• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    一種新型對苯乙炔基苯衍生物:熒光行為與傳感應(yīng)用

    2016-11-18 07:29:25祁彥宇孫曉環(huán)常興茂劉凱強
    物理化學(xué)學(xué)報 2016年1期
    關(guān)鍵詞:沙林毒氣乙炔

    祁彥宇 孫曉環(huán) 常興茂 康 蕊 劉凱強 房 喻

    (陜西師范大學(xué)化學(xué)化工學(xué)院,應(yīng)用表面與膠體化學(xué)教育部重點實驗室,西安 710119)

    一種新型對苯乙炔基苯衍生物:熒光行為與傳感應(yīng)用

    祁彥宇 孫曉環(huán) 常興茂 康 蕊 劉凱強 房 喻*

    (陜西師范大學(xué)化學(xué)化工學(xué)院,應(yīng)用表面與膠體化學(xué)教育部重點實驗室,西安 710119)

    設(shè)計合成了一種以8-羥基喹啉(8-HQ)為捕獲基團,膽固醇(Chol)為輔助結(jié)構(gòu)的新型光化學(xué)穩(wěn)定的對苯乙炔基苯(BPEB)衍生物(OPBMQ)。研究表明,該化合物熒光光譜由8-HQ的熒光發(fā)射和BPEB的熒光發(fā)射組成,且其熒光發(fā)射對沙林毒氣模擬物(DCP)的存在極為敏感。計算檢出限可達1 × 10?9mol·L–1以下。此外,其它相關(guān)神經(jīng)毒劑模擬物、有機磷農(nóng)藥,甚至它們的混合物的存在均不顯著干擾化合物對DCP的傳感。更為重要的是,無論是以高純水、自來水,還是海水作為介質(zhì),均對測定結(jié)果沒有顯著影響。需要指出的是,對沙林毒氣模擬物的靈敏、高選擇性測定也可以在濾紙片上以目視法進行。基于這些結(jié)果,發(fā)展了一種概念性沙林毒氣模擬物檢測儀器。

    1,4-二苯乙炔基苯;熒光;沙林;8-羥基喹啉;氯磷酸二乙酯

    1 lntroduction

    Sarin is an important nerve agent and was created for use in military operations to kill, injure, or incapacitate human owing to its deadly physiological effects1–3. Although production, storage, and application of never agents nowadays are totally prohibited, unanticipated terrorist use of them has caused tremendous harm on society security and human health4–9. To be clear, Scheme S1 (c.f. Supporting Information) shows the structures of some typical nerve agents, some organo-phosphorus pesticides, and relevant compounds, such as diethyl chlorophosphate (DCP), diethyl cyanidophosphate (DECP), and diethyl methylphosphate (DEMP), which have similar reactivity to the corresponding nerve agents but lack the efficacy of them. For the reasons, they have been used as model compounds for designing antidotes and creating indicators.

    Among the nerve agents, Sarin is the most dangerous and frequently used one in the terrorist attacks, and thereby fast discovery of the toxic chemical at very low concentrations is of crucial importance for adopting prompt countermeasures and minimizing damages10–17. Accordingly, photo-acoustics18–20, mass spectrometry21, capillary electrophoresis, electrical sensors22–24, biosensors25–27, ion mobility spectrometry28, and nuclear magnetic resonance (NMR) spectroscopy29have been used or developed for the test. However, these techniques suffer from one or another limitation, such as high cost, poor sensitivity, slow response, lack of selectivity, non-portability and complex to use, and thereby their real-life uses are limited30,31. Thus, development of methods with advantages of portable and capable of sensitive and selective detection of the chemical on site and in real time still remains a challenge.

    As it is well known, compared to other methods, fluorescence techniques are unique due to their great sensitivity, fast response, multiple parameters, and in particular design-ability of sensory materials32–36. Their uses in the detection has demonstrated superiorities, but most of the methods reported can be only used in organic media, which is a regret for real-life applications37,38.

    Literature survey reveals that functional groups, such as amino39, hydroxyl40,41or oxime moieties42, are typical structures that can be employed for anchoring antidotes of sensing molecules on the simulants of nerve agents43. 1,4-Bis(phenylethynyl)benzene (BPEB) is unique because it is easy to be modified, and possesses two-dimensional structure and various packing modes, and thereby its derivatives are valuable building blocks for constructing functional supramolecular architectures44–46. Cholesterol (Chol) is a natural compound and demonstrates strong tendency to form aggregates via van der Waals interactions47,48. Meanwhile, 8-hydroxyquinoline (8-HQ) is a chelate and widely used in coordination chemistry and organic solids49. It was expected that combination of 8-HQ into a fluorescent unit would bring affinity to some organophosphorus derivatives because it contains not only pyridine structure but also phenolic hydroxyl group.

    In this study, a fluorescent compound, OPBMQ (Scheme 1), was designed and synthesized, of which BPEB was adopted as a core structure, two Chol units were introduced by bonding them at the side chains, and two moities of 8-HQ were capped at the two ends of BPEB. The structure of OPBMQ is depicted below. With inspection of the structure, it is seen that a tertiary amine structure was also introduced, which may be favourable for binding some of the toxic chemicals via cooperation with 8-HQ. Fluorescence tests revealed that the compound as developed is an excellent sensor for DCP, which is a typical simulant of Sarin50.

    2 Experimental

    Scheme 1 Molecular structure of compound OPBMQ

    2.1 Materials and reagents

    1,4-Dimethoxybenzene (TCI, 99%), 4-ethinylbenzaldehyde(Alfa aesar, 99%), propylamine (Aladdin, 98%), 8-hydroxyquinoline (Aladdin, 98%), Pd(PPh3)4(Alfa aesar, 99%), and CuI (Alfa aesar, 98%) were used as received. DCP, DECP, tributil phosphate (TBP), triethyl phosphate (TEP), and dimethyl phosphate (DMP) are of analytical grade and were bought from Aladdin. Dimethyl methylphosphonate (DMMP)was bought from MAYA Reagent. DEMP was bought from Heowns Biochem Technologies LLC (Tianjin, China). All the reagents are of, at least, analytical grade and used without further purification. The preparation of the compounds was conducted using standard vacuum line and Schlenk technique under a purified argon atmosphere. Dimethyl formamide (DMF)and dichloromethane were distilled from calcium hydride under argon prior to use. Methanol was distilled from magnesium under argon before use. Tetrahydrofuran (THF) and toluenewere distilled from sodium benzophenone ketyl under argon prior to use. Water used in this work was acquired from a Milli-Q reference system except those specially specified.

