• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    部分水解聚丙烯酰胺與蠕蟲狀膠束在微米級毛細(xì)管中的驅(qū)替粘度

    2016-11-18 07:29:23陸業(yè)昌李文宏張永強(qiáng)李學(xué)豐董金鳳
    物理化學(xué)學(xué)報(bào) 2016年1期
    關(guān)鍵詞:牛頓流體蠕蟲長慶油田

    陸業(yè)昌李文宏張永強(qiáng)李學(xué)豐董金鳳,*

    (1武漢大學(xué)化學(xué)與分子科學(xué)學(xué)院,武漢 430072;2低滲透油氣田勘探開發(fā)國家工程實(shí)驗(yàn)室,西安 710021;3中國石油長慶油田分公司勘探開發(fā)研究院,西安 710021)

    部分水解聚丙烯酰胺與蠕蟲狀膠束在微米級毛細(xì)管中的驅(qū)替粘度

    陸業(yè)昌1李文宏2,3張永強(qiáng)2,3李學(xué)豐1董金鳳1,*

    (1武漢大學(xué)化學(xué)與分子科學(xué)學(xué)院,武漢 430072;2低滲透油氣田勘探開發(fā)國家工程實(shí)驗(yàn)室,西安 710021;3中國石油長慶油田分公司勘探開發(fā)研究院,西安 710021)

    部分水解聚丙烯酰胺(HPAMs)被大量地用作三次采油中驅(qū)替液的增稠劑,表面活性劑在一定的條件下可以通過自組裝形成蠕蟲狀膠束,具有與高分子相似的增稠的作用。本文在半徑為1–10 μm的毛細(xì)管中,分別考察了HPAMs與蠕蟲狀膠束的微觀驅(qū)替行為,研究結(jié)果表示毛細(xì)管內(nèi)腔的尺寸限制了這些非牛頓流體的增稠作用。隨著毛細(xì)管半徑的減小,聚合物溶液的剪切變稀越劇烈,甚至從非牛頓流體轉(zhuǎn)變?yōu)榕nD流體的流體行為。結(jié)合驅(qū)替研究和超濾、電鏡的結(jié)果,證明了高分子的纏繞結(jié)構(gòu)在毛細(xì)管中已被破壞。通過對比驅(qū)替數(shù)據(jù),蠕蟲狀膠束在毛細(xì)管中能夠更大程度地保留宏觀的粘度,我們提出表面活性劑能夠通過自組裝修復(fù)被破壞的纏繞結(jié)構(gòu),比高分子聚合物在微觀有限空間中有更好的增稠能力。

    微米級毛細(xì)管;驅(qū)替粘度;部分水解聚丙烯酰胺;蠕蟲狀膠束;毛細(xì)管壓力

    1 Introduction

    Low or ultra-low permeability oil and gas resource is abundant and has a great potential of exploration and development. Oil production in low permeability reservoirs increases continuously and the proportion in production components is increasing yearly. Pore throats or channels typically range from about 0.1 to 1 μm in the low permeability reservoir. Water-oil displacement in these reservoirs was assumed as a piston-like shock and the viscous fingers was investigated widely both using numerical simulation and experimented techniques1,2. Enhanced oil recovery (EOR) was developed to be an economic technique in increasing production from the oil left in the ground. Based on the capillary number, Ca = ηV/γ, where η is the viscosity of the liquid, V is a characteristic velocity, and γ is the surface or interfacial tension between the two fluid phases, both increasing the viscosity of the liquid and decreasing the interfacial tension are effective ways to increase Ca above 10–5which is favorable to reduce the viscous fingers3. Hydrolyzed polyacrylamides (HPAMs) have been widely applied to enhance the viscosity of aqueous injectants in pores4,5. However, the in-situ viscosity is less than the bulk viscosity due to the existence of a depleted layer near the pore wall6,7. The effect of employing polymers has been a focus in research for the last two decades8–10. One of the challenge is developing feasible insitu experimental techniques to study the flow behavior and immiscible two-phases displacement. A number of experimented techniques were reported to investigate the cores over 100 μm reserviors11–13. And some numerical simulation methods were established to estimate the behavior of fluid displacing in the nanopores14,15. We developed a digital video technique to visualize the interface movement in microscale capillary. The radii of the capillary can be as small as 1 μm due to the availability. Based on the Washburn equation, two-phase or three-phase flows have been investigated and the size of capillary was found to play a critical role in the displacement velocity and capillary pressure16–23.

