴ在线观看| 久久久久国产精品人妻一区二区| 深夜精品福利| 国产成人免费观看mmmm| 97人妻天天添夜夜摸| 成年人免费黄色播放视频| 亚洲成国产人片在线观看| 51国产日韩欧美| 人人妻人人爽人人添夜夜欢视频| 精品一区二区免费观看| 欧美日韩国产mv在线观看视频| 国产精品久久久av美女十八| 91午夜精品亚洲一区二区三区| www.熟女人妻精品国产 | 1024视频免费在线观看| 久久影院123| 国产精品久久久久久精品古装| 国产一区二区三区综合在线观看 | 久久久精品区二区三区| 亚洲成色77777| 啦啦啦在线观看免费高清www| 麻豆乱淫一区二区| 日韩熟女老妇一区二区性免费视频| 日韩大片免费观看网站| 秋霞在线观看毛片| 人人妻人人澡人人爽人人夜夜| 午夜久久久在线观看| 婷婷色av中文字幕| 久久久久久久久久人人人人人人| 又粗又硬又长又爽又黄的视频| 黄色视频在线播放观看不卡| 精品人妻在线不人妻| av免费观看日本| 亚洲四区av| 尾随美女入室| 99热国产这里只有精品6| 美女内射精品一级片tv| h视频一区二区三区| av福利片在线| 国产免费一区二区三区四区乱码| 亚洲三级黄色毛片| 一区在线观看完整版| 美女内射精品一级片tv| 久久婷婷青草| 26uuu在线亚洲综合色| 99热全是精品| 肉色欧美久久久久久久蜜桃| 美女xxoo啪啪120秒动态图| 妹子高潮喷水视频| 全区人妻精品视频| 男女边吃奶边做爰视频| 18禁动态无遮挡网站| 国产成人精品久久久久久| 欧美精品av麻豆av| 人妻少妇偷人精品九色| 国产免费视频播放在线视频| 水蜜桃什么品种好| 精品一区二区三卡| 插逼视频在线观看| 一本色道久久久久久精品综合| 久久久久精品性色| 赤兔流量卡办理| 成人毛片60女人毛片免费| 国产综合精华液| 久久精品国产a三级三级三级| 午夜福利网站1000一区二区三区| 国产男人的电影天堂91| 亚洲五月色婷婷综合| 看免费成人av毛片| 中文精品一卡2卡3卡4更新| 亚洲五月色婷婷综合| 亚洲中文av在线| 国产精品三级大全| 亚洲美女搞黄在线观看| 国产精品久久久久久久电影| 看免费av毛片| 日韩成人伦理影院| 国产精品人妻久久久影院| 国产深夜福利视频在线观看| 午夜日本视频在线| av国产久精品久网站免费入址| 亚洲欧美成人精品一区二区| 国产一区二区在线观看日韩| 久久精品国产综合久久久 | 欧美bdsm另类| 亚洲欧美一区二区三区国产| 伦理电影大哥的女人| 午夜久久久在线观看| 亚洲美女搞黄在线观看| 一级,二级,三级黄色视频| 美国免费a级毛片| 精品人妻熟女毛片av久久网站| 男女边吃奶边做爰视频| 久久精品国产a三级三级三级| 亚洲精品视频女| 嫩草影院入口| 久久这里有精品视频免费| 日韩制服骚丝袜av| 妹子高潮喷水视频| 纵有疾风起免费观看全集完整版| 啦啦啦中文免费视频观看日本| 国产高清三级在线| 九色亚洲精品在线播放| 日韩精品免费视频一区二区三区 | 亚洲,欧美精品.| 亚洲av.av天堂| 日日摸夜夜添夜夜爱| 蜜桃在线观看..| 欧美精品一区二区免费开放| 久久影院123| 精品一区二区三卡| 日韩伦理黄色片| a级毛片黄视频| 久久久国产精品麻豆| 91久久精品国产一区二区三区| 乱码一卡2卡4卡精品| 美女大奶头黄色视频| 国产一区二区在线观看日韩| 一二三四在线观看免费中文在 | 久久久久精品久久久久真实原创| 老司机影院成人| 久久久久国产网址| 日韩av免费高清视频| 国产乱人偷精品视频| 亚洲一区二区三区欧美精品| 丰满少妇做爰视频| www.av在线官网国产| 在线观看三级黄色| 国产在线一区二区三区精| 制服诱惑二区| 亚洲精品第二区| 国产有黄有色有爽视频| 久久99热这里只频精品6学生| 秋霞伦理黄片| 日本vs欧美在线观看视频| 国产亚洲一区二区精品| 制服丝袜香蕉在线| 亚洲欧美日韩卡通动漫| 欧美变态另类bdsm刘玥| av又黄又爽大尺度在线免费看| 女的被弄到高潮叫床怎么办| 视频在线观看一区二区三区| 一本久久精品| 亚洲在久久综合| 日本猛色少妇xxxxx猛交久久| 国产 精品1| 亚洲,欧美,日韩| av又黄又爽大尺度在线免费看| 丝袜脚勾引网站| 免费看光身美女| 丰满乱子伦码专区| 精品国产一区二区三区四区第35| 亚洲成国产人片在线观看| 欧美成人午夜免费资源| av播播在线观看一区| 成年人午夜在线观看视频| 