    2.2 Measurements and characterization

    1H NMR and13C NMR spectra were acquired on Bruker AV 400 NMR and 600 NMR spectrometer at room temperature. Pressed KBr disks for the powder samples were used for the Fourier transform infrared (FTIR) spectroscopy measurements, and their FTIR spectra were measured on a Bruker VERTEX 70v spectrometer. The mass spectra (MS) were collected on a Bruker maxis UHR-TOF mass spectrometer in electronic spray ion (ESI) positive mode. Melting point measurement was conducted on X-5 Microscopic melting point meter (Beijing Tech Instrument). Optical photos were carried out on a Canon 70D camera. Dynamic light scattering (DLS) measurement was conducted on a Malvern Zeta Sizer Nano-ZS90. The pH was measured by a Leinuo pH meter. Fluorescence measurements were performed at room temperature on a time-correlated single photon counting Edinburgh Instruments FLS 920 fluorescence spectrometer.

    2.3 Synthesis of the compound OPBMQ

    The details of the synthesis of OPBMQ can be found at the Supporting Information of this paper. The compounds as obtained were fully characterized by1H NMR, FTIR, and ESI-MS etc.

    3 Results and discussion

    3.1 Optical behavior of OPBMQ in solution state

    3.1.1 Concentration effect

    Fig.1 depicts the fluorescence emission spectra of OPBMQ recorded at different concentrations in water. It reveals that with progressively increasing the concentration, the intensity of the emission increased dramatically. But when the concentration reached 2 × 10?5mol·L–1, the fluorescence intensity did not increase further but decreased along with further increasing the concentration. The phenomenon might be rationalized by considering the well-known inner-filtering or self-quenching effect as evidenced by the results from the concentration-dependent absorption spectroscopy studies shown in Fig.S1 (Supporting Information), from which it is seen that the intensity of the absorption decreases after the concentration of the compound exceeds a certain value.

    Fig.1 Fluorescence emission spectra of OPBMQ recorded at different concentrations in aqueous phase and excited at 370 nm

    With further inspection of the spectra shown in Fig.1, it is found with surprise that for solutions with concentrations lower than 2 × 10?6mol·L–1, the maximum emission appears at ~540 nm, but for those greater than 1.5 × 10?5mol·L–1, the emission appears at ~445 nm. The systems with concentrations between them are composed of the two emissions. To our knowledge, this is a result never reported before. The reasons behind should be related with the fact that OPBMQ contains two distinct fluorescent units, BPEB and 8-HQ. This argument was confirmed by fluorescence and DLS studies of a number of reference compounds as well as UV-Vis absorption studies of OPBMQ (see Supporting Information). In addition, the effect of pH on the fluorescence behavior of the probe has been investigated. It was shown that the probe emits at shorter wavelengths at an acidic solution, but at longer wavelengths at neutral and basic solutions. The relevant results and discussion can be found at the Section about pH effect on the fluorescence emission of OPBMQ and relevant Fig.S2 (Supporting Information).

    3.1.2 Solνent effect

    To investigate the solvent effect upon the fluorescence emission of OPBMQ, a variety of solvents of different polarities including n-hexane, toluene, benzene, THF, ethanol, chloroform, acetone, 1,4-dioxane, acetonitrile, DMF, methanol, dimethylsulfoxide (DMSO), and water were used to dissolve OPBMQ to make solutions of a concentration of 1 × 10?6mol·L–1, and the fluorescence spectra of them are shown in Fig.2. Inspection of the emissions reveals that both the intensities and profiles of them are largely dependent upon the polarity of the solvent employed. For example, the emissions from DMSO, methanol, and water are dominated by a band around 540 nm, but the others appear at much shorter wavelengths, which must be a result of solubility difference.

    3.1.3 Photochemical stability of OPBMQ in solution phase

    Photo-bleaching is one of the most challenging problems to limit the usability of photonic devices including fluorescent probes and sensors, and thereby it has become an indispensable part of work to evaluate the photochemical stability of a fluorescent probe before it is put into practical uses51,52. Accordingly, the fluorescence emissions of the n-hexane and aqueous solutions of OPBMQ (1 × 10?6mol·L–1) were monitored, separately, as a function of scanning time, and the results are shown in Fig.3. Reference to the spectra reveals that at the concentration under study: (1) the spectra are dominated by BPEB emissionin n-hexane but 8-HQ emission in water, and (2) the emission intensity of the n-hexane system showed no change, but for the aqueous solution of OPBMQ there had been some change during the repeated scanning. It is to be noted, however, the change is not unidirectional, but fluctuated, which may be originated from scattering as shown in the inset of the figure. In other words, the compound is photo-chemically stable in aqueous phase.

    Fig.2 Fluorescence emission spectra of OPBMQ recorded at 1 × 10-6mol·L-1in different solvents and excited at 370 nm

    Fig.3 Photochemical stability of OPBMQ in n-hexane (a) or in aqueous phase (b) (1 × 10?6mol·L-1, λex= 370 nm)

    3.2 Sensing performance studies

    Considering the importance of detection of organo-phosphorus agents and the possibility of the interaction of the analytes with OPBMQ, relevant tests were conducted. It was found that the emission of OPBMQ is very sensitive to the presence of DCP in aqueous phase. The fluorescent spectra recorded at different DCP concentrations and the relevant plots of the measurement are shown in Fig.4. Reference to the figure reveals that: (1) a trace amount (2 × 10?6mol·L–1) of the simulant could result in 36% reduction of the initial emission, (2) 94% of the original emission was quenched in the presence of 1 × 10?5mol·L–1of DCP, and (3) further increase in the concentration of DCP induced no additional quenching. The calculated detection limit (DL) of the method is close to 9.5 × 10?10mol·L–1at room temperature, a lowest value reported in the literature (c.f. Table S1, Supporting Information). The details of the test and calculations are provided in the Supporting Information.

    Fig.S3 (Supporting Information) shows the time-dependence of the fluorescence emission of the compound in the presence of 1 × 10?5mol·L–1DCP. It is seen that the response is instantaneous, and a few seconds contact of DCP with the probe could result in more than 10% reduction of the initial emission, which is no difficult to observe. Equilibration of the quenching takes much longer time possibly due to diffusion difficult of the analyte within the aggregates of the probe. But this should not affect its application for the timely pre-emptive detection of the chemicals since the response of the detection is instantaneous and the sensitivity of the method is good.