    The present work employs commercial samples of HPAMs with different molecular weights as the displacing phase in quartz capillaries with radii ranging from 1 to 10 μm. Immiscible two phase displacement such as liquid-gas and liquid-liquid flow are investigated. The shear-thinning behavior of HPAMs in bulk is characterized. The capillary size effect on the in-situ viscosity during the capillary displacement is established. Significant difference between bulk viscosity and in-situ viscosity was found. Filtration and transmission electron microscopy (TEM) were employed to explain the results. In comparison, worm-like micelles (WLMs) are known as the “l(fā)iving polymers” which can be constructed by the self-assembling of surfactant molecules, was employed to replace HPAMs in the displacing agent, and the in-situ viscosity was characterized.

    2 Materials and methods

    2.1 Materials

    Glycol (≥ 99.0%) and n-decane (≥ 99.0%) were obtained from Sinopharm Chemical Reagent Co., Ltd. Glycol was used as received and diluted by deionized water to required concentration. n-Decane was used as the oil phase after being purified following a text book process until the decane/water interfacial reaches 50 mN·m–124. Polyacrylamides with different molecular weights listed in Table 1 were supplied by SNF FLOERGER and used as received. The polymer solutions were prepared by introducing weighed amounts of HPAM in ultrapure deionized water (Milli-Q system) and stirred by 60 r·min–1at least 24 h to ensure complete dissolution, then left at 25 °C for 3 d before any measurement. The WLM samples were prepared following the previous report25, the concentration of sodium oleate (NaOA, > 99%, from STREM CHEMICALS) was 50 mmol·L–1, and 1-[2-(4-phenylazo-phenoxy)-ethyl]-3-methylimidazolium bromide (C0AZOC2IMB, synthesized by our group) was 17.5 mmol·L–1, the mole ratio [C0AZOC2IMB]/[NaOA] was 0.35. 99.99% nitrogen was used as the gas phase. Capillaries of high-purity quartz (> 99.99% of SiO2) were purchased from Polymicro Technologies (U.S.).

    2.2 Surface or interfacial tension

    The surface tension γ and the interfacial tension between aqueous phase and decane γ12were measured via Pendant Drop method (DSA100 droplet shape analysis, Krüss, Germany) at 25 °C. Corresponding experimental results were given in Table S1 in the Supporting Information.

    2.3 Rheological measurements

    Measurements were performed on a RS 600 stress-controlled rheometer (HAKKE RS600, Thermo Fisher Scientific, Germany) using a couvette geometry Z20 according to the fluid viscosities. A Peltier-based temperature controller maintained the sample at 25 oC. The samples were equilibrated for at least 30 min before measurements. A solvent trap was used to minimize sample evaporation.

    2.4 Capillary tubes

    The radii of the capillary were measured by the method referred to the previous literature26–28. Dry capillaries were first saturated with water for an hour, and then, liquid in capillaries was expelled by blowing nitrogen gas before experiments. The determined results of the capillaries used in this study were 1.13, 2.88, 5.38, 9.18 μm, respectively.

    Table 1 Molecular weight of HPAMs

    2.5 Displacement

    The experiment setup was designed according to the reported apparatus28. In all of the experiments, the capillary was cut into a length L ≈ 180 mm. In the liquid-gas displacement, the experiments were setup by the same way as the method of determination of capillary radii. In the liquid-liquid displacement, the capillary was first placed in one end into the oil reservoir, and then the capillary would be saturated with oil spontaneously until it was completely saturated. Subsequently, the oth-er end of capillary was placed into the water solution reservoir and the solution could displace the oil phase spontaneously. After that, the capillary was placed horizontally, attached each end with a reservoir containing the displacing and displaced phases, respectively. Following the procedure reported earlier26–28, the displacement rate v was measured from the time required for the interface of liquid-gas or liquid-liquid system to travel a very small distance ΔL = 500 μm (ΔL << L) at a specific point.

    2.6 Filtration

    Microporous filters with pore diameters 2, 5, 10, 20 μm were purchased from Xingya purification materials plant (Shanghai). The viscous polymer fluids were forced to pass the microporous filters under external pressure of 100 kPa.

    2.7 Transmission electron microscopy

    The configuration of HPAMs molecules were observed on a JEM-2100 TEM operated at an acceleration voltage of 200 kV. Samples for TEM observation were prepared as follows. One drop of sample with a concentration of 1000 mg·mL–1was placed on a carbon-coated copper grid and the excess fluid was drained off with a filter paper. Then, a drop of 2% (w, mass fraction) aqueous phosphotungstic acid solution was added and the residue of the aqueous solution was removed with a filter paper after several minutes. The samples were finally dried at room temperature prior to measurement.