免费高清在线观看日韩| 久久青草综合色| 秋霞伦理黄片| 精品久久久久久电影网| 国产精品久久久久久久久免| 久久99蜜桃精品久久| 日韩 亚洲 欧美在线| 亚洲av日韩在线播放| 啦啦啦中文免费视频观看日本| kizo精华| 十分钟在线观看高清视频www| 激情视频va一区二区三区| 亚洲一区二区三区欧美精品| 欧美日韩av久久| 人成视频在线观看免费观看| 老司机影院成人| 国产av精品麻豆| 黄色毛片三级朝国网站| 亚洲成av片中文字幕在线观看 | 22中文网久久字幕| 王馨瑶露胸无遮挡在线观看| 岛国毛片在线播放| av一本久久久久| 欧美成人午夜免费资源| 日本与韩国留学比较| 国产精品99久久99久久久不卡 | 日本欧美国产在线视频| 老司机影院毛片| 欧美日韩视频高清一区二区三区二| 亚洲欧美色中文字幕在线| 看非洲黑人一级黄片| 韩国高清视频一区二区三区| 美女大奶头黄色视频| 国内精品宾馆在线| 成人亚洲欧美一区二区av| 天美传媒精品一区二区| 97超碰精品成人国产| 久久久国产一区二区| 免费黄频网站在线观看国产| 国产极品粉嫩免费观看在线| 国产无遮挡羞羞视频在线观看| 一级,二级,三级黄色视频| 热99国产精品久久久久久7| 欧美日韩综合久久久久久| 国产免费视频播放在线视频| 岛国毛片在线播放| 国产成人av激情在线播放| 一区二区日韩欧美中文字幕 | 热99国产精品久久久久久7| 免费高清在线观看日韩| 美女内射精品一级片tv| 国产一区二区激情短视频 | 亚洲精品自拍成人| 2021少妇久久久久久久久久久| 国产精品一区二区在线观看99| 91在线精品国自产拍蜜月| 欧美人与善性xxx| 欧美精品一区二区免费开放| 国产男人的电影天堂91| 九九爱精品视频在线观看| 制服诱惑二区| 啦啦啦啦在线视频资源| 丝袜人妻中文字幕| 午夜激情av网站| 免费女性裸体啪啪无遮挡网站| 最近手机中文字幕大全| 成人免费观看视频高清| 黄色怎么调成土黄色| 国产成人午夜福利电影在线观看| 亚洲综合色网址| 亚洲国产看品久久| 欧美少妇被猛烈插入视频| 亚洲人成网站在线观看播放| 午夜激情久久久久久久| 成年女人在线观看亚洲视频| 黑人猛操日本美女一级片| 国产又色又爽无遮挡免| 亚洲精品国产色婷婷电影| 精品一品国产午夜福利视频| 精品午夜福利在线看| 日本欧美视频一区| 国产精品人妻久久久影院| 日韩电影二区| 久久人人爽人人爽人人片va| 免费黄频网站在线观看国产| 最新的欧美精品一区二区| 亚洲av免费高清在线观看| 日本黄色日本黄色录像| 日本av手机在线免费观看| 国产不卡av网站在线观看| 激情五月婷婷亚洲| 涩涩av久久男人的天堂| videos熟女内射| 欧美日韩成人在线一区二区| 欧美日韩av久久| 久久99一区二区三区| 亚洲av免费高清在线观看| 成年美女黄网站色视频大全免费| 国产成人a∨麻豆精品| 男人爽女人下面视频在线观看| 免费女性裸体啪啪无遮挡网站| 欧美日韩国产mv在线观看视频| 国产在线免费精品| 天美传媒精品一区二区| 午夜福利,免费看| 国产成人精品婷婷| 国产亚洲av片在线观看秒播厂| 制服诱惑二区| 亚洲国产欧美日韩在线播放| 国产麻豆69| 自线自在国产av| 欧美xxxx性猛交bbbb| 亚洲av欧美aⅴ国产| 亚洲精品第二区| 只有这里有精品99| 99热6这里只有精品| 精品人妻偷拍中文字幕| 欧美国产精品va在线观看不卡| 一级毛片黄色毛片免费观看视频| 又黄又粗又硬又大视频| 满18在线观看网站| www日本在线高清视频| 永久网站在线| 成年人午夜在线观看视频| 高清黄色对白视频在线免费看| 午夜久久久在线观看| 18禁在线无遮挡免费观看视频| 欧美最新免费一区二区三区| 99九九在线精品视频| 插逼视频在线观看| 亚洲高清免费不卡视频| 免费av不卡在线播放| 亚洲综合精品二区| 大话2 男鬼变身卡| 午夜激情av网站| av在线观看视频网站免费| 欧美成人精品欧美一级黄| 日韩制服骚丝袜av| av在线老鸭窝| 各种免费的搞黄视频| 久久国产精品男人的天堂亚洲 | 亚洲五月色婷婷综合| 亚洲精品视频女| 成人国产av品久久久| 久久久久久久久久成人| 国产1区2区3区精品| 亚洲色图综合在线观看| 黄色配什么色好看| 老司机亚洲免费影院| 婷婷色麻豆天堂久久| 激情视频va一区二区三区| 国产欧美日韩综合在线一区二区| 丝袜喷水一区| 99热国产这里只有精品6|