    Selectivity study was conducted by investigating the effect of DECP35,36, DMMP39, TBP53, TEP53, and DEMP35,36, as well as other organo-phosphorus pesticides, such as DMP, β-cypermethrin(BCT), dichlorvos (DDVP), and glyphosate isopropylammonium (GIS), to the fluorescence emission of OPBMQ in aqueousphase, and the results are shown in Fig.5. Analysis of the results indicates that the organo-phosphorus studied shows little effect upon the fluorescence emission of the compound in aqueous phase. Further inspection of the results revealed that among the interferents studied, TBP, DECP, and TEP demonstrated some quenching effect upon the emission of the fluorophore but the maximum quenching efficiency is less than 8%, but for DDVP and BCT, presence of them slightly enhanced the emission. In addition, further interference tests with ammonia and seven organic amines as additional interferents were also conducted, and it was shown again that these compounds show little effect upon the test (c.f. Fig.S4, Supporting Information).

    Fig.5 Quantitative histograms of the fluorescence response of OPBMQ (1 × 10-6mol·L-1, λex/λem= 370 nm/540 nm) to the presence of different organophosphates: DCP, TBP, DECP, TEP, DMMP, DMP,DEMP, GIS, DDVP, BCT (1 × 10?5mol·L-1for each)

    Fig.6 Photographs of the OPBMQ (1 × 10?3mol·L-1, 20 μL) coated test strips in the presence of different amount of DCP on a contact mode when viewed under 365 nm UV illumination

    Considering the importance of solvents upon the real-life applications of the method under development, additional interference tests from solvents were conducted. The results are depicted in Figs.S5–S7 (Supporting Information). Clearly, whatever in the Milli-Q water, tap-water, or seawater, mixing the interferents still shows no significant effect upon the emission of the system. However, addition of DCP in the presence of the interferents induces remarkable reduction of the fluorescence emission as observed, indicating that the OPBMQ-based method as developed possesses excellent tolerance to external interference, and shows great potential for real-life uses.

    Fig.7 A conceptual device for monitoring “DCP pollution”

    After demonstrating the superior sensing ability of the compound via utilization of an instrument, it would be more interesting if the test could be conducted in a visualized manner54. To verify this possibility, test strips were prepared first, of which OPBMQ was dissolved in THF to make a solution with a concentration of 1 × 10–3mol·L–1, then 20 μL of the solution was put onto a pre-prepared ordinary filter paper and then driedin air. Based upon the strips, instrument-free DCP test can be realized by addition of 1 μL DCP contaminated water onto the strips (c.f. the visualization test of DCP, Supporting Information). A dark spot suggests presence of DCP. Fig.6 shows some of the results. It is seen that the lowest concentration visually detectable in the test is ~0.56 pg·cm–2.

    To further explore the practical applicability of the method as developed, a conceptual device was developed (c.f. Fig.7). As shown in a short video (c.f. video S1 (Supporting Information)), the system works very well, and moreover, continuous test is possible.

    3.3 Quenching mechanism studies

    To interrogate the nature of the detection, fluorescence lifetime and intensity of the aqueous solution of DCP were measured at different concentrations, and the results are shown in Stern-Volmer plots (c.f. Fig.S8, Supporting Information). It is seen that the intensity-based plot shows an upward curvature, while the lifetime-based one is almost a straight line with a slop of nearly zero, suggesting that the quenching is dominated by formation of a non-fluorescent complex, OPBMQ-DCP, a typical static quenching process.

    The reasons behind the selectivity is attributable to the reaction of DCP with the 8-HQ unit of the compound as confirmed by the results from1H NMR titration studies, which is depicted in Fig.S9 (Supporting Information). The possible reaction equation and the product signal in the MS trace are displayed in Fig.S10 (Supporting Information).

    4 Conclusions

    In summary, a sensitive and highly selective fluorescence probe, OPBMQ, for the detection of Sarin simulant in aqueous phase was developed. Fluorescence studies demonstrated that the compound as prepared possesses two distinct, independent emissions in aqueous phase, of which one originates from 8-HQ and the other from BPEB. Importantly, the fluorescence emission of OPBMQ in aqueous phase is highly selective and sensitive to the presence of DCP, a simulant of Sarin. The calculated DL is lower than 1 × 10?9mol·L–1. Moreover, no significant response was observed when the probe was exposed to simulants of other nerve agents, relevant organo-phosphorus pesticides, or even their mixtures. In addition, no matter Milli-Q water, tapwater or sea water was employed as solvent, presence of the mixtures of the interferents studied did not show any significant effect upon the detection of DCP. In particular, unprecedented sub-picogram detection with high selectivity and fast response achieved by naked-eye observation provides a simple and low-cost protocol for the on-site and real-time detection of DCP. On the basis of the discovery, a DCP monitoring device was successfully developed.

    Supporting lnformation: available free of charge via the internet at http://www.whxb.pku.edu.cn.

    (1)Kim, H. J.; Lee, J. H.; Lee, H.; Lee, J. H.; Lee, J. H.; Jung, J. H.;Kim, J. S. Adv. Funct. Mater. 2011, 21, 4035. doi: 10.1002/adfm.v21.21

    (2)Kim, K.; Tsay, O. G.; Atwood, D. A.; Churchill, D. G. Chem. Rev. 2011, 111, 5345. doi: 10.1021/cr100193y

    (3)Zhou, X.; Lee, S. Y.; Xu, Z. C.; Yoon, J. Chem. Rev. 2015, 115, 7944. doi: 10.1021/cr500567r

    (4)Okumura, T.; Ariyoshi, K.; Hitomi, T.; Hirahara, K.; Itoh, T.;Iwamura, T.; Nakashima, A.; Motomura, Y.; Taki, K.; Suzuki, K. Toxin Rev. 2009, 28, 255. doi: 10.3109/15569540903338040

    (5)Chao, L. L.; Rothlind, J. C.; Cardenasa, V. A.; Meyerhoff, D. J.;Weiner, M. W. Neurotoxicology 2010, 31, 493. doi: 10.1016/j.neuro.2010.05.006

    (6)Carniato, F.; Bisio, C.; Psaro, R.; Marchese, L.; Guidotti, M. Angew. Chem. Int. Edit. 2014, 53, 10095. doi: 10.1002/anie.201405134

    (7)Mahapatra, A. K.; Maiti, K.; S. Manna, K.; Maji, R.; Mondal, S.;Mukhopadhyay, C. D.; Sahooc, P.; Mandald, D. Chem. Commun. 2015, 51, 9729. doi: 10.1039/C5CC02991K

    (8)Jo, S.; Kim, J.; Noh, J.; Kim, D.; Jang, G.; Lee, N.; Lee, E.; Lee, T. S. ACS Appl. Mater. Interfaces 2014, 6, 22884. doi: 10.1021/am507206x

    (9)Bai, H. H.; Guo, L.; Feng, J. L.; Feng, C. L.; Chen, J.; Xie, J. W. Chin. J. Anal. Chem. 2008, 36, 1269. [白海紅, 郭 磊, 馮建林,馮翠玲, 陳 佳, 謝劍煒. 分析化學(xué), 2008, 36, 1269.] doi: 10.1016/S1872-2040(08)60069-9