    3 Results and discussion

    Washburn equation describes Newtonian fluids displacement in the capillary assuming that the viscosity of the fluid is constant. The relationship between the displacement rate and external pressure is linear. The polymer solution investigated here is a shear-thinning fluid. Its viscosity of polymer solution decreases with the increase of shear rate, corresponding to the displacement rate in the capillary. The displacement rate of polymer solution is predicted to be a power-law function of the external pressure by the theory and previous experiments in which the flows are displacing in capillary over 100 μm11–13. Fig.1 shows the shear viscosity of polymer solutions and wormlike micelle solution. Polymer and worm-like micelle solution is a shear-thinning fluid, and the viscosity curves show a Newtonian plateau at low shear rate and drop at high shear rate for the breakage of entanglement of the long chains. The viscosity drop can be seen as a power-law function of shear rate.

    Fig.1 Shear viscosity vs shear rate for the non-Newtonian systems

    In the classic Washburn equation16, for the liquid-gas flow, the relationship between displacing rate v (the rate of meniscus displacement) and external pressure ΔP is

    where r is the capillary radius, η is the viscosity of the fluid, Pcis the capillary pressure, and L is the length of the fluid. And for the liquid-liquid flow,

    where ηiand Liare the viscosity and length of each phase, respectively.

    The capillary pressure at each interface caused by interfacial tension could be written as Young-Laplace equation

    where γ is the tension of the surface or interface, θ is the wetting contact angle. Measured fluids firstly saturate the capillary and are expelled by blowing nitrogen gas before experiments, so the capillary is pre-wetted by the fluid and the contact angle θ can be treated as 0°.

    Equations (1)–(3) are used to describe the kinetics of mutual displacement of the Newtonian fluid whose viscosity is taken as a constant value η. In a cylindrical capillary with radius r, the displacing rate v and external pressure ΔP show a linear relationship in which the length of each phase Lican easily be identified, with slope k = r2/8ΣηiLi. So the in-situ viscosities of fluid can be calculated from this slope of the v–ΔP line.

    The in-situ viscosities of some known Newtonian fluid, including decane and 65% glycol aqueous solution, measured by this displacement method are shown in Table 2. Clearly, the viscosity measured by displacement method fits well with that by rheometer. The Newtonian fluid′s viscosity keeps the same in different sizes of capillaries, which assures that the displacement method is feasible.

    Table 2 Viscosity of known fluids at 25 oC

    For shear-thinning fluid, the in-situ viscosity is a function of the shear rate. The power law is the simplest one of the models which is given by the relation

    where C is the consistency factor,is the shear rate, and n is the flow behavior index. The power-law is usually used to model shear-thinning behavior when n = 1, the value of C is equal to the viscosity of Newtonian fluids.

    If the fluid is treated as a power-law model, the Washburn equation of liquid-gas flow could be extended as29

    The relationship between displacing rate v and total pressure drop (ΣP = ΔP + Pc) could be a power-law function with flow index 1/n when the length of liquid L is identified in specified capillary, where Pccan be calculated by equation (3).

    3.1 Liquid-gas displacement

    Fig.2 shows the displacement rate as a function of the external pressure when the HPAM solution with molecular weight 2 × 106Da flowed into the microscale capillaries. Apparently, the linear relationship only holds for certain curves, meaning that the fluid is non-Newtonian type, and the viscosity is not constant. The experimental data can be fitted with power-law function (equation (6) and all the fittings have a correlation coefficient of r2≥ 0.99. From this fitting, the consistency factor C and the flow behavior index n can be calculated which are presented in Table 3. It can be seen clearly that C decreases and n increases with the decrease in the capillary radius, indicating that the smaller the size of capillary is, the fluid behavior is more approaching the Newtonian fluid. For example, in the capillary with radius of 1.13 μm (see Fig.2a), the displacement rate is completely a linear function of the external pressure (also can be considered as that the power-law index increased to 1), the viscosity does not change with the change of displacement rate, which can be represented by the classic Washburn equation(equation (1). Furthermore, the HPAMs with different molecular weights show similar result (See Figs.S1, S2 in the Supporting Information). The results suggest that when the HPAM solution flows into the capillary with radii below 10 μm, the viscosity of fluids decreases and turns to the Newtonian type in the capillary with a radius of 1.13 μm.