    (10)Sarkar, S.; Shunmugam, R. Chem. Commun. 2014, 50, 8511. doi: 10.1039/C4CC03361B

    (11)Wu, W. H.; Dong, J. J.; Wang, X.; Li, J.; Sui, S. H.; Chen, G. Y.;Liu, J. W.; Zhang, M. Analyst 2012, 137, 3224. doi: 10.1039/C2AN35428D

    (12)Ramaseshan, R.; Sundarrajan, S.; Liu, Y. J.; Barhate, R. S.; Lala, N. L.; Ramakrishna, S. Nanotechnology 2006, 17, 2947. doi: 10.1088/0957-4484/17/12/021

    (13)Wallace, K. J.; Morey, J.; Lynch, V. M.; Anslyn, E. V. New J. Chem. 2005, 29, 1469. doi: 10.1039/B506100H

    (14)Cojocaru, B.; Nea?u, ?.; Parvulescu, V. I.; ?omoghi, V.; Petrea, N.; Epure, G.; Alvaro, M.; Garcia, H. ChemSusChem 2009, 2, 427. doi: 10.1002/cssc.200800246

    (15)Rusu, A. D.; Moleavin, I. A.; Hurduc, N.; Hamel, M.; Rocha, L. Chem. Commun. 2014, 50, 9965. doi: 10.1039/c4cc03580a

    (16)Brown, K. Science 2004, 305, 1228. doi: 10.1126/science.305.5688.1228

    (17)Eubanks, L. M.; Dickerson, T. J.; Janda, K. D. Chem. Soc. Rev. 2007, 36, 458. doi: 10.1039/B615227A

    (18)Yang, Y. M.; Ji, H. F.; Thundat, T. J. Am. Chem. Soc. 2003, 125, 1124. doi: 10.1021/ja028181n

    (19)Thompson, C. H.; Hu, J.; Kaganove, S. N.; Keinath, S. E.;Keeley, D. L.; Dvornic, P. R. Chem. Mater. 2004, 16, 5357. doi: 10.1021/cm040346z

    (20)Gurton, K. P.; Felton, M.; Tober, R. Opt. Lett. 2012, 37, 3474. doi: 10.1364/OL.37.003474

    (21)Steiner, W. E.; Klopsch, S. J.; English, W. A.; Clowers, B. H.;Hill, H. H. Anal. Chem. 2005, 77, 4792. doi: 10.1021/ac050278f

    (22)Lin, Y. H.; Lu, F.; Wang, J. Electroanalysis 2004, 16, 145. doi: 10.1002/elan.200302933

    (23)Zhou, Y. X.; Yu, B.; Shiu, E.; Levon, K. Anal. Chem. 2004, 76, 2689. doi: 10.1021/ac035072y

    (24)Hammonda, M. H.; Johnson, K. J.; Rose-Pehrsson, S. L.; Ziegler, J.; Walker, H.; Caudy, K.; Gary, D.; Tillett, D. Sens. Actuators B 2006, 116, 135.

    (25)Cao, X. H.; Mello, S. V.; Leblanc, R. M.; Rastogi, V. K.; Cheng, T. C.; DeFrank, J. J. J. Colloids Surf. A 2004, 250, 349. doi: 10.1016/j.colsurfa.2004.01.043

    (26)Orbulescu, J.; Constantine, C. A.; Rastogi, V. K.; Shah, S. S.;DeFrank, J. J.; Leblanc, R. M. Anal. Chem. 2006, 78, 7016. doi: 10.1021/ac061118m

    (27)Viveros, L.; Paliwal, S.; McCrae, D.; Wild, J.; Simonian, A. Sens. Actuators B 2006, 115, 150. doi: 10.1016/j.snb.2005.08.032

    (28)Asbury, G. R.; Wu, C.; Siems, W. F.; Hill, H. H., Jr. Anal. Chim. Acta 2000, 404, 273. doi: 10.1016/S0003-2670(99)00726-6

    (29)Zhang, Z.; Fan, J.; Yu, J. M.; Zheng, S. R.; Chen, W. J.; Li, H. G.; Wang, Z. J.; Zhang, W. G. ACS Appl. Mater. Interfaces 2012,4, 944. doi: 10.1021/am201603n

    (30)Xuan, W. M.; Cao, Y. T.; Zhou, J. H.; Wang, W. Chem. Commun. 2013, 49, 10474. doi: 10.1039/C3CC46095A

    (31)Kwon, O. S.; Park, S. J.; Lee, J. S.; Park, E.; Kim, T.; Park, H. W.; You, S. A.; Yoon, H.; Jang, J. Nano Lett. 2012, 12, 2797. doi: 10.1021/nl204587t

    (32)Zhang, S. W.; Swager, T. M. J. Am. Chem. Soc. 2003, 125, 3420. doi: 10.1021/ja029265z

    (33)Louise-Leriche, L.; Pǎunescu, E.; Saint-André, G.; Baati, R.;Romieu, A.; Wagner, A.; Renard, P. Y. Chem. Eur. J. 2010, 16, 3510. doi: 10.1002/chem.200902986

    (34)Singh, V. V.; Kaufmann, K.; Orozco, J.; Li, J. X.; Galarnyk, M.;Arya, G.; Wang, J. Chem. Commun. 2015, 51, 11190. doi: 10.1039/C5CC04120A

    (35)Zhao, L.; Yan, Y.; Huang, J. B. Acta Phys. -Chim. Sin. 2010, 26, 840. [趙 莉, 閻 云, 黃建濱. 物理化學(xué)學(xué)報, 2010, 26, 840.]doi: 10.3866/PKU.WHXB20100429

    (36)Lei, Z. H.; Yang, Y. J. J. Am. Chem. Soc. 2014, 136, 6594. doi: 10.1021/ja502945q

    (37)Jo, S.; Kim, D.; Son, S. H.; Kim, Y.; Lee, T. S. ACS Appl. Mater. Interfaces 2014, 6, 1330. doi: 10.1021/am405430t

    (38)Wu, Z. S.; Wu, X. J.; Yang, Y. H.; Wen, T. B.; Han, S. F. Bioorg. Med. Chem. Lett. 2012, 22, 6358. doi: 10.1016/j.bmcl.2012.08.077

    (39)Bencic-Nagale, S.; Sternfeld, T.; Walt, D. R. J. Am. Chem. Soc. 2006, 128, 5041. doi: 10.1021/ja057057b

    (40)Dale, T. J.; Rebek, J., Jr. J. Am. Chem. Soc. 2006, 128, 4500. doi: 10.1021/ja057449i

    (41)Jang, Y. J.; Tsay, O. G.; Murale, D. P.; Jeong, J. A.; Segev, A.;Churchill, D. G. Chem. Commun. 2014, 50, 7531. doi: 10.1039/C4CC02689F

    (42)Dale, T. J.; Rebek, J., Jr. Angew. Chem. Int. Edit. 2009, 48, 7850. doi: 10.1002/anie.200902820

    (43)Wu, X. J.; Wu, Z. S.; Han, S. F. Chem. Commun. 2011, 47, 11468. doi: 10.1039/C1CC15250E

    (44)He, L. P.; Liang, J. J.; Cong, Y.; Chen, X.; Bu, W. F. Chem. Commun. 2014, 50, 10841. doi: 10.1039/C4CC04243C

    (45)Kim, I. B.; Erdogan, B.; Wilson, J. N.; Bunz, U. H. F. Chem. -Eur. J. 2004, 10, 6247. doi: 10.1002/chem.200400788

    (46)Tolosa, J.; Zucchero, A. J.; Bunz, U. H. F. J. Am. Chem. Soc. 2008, 130, 6498. doi: 10.1021/ja800232f

    (47)Klok, H. A.; Hwang, J. J.; Iyer, S. N.; Stupp, S. I. Macromolecules 2002, 35, 746. doi: 10.1021/ma010907x

    (48)Xue, M.; Miao, Q.; Fang, Y. Acta Phys. -Chim. Sin. 2013, 29, 2005. [薛 敏, 苗 青, 房 喻. 物理化學(xué)學(xué)報, 2013, 29, 2005.] doi: 10.3866/PKU.WHXB201306142

    (49)Zhang, L.; You, C. J.; Chen, J. P.; Yang, G. Q.; Li, Y. Acta Phys. -Chim. Sin. 2006, 22, 326. [張 魯, 游長江, 陳金平, 楊國強, 李 嫕. 物理化學(xué)學(xué)報, 2006, 22, 326.] doi: 10.1016/S1872-1508(06)60008-9

    (50)Pangeni, D.; Nesterov, E. E. Macromolecules 2013, 46, 7266. doi: 10.1021/ma4016278

    (51)Chang, X. M.; Wang, G.; Yu, C. M.; Wang, Y. R.; He, M. X.;Fan J.; Fang, Y. J. Photochem. Photobiol. A 2015, 298, 9. doi: 10.1016/j.jphotochem.2014.10.008

    (52)Marx, V. Nat. Methods 2015, 12, 187. doi: 10.1038/nmeth.3295

    (53)Dennison, G. H.; Johnston, M. R. Chem. -Eur. J. 2015, 21, 6328. doi: 10.1002/chem.201406213

    (54)Goswami, S. Das, S.; Aich, K. RSC Adv. 2015, 5, 28996. doi: 10.1039/C5RA01216C

    A New Type of 1,4-Bis(phenylethynyl)benzene Derivatives: Optical Behavior and Sensing Applications

    QI Yan-Yu SUN Xiao-Huan CHANG Xing-Mao KANG Rui LIU Kai-Qiang FANG Yu*
    (Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China)

    A new and optically stable fluorescent deriνatiνe (OPBMQ) of 1,4-bis(phenylethynyl)benzene(BPEB) with 8-hydroxyquinoline (8-HQ) as a capturing unit and cholesterol (Chol) as an auxiliary structure was designed and synthesized. Fluorescence studies demonstrated that the fluorescence emission of the compound in the aqueous phase is characterized by two distinct and independent emissions, of which one originates from 8-HQ and the other from BPEB. Importantly, the emission is highly selectiνe and sensitiνe to the presence of diethyl chlorophosphate (DCP), a simulant of Sarin. The calculated detection limit (DL)is lower than 1 × 10?9mol·L?1. Moreoνer, no significant response was obserνed when the probe was exposed to simulants of other nerνe agents, releνant organophosphorus pesticides, or eνen their mixtures. More importantly, regardless of whether Milli-Q water, tap water or eνen sea water was employed as solνent, the presence of the mixture of the interferents studied did not show any significant effect on the detection of DCP. In particular, the sensitiνe and highly selectiνe detection of DCP was also realized by naked-eye obserνation, proνiding a simple and low-cost protocol for the on-site and real-time detection of the chemical. Based on this discoνery, a DCP monitoring deνice was successfully deνeloped.

    1,4-Bis(phenylethynyl)benzene; Fluorescence; Sarin; 8-Hydroxyquinoline; Diethyl chlorophosphate

    O644

    10.3866/PKU.WHXB201511091

    Received: October 11, 2015; Revised: November 9, 2015; Published on Web: November 9, 2015.

    *Corresponding author. Email: yfang@snnu.edu.cn; Tel: +86-29-81530787.

    The project was supported by the National Natural Science Foundation of China (21273141, 21527802), “111 Project”, China (B14041), and Program for Changjiang Scholars and Innovative Research Team in Universities, China (IRT1070).

    國家自然科學(xué)基金(21273141, 21527802), “111”計劃(B14041)及長江學(xué)者與創(chuàng)新團隊發(fā)展計劃(IRT1070)資助項目

    ?Editorial office of Acta Physico-Chimica Sinica

    猜你喜歡
    沙林毒氣乙炔
    驚魂毒氣戰(zhàn)
    毒氣、偵探和筆記
    走開!毒氣君
    寫在美麗的沙林
    兵團工運(2019年1期)2019-12-15 23:01:31
    毒氣
    烷美無炔
    不知保釋金降至2美元白坐5月牢
    東西南北(2016年14期)2016-08-16 09:47:08
    超導(dǎo)電乙炔炭黑DENKA BLACK(電池用途)
    在線激光乙炔分析儀在醋酸乙烯合成中的應(yīng)用
    自動化博覽(2014年8期)2014-02-28 22:33:06
    水環(huán)壓縮機組在乙炔生產(chǎn)中的應(yīng)用
    中國氯堿(2014年10期)2014-02-28 01:04:59
    亚洲,欧美,日韩| 性色av一级| 国产极品粉嫩免费观看在线 | 在线天堂最新版资源| 国产欧美另类精品又又久久亚洲欧美| 国产男女超爽视频在线观看| 久久精品国产鲁丝片午夜精品| 在线观看人妻少妇| 国产深夜福利视频在线观看| 亚洲av在线观看美女高潮| 欧美 亚洲 国产 日韩一| 国产精品偷伦视频观看了| 成年女人在线观看亚洲视频| 久久人人爽人人片av| 久久久久精品性色| 免费黄频网站在线观看国产| 欧美三级亚洲精品| 亚洲精品乱久久久久久| 国产精品一区二区在线不卡| 亚洲美女视频黄频| 久久精品国产a三级三级三级| 精品一区在线观看国产| 亚洲av日韩在线播放| 男女边摸边吃奶| 国产精品一国产av| 国产精品成人在线| 亚洲精品一二三| 一本大道久久a久久精品| 色吧在线观看| 日本wwww免费看| 夜夜看夜夜爽夜夜摸| 久久99一区二区三区| 国产精品国产三级国产av玫瑰| 亚洲,一卡二卡三卡| 国内精品宾馆在线| 成年人午夜在线观看视频| 黑人欧美特级aaaaaa片| av免费观看日本| 制服诱惑二区| 五月伊人婷婷丁香| 这个男人来自地球电影免费观看 | 日本欧美国产在线视频| 久久久久网色| 亚洲av福利一区| 欧美xxⅹ黑人| 成人亚洲欧美一区二区av| www.av在线官网国产| 最近中文字幕2019免费版| 少妇人妻 视频| 国产亚洲最大av| 日日爽夜夜爽网站| 国产欧美日韩综合在线一区二区| 亚洲人成网站在线观看播放| 欧美亚洲日本最大视频资源| 国产精品一二三区在线看| 秋霞伦理黄片| 国产黄频视频在线观看| 欧美少妇被猛烈插入视频| 久久青草综合色| 免费观看a级毛片全部| 亚洲在久久综合| 亚洲人成网站在线播| 丰满饥渴人妻一区二区三| 中文字幕人妻熟人妻熟丝袜美| 亚洲精品美女久久av网站| 天堂中文最新版在线下载| 色94色欧美一区二区| 中国美白少妇内射xxxbb| 人妻系列 视频| 亚洲精品国产色婷婷电影| 99九九线精品视频在线观看视频| 日韩一区二区三区影片| 日韩视频在线欧美| 人妻制服诱惑在线中文字幕| 热99久久久久精品小说推荐| 狂野欧美白嫩少妇大欣赏| 亚洲国产av影院在线观看| 22中文网久久字幕| 亚洲情色 制服丝袜| 国产亚洲一区二区精品| 国产高清三级在线| 精品久久久噜噜| 亚洲精品成人av观看孕妇| 91精品国产国语对白视频| av天堂久久9| 丰满乱子伦码专区| 国产一区二区在线观看日韩| videos熟女内射| 中国美白少妇内射xxxbb| 亚洲经典国产精华液单| 亚洲国产av新网站| 黄色怎么调成土黄色| 国产亚洲精品久久久com| 国产精品国产三级国产av玫瑰| 性高湖久久久久久久久免费观看| 国产精品国产av在线观看| 欧美+日韩+精品| 高清视频免费观看一区二区| 大陆偷拍与自拍| 日韩大片免费观看网站| 欧美xxxx性猛交bbbb| 午夜免费男女啪啪视频观看| 婷婷色综合大香蕉| 免费大片18禁| 亚洲精品日本国产第一区| 亚洲国产精品成人久久小说| 久久99热这里只频精品6学生| 午夜久久久在线观看| 一本色道久久久久久精品综合| 久久久久久伊人网av| 亚洲国产精品一区三区| 九色亚洲精品在线播放| 99re6热这里在线精品视频| 天天操日日干夜夜撸| 3wmmmm亚洲av在线观看| 国产精品久久久久久久电影| 欧美三级亚洲精品| 久久99一区二区三区| 22中文网久久字幕| 国产一区二区在线观看av| av电影中文网址| 欧美亚洲日本最大视频资源| 赤兔流量卡办理| 午夜视频国产福利| 精品久久久噜噜| 午夜影院在线不卡| 亚洲精华国产精华液的使用体验| 丁香六月天网| 日本欧美视频一区| 久久99一区二区三区| 国产视频首页在线观看| 亚洲精品中文字幕在线视频| 中国美白少妇内射xxxbb| 午夜福利网站1000一区二区三区| 亚洲精品视频女| 亚洲一区二区三区欧美精品| 天堂中文最新版在线下载| 欧美精品人与动牲交sv欧美| 久久久久精品久久久久真实原创| 久久久久久久久大av| 国产综合精华液| 亚洲精品乱码久久久v下载方式| 天堂中文最新版在线下载| 精品一区在线观看国产| 国产日韩欧美亚洲二区| 这个男人来自地球电影免费观看 | 多毛熟女@视频| 最新的欧美精品一区二区| 寂寞人妻少妇视频99o| 国产精品久久久久久久电影| 交换朋友夫妻互换小说| 亚洲国产欧美在线一区| 超碰97精品在线观看| 国产高清不卡午夜福利| 搡老乐熟女国产| 亚洲精品日本国产第一区| 欧美成人午夜免费资源| 亚洲精品国产av蜜桃| 欧美日韩av久久| 亚洲av免费高清在线观看| 狂野欧美白嫩少妇大欣赏| 日本91视频免费播放| 日本黄大片高清| av一本久久久久| 51国产日韩欧美| 日本91视频免费播放| 精品一区二区三卡| 男女无遮挡免费网站观看| 国产欧美日韩一区二区三区在线 | 国产精品.久久久| 国产 一区精品| 午夜福利视频精品| 晚上一个人看的免费电影| 久久久精品免费免费高清| 在线观看免费视频网站a站| 日韩视频在线欧美| 日韩,欧美,国产一区二区三区| 永久网站在线| av福利片在线| 日韩欧美精品免费久久| 精品一品国产午夜福利视频| 欧美日韩一区二区视频在线观看视频在线| 五月伊人婷婷丁香| 婷婷色综合大香蕉| 国产欧美日韩综合在线一区二区| 菩萨蛮人人尽说江南好唐韦庄| xxx大片免费视频| 日本av手机在线免费观看| 国产乱人偷精品视频| 亚洲av欧美aⅴ国产| 精品久久国产蜜桃| 国语对白做爰xxxⅹ性视频网站| 妹子高潮喷水视频| 老司机亚洲免费影院| 男男h啪啪无遮挡| 国产日韩欧美视频二区| 日本91视频免费播放| 欧美97在线视频| 日韩熟女老妇一区二区性免费视频| 免费不卡的大黄色大毛片视频在线观看| 最近的中文字幕免费完整| 一级毛片aaaaaa免费看小| 亚洲成色77777| 欧美人与性动交α欧美精品济南到 | videossex国产| 国产免费视频播放在线视频| 婷婷色av中文字幕| 国产一区二区三区综合在线观看 | 午夜视频国产福利| 国产不卡av网站在线观看| 亚洲精品美女久久av网站| 纵有疾风起免费观看全集完整版| 美女主播在线视频| av不卡在线播放| 国产毛片在线视频| 69精品国产乱码久久久| 亚洲情色 制服丝袜| 国产精品一区www在线观看| 女性被躁到高潮视频| 在现免费观看毛片| 久久精品国产亚洲av天美| 欧美97在线视频| 交换朋友夫妻互换小说| 9色porny在线观看| 精品一品国产午夜福利视频| 汤姆久久久久久久影院中文字幕| 国产视频首页在线观看| 亚洲人与动物交配视频| 麻豆乱淫一区二区| tube8黄色片| 人妻一区二区av| av网站免费在线观看视频| 极品人妻少妇av视频| 午夜91福利影院| 黄色欧美视频在线观看| 中文天堂在线官网| 我的女老师完整版在线观看| 日韩强制内射视频| 国产高清国产精品国产三级| 国产乱人偷精品视频| 国产精品99久久久久久久久| 在线观看免费日韩欧美大片 | 嘟嘟电影网在线观看| 99视频精品全部免费 在线| a级毛片免费高清观看在线播放| 亚洲国产欧美日韩在线播放| 少妇高潮的动态图| 国产精品一国产av| 久久人人爽人人爽人人片va| 伦理电影免费视频| 丝袜美足系列| 一边摸一边做爽爽视频免费| 精品视频人人做人人爽| 交换朋友夫妻互换小说| 观看美女的网站| 久久久久久久国产电影| 亚洲成色77777| 精品久久久久久电影网| 色哟哟·www| 黄色毛片三级朝国网站| 少妇人妻精品综合一区二区| 日日啪夜夜爽| 国产精品一区二区在线观看99| 亚洲精品乱久久久久久| 自线自在国产av| av网站免费在线观看视频| 制服人妻中文乱码| 三级国产精品片| 久久久久久人妻| 97超碰精品成人国产| 日本免费在线观看一区| 菩萨蛮人人尽说江南好唐韦庄| 搡老乐熟女国产| 久久久久久久大尺度免费视频| 亚洲精品乱码久久久久久按摩| 亚洲欧美日韩卡通动漫| 极品少妇高潮喷水抽搐| 国产av码专区亚洲av| 超色免费av| 国产精品国产三级国产av玫瑰| 9色porny在线观看| 久久精品夜色国产| 亚洲欧美色中文字幕在线| 日产精品乱码卡一卡2卡三| 一本一本综合久久| 国产伦理片在线播放av一区| 最黄视频免费看| 国产成人av激情在线播放 | 能在线免费看毛片的网站| 欧美3d第一页| 久久久久久久久久成人| 少妇丰满av| 国产亚洲精品久久久com| 国产精品.久久久| 国产成人av激情在线播放 | 亚洲国产av新网站| 最后的刺客免费高清国语| 99久久人妻综合| 少妇被粗大的猛进出69影院 | 久久精品国产亚洲网站| 国产日韩欧美在线精品| 亚洲国产精品一区二区三区在线| xxx大片免费视频| 国产乱来视频区| 男女免费视频国产| 我要看黄色一级片免费的| 国产成人精品在线电影| 啦啦啦视频在线资源免费观看| 国产不卡av网站在线观看| 精品久久久久久久久av| 久久久久久久久久久丰满| 午夜福利网站1000一区二区三区| 午夜久久久在线观看| a 毛片基地| 国产亚洲av片在线观看秒播厂| 成人亚洲精品一区在线观看| 国产国语露脸激情在线看| 亚洲精品国产av成人精品| 99久久精品一区二区三区| 久久久亚洲精品成人影院| 精品久久国产蜜桃| 日韩一区二区三区影片| 看十八女毛片水多多多| 国产av国产精品国产| 亚洲,欧美,日韩| 国产高清国产精品国产三级| 久久这里有精品视频免费| 自拍欧美九色日韩亚洲蝌蚪91| 老女人水多毛片| 日本vs欧美在线观看视频| 蜜桃久久精品国产亚洲av| 国产免费福利视频在线观看| 久久人人爽人人爽人人片va| 简卡轻食公司| tube8黄色片| 久久久国产精品麻豆| 91aial.com中文字幕在线观看| 国产日韩一区二区三区精品不卡 | 午夜精品国产一区二区电影| 亚洲精品乱码久久久久久按摩| 日日爽夜夜爽网站| 亚洲欧美色中文字幕在线| av网站免费在线观看视频| av又黄又爽大尺度在线免费看| 中文字幕av电影在线播放| 亚洲精品国产av蜜桃| videosex国产| 99热网站在线观看| 黄色视频在线播放观看不卡| 国产精品久久久久久久电影| 国内精品宾馆在线| 狠狠婷婷综合久久久久久88av| 国产成人av激情在线播放 | 久久精品国产亚洲av涩爱| 午夜av观看不卡| 久久午夜综合久久蜜桃| 亚洲av综合色区一区| 久久鲁丝午夜福利片| 久久精品久久久久久噜噜老黄| 最后的刺客免费高清国语| 亚洲性久久影院| 国产视频首页在线观看| 天天影视国产精品| 欧美人与性动交α欧美精品济南到 | 亚洲av欧美aⅴ国产| 中文精品一卡2卡3卡4更新| 亚洲欧美中文字幕日韩二区| 少妇被粗大的猛进出69影院 | 美女国产视频在线观看| 纯流量卡能插随身wifi吗| 91aial.com中文字幕在线观看| 热re99久久精品国产66热6| 欧美精品一区二区免费开放| 亚洲国产成人一精品久久久| 亚洲美女视频黄频| 精品亚洲乱码少妇综合久久| 久久久久视频综合| 欧美97在线视频| 免费久久久久久久精品成人欧美视频 | 国产精品一区二区在线不卡| 欧美日韩视频精品一区| 综合色丁香网| 伊人久久国产一区二区| 午夜av观看不卡| 国产精品久久久久久精品古装| 91aial.com中文字幕在线观看| 婷婷成人精品国产| 91国产中文字幕| 国产精品久久久久久精品古装| 男人操女人黄网站| 老熟女久久久| 大码成人一级视频| 国产午夜精品一二区理论片| 久久人人爽av亚洲精品天堂| 久久久久国产网址| 能在线免费看毛片的网站| av.在线天堂| 在线 av 中文字幕| 国产女主播在线喷水免费视频网站| 国产精品一区www在线观看| 亚洲激情五月婷婷啪啪| 国产精品久久久久久精品古装| 3wmmmm亚洲av在线观看| 新久久久久国产一级毛片| 桃花免费在线播放| 精品一品国产午夜福利视频| 国产精品女同一区二区软件| 久久鲁丝午夜福利片| 男男h啪啪无遮挡| 国产av码专区亚洲av| 日本欧美国产在线视频| 亚洲精品亚洲一区二区| 久久精品国产亚洲网站| 看非洲黑人一级黄片| 亚洲精品一区蜜桃| 国产精品人妻久久久影院| 一个人免费看片子| 精品久久久久久久久av| 91精品国产九色| 精品酒店卫生间| 免费久久久久久久精品成人欧美视频 | 母亲3免费完整高清在线观看 | 亚洲精品视频女| 日韩亚洲欧美综合| 91午夜精品亚洲一区二区三区| 国产精品一二三区在线看| 69精品国产乱码久久久| 精品亚洲成a人片在线观看| xxx大片免费视频| 赤兔流量卡办理| 久久综合国产亚洲精品| 国产精品一区二区在线观看99| 高清欧美精品videossex| 国产精品一二三区在线看| 亚洲综合色网址| 久久97久久精品| 久久国产精品男人的天堂亚洲 | 精品久久久久久电影网| 九九爱精品视频在线观看| 日韩不卡一区二区三区视频在线| 狂野欧美白嫩少妇大欣赏| 成人毛片a级毛片在线播放| 日本欧美国产在线视频| 成人毛片60女人毛片免费| 水蜜桃什么品种好| 亚洲一区二区三区欧美精品| 欧美丝袜亚洲另类| 亚洲精品乱码久久久久久按摩| 青春草国产在线视频| 国产极品天堂在线| 999精品在线视频| 精品久久久久久久久亚洲| 国产爽快片一区二区三区| 美女国产视频在线观看| 日韩电影二区| 久久ye,这里只有精品| 伦精品一区二区三区| 最近中文字幕高清免费大全6| 国产在线视频一区二区| 91精品伊人久久大香线蕉| 亚洲成人av在线免费| 99久久精品国产国产毛片| 男的添女的下面高潮视频| 99热6这里只有精品| 黄片无遮挡物在线观看| 午夜精品国产一区二区电影| 看非洲黑人一级黄片| 18禁动态无遮挡网站| 七月丁香在线播放| 久热这里只有精品99| 黑人欧美特级aaaaaa片| 久久精品人人爽人人爽视色| 一本一本综合久久| av在线观看视频网站免费| 亚洲av不卡在线观看| 成人国产av品久久久| 日韩三级伦理在线观看| 国产成人午夜福利电影在线观看| 一区二区三区四区激情视频| 精品国产露脸久久av麻豆| a 毛片基地| 欧美精品一区二区免费开放| 久久精品国产a三级三级三级| 在线观看三级黄色| 色5月婷婷丁香| 久久韩国三级中文字幕| 国产免费福利视频在线观看| 三级国产精品片| 免费播放大片免费观看视频在线观看| 丝袜喷水一区| 男女国产视频网站| 国产在线免费精品| 老司机亚洲免费影院| 免费高清在线观看视频在线观看| 欧美日韩亚洲高清精品| 久久久久视频综合| 91精品一卡2卡3卡4卡| 亚洲欧美日韩卡通动漫| 欧美xxⅹ黑人| 性色av一级| 精品久久久久久电影网| 少妇被粗大的猛进出69影院 | 一本大道久久a久久精品| 一级,二级,三级黄色视频| 亚洲成人一二三区av| 日韩制服骚丝袜av| 久久这里有精品视频免费| 日本av手机在线免费观看| 精品国产一区二区三区久久久樱花| 久久久久网色| 日本色播在线视频| tube8黄色片| 丰满迷人的少妇在线观看| 老司机影院毛片| 欧美日韩av久久| 69精品国产乱码久久久| 国产成人精品一,二区| 搡老乐熟女国产| 亚洲av二区三区四区| 成年人午夜在线观看视频| 成人手机av| 一个人免费看片子| 亚洲欧洲精品一区二区精品久久久 | 一个人看视频在线观看www免费| 亚洲国产最新在线播放| 亚洲精品自拍成人| 99久久人妻综合| 欧美国产精品一级二级三级| 大香蕉久久网| a 毛片基地| 日韩精品有码人妻一区| 美女中出高潮动态图| 日韩成人av中文字幕在线观看| 精品国产露脸久久av麻豆| 三级国产精品片| 我的女老师完整版在线观看| 国产精品不卡视频一区二区| 国产免费一区二区三区四区乱码| 亚洲激情五月婷婷啪啪| 伊人久久国产一区二区| av一本久久久久| videosex国产| 日韩 亚洲 欧美在线| 看非洲黑人一级黄片| 成年女人在线观看亚洲视频| 91精品国产国语对白视频| 纵有疾风起免费观看全集完整版| 欧美 日韩 精品 国产| 欧美精品国产亚洲| 黄色一级大片看看| 日本欧美国产在线视频| 日韩中字成人| 在线观看免费视频网站a站| 在线观看免费高清a一片| 成人毛片a级毛片在线播放| 成年av动漫网址| 欧美国产精品一级二级三级| 夫妻性生交免费视频一级片| 99热6这里只有精品| av免费在线看不卡| 日日摸夜夜添夜夜添av毛片| 国语对白做爰xxxⅹ性视频网站| 这个男人来自地球电影免费观看 | 国产片内射在线| 色94色欧美一区二区| 狂野欧美激情性bbbbbb| 少妇人妻久久综合中文| 欧美激情 高清一区二区三区| 午夜福利影视在线免费观看| 日本与韩国留学比较| 国产一区有黄有色的免费视频| 色视频在线一区二区三区| 日本黄大片高清| 如何舔出高潮| 精品久久国产蜜桃| 18+在线观看网站| 亚洲国产最新在线播放| 欧美日韩在线观看h| 精品视频人人做人人爽| 黄色毛片三级朝国网站| 这个男人来自地球电影免费观看 | 成人漫画全彩无遮挡| 一级毛片黄色毛片免费观看视频| 超碰97精品在线观看| 亚洲av福利一区| 国产精品一区二区三区四区免费观看| 国语对白做爰xxxⅹ性视频网站| 国产黄频视频在线观看| 精品久久久噜噜| 美女福利国产在线| 亚洲精品日韩在线中文字幕| 精品亚洲成a人片在线观看| 国产综合精华液| 91久久精品电影网| 亚洲少妇的诱惑av| 综合色丁香网| 欧美精品一区二区大全| 99久久人妻综合| 黄片播放在线免费| 国产av码专区亚洲av| 91精品国产九色| 夫妻午夜视频| 亚洲成人av在线免费| 婷婷成人精品国产| 有码 亚洲区| 国产成人精品在线电影| 国产精品国产三级国产专区5o| 黑人高潮一二区| 国产在线免费精品| 日韩一区二区三区影片| 欧美精品国产亚洲| 老司机影院毛片| 国产成人午夜福利电影在线观看| 美女cb高潮喷水在线观看| 男人操女人黄网站|