    Fig.2 Displacement rate of FP3130S solution (1000 mg·L-1) with a range of length under different external pressures in capillaries with radii of (a) 1.13, (b) 2.88, (c) 5.38, (d) 9.18 μm

    3.2 Liquid-liquid displacement

    When the gas phase is replaced by an oil phase such as decane, the displacement is similar although the oil-water interfacial tension is reduced. Fig.3 presents the displacement rate of HPAM solution displacing the decane phase under different external pressures on different saturation of water phase (local volume fraction of total length of capillary) in the capillary with radius of 1.13 μm.

    Table 3 Consistency factor (C) and power-law index (n) of in-situ polymer flow

    The linear relationship between the displacement rate and external pressure suggests that the in-situ viscosity of the fluid is a constant value ηd, which can be calculated through the slope k by employing Washburn equation (equation (4)). The results are shown in Table 4, together shown are the zero-shear viscosity of the bulk η0which is obtained from the extending of Newtonian plateau in Fig.1. Clearly, the viscosities of the displacing fluid in-situ were much smaller than η0of the bulk and just about five times to that of water. Moreover, the η0of HPAM fluids increases with the increase of molecular weight at the same concentration, whereas it changes little with different molecular weights of HPAMs in both liquid-liquid and liquid-gas displacement in 1.13 μm capillary. This suggests that the size of the capillary has a decisive effect on the displacement in-situ viscosity of HPAM fluids in the micro-scale capillaries. The smaller the molecular weight is, the more pronounced deviation is.

    Fig.3 Displacement rate of HPAM solutions displacing decane with a range of saturation under different external pressure drop in capillaries with radius of 1.13 μm with molecular weight of(a) 2 × 106, (b) 8 × 106, (c) 18 × 106-20 × 106Da

    ηd1: the in-situ viscosity of displacing phase in liquid-gas flow;ηd2: the in-situ viscosity of displacing phase in liquid-liquid flow

    It is well known that the bulk viscosity enhancement of a polymer solution is due to the formation of network configuration. This network can be broken down by shearing and the bulk viscosity decreases as a function of shear rate, which is known as shear-thinning behavior. The apparent disagreement in micro-scale capillary displacement may be explained in two ways. One of them is that the volume of polymer molecules with ultra-high molecular weight is too large to enter into the pore. In this case, the displacing phase is only pure water, so the flow behaves as a Newtonian fluid. The other possibility is that the polymer molecules can enter into the pore, but the original entangled network and the fragments cannot recover their configuration in-situ, resulting in the loss of viscosity and Newtonian fluid behavior.

    Microporous filters with pores of Ф 2–20 μm were employed to exam whether the polymer can pass through the micropores or not. The polymer concentration and viscosity of the filtrate were measured by UV-Vis spectrophotometer and rheometer respectively. The results (Fig.4) show that only FP3130S, molecular weight 2 × 106Da, could pass through the filter. The others could only pass certain fractions of the sample, the lager the molecular weight was, the less the polymer could pass through the microporous filters. TEM images of polymers samples in the concentration of 1000 mg·L–1are shown in Fig.5. Clearly, long and entangled polymer network are formed in the solutions, and the size of the coils is over microns. Furthermore, it was noticed that a certain amount of polymer molecules could still pass through the smallest size of filters with pores of Ф 2 μm. This can be appreciated from the polydispersity of HPAMs provided. However, it is hard to quantify the filtrate due to the lack of standard samples. Nevertheless, it suggests that the fluid flooding into the micro-scale capillaries is not pure water, but a solution of polymer with lower molecular weight and concentration than the bulk.

    In comparison with HPAMs, the so-called “l(fā)iving polymers”, worm-like micelles (WLMs) are self-assembled by small molecular weight surfactant molecules. It is interesting to examine the displacement of a worm-like micelle solution in the microscale capillaries. An anionic surfactant (sodium oleate) wormlike micelle solution was employed as the displacing phase whose viscosity is shown in Fig.1. The WLM solution could not flow smoothly in the capillary with a radius of 1.13 μm and stopped in the halfway even under high pressure drop (~1000kPa). The capillaries with a radius of 5.38 μm was employed to perform the displacement. The results are shown in Fig.6. Clearly, when the external pressure drop is small, the displacement rate and external pressure drop is a linear relationship(solid line, r2≥ 0.99); when the external pressure drop is above a threshold value, the displacement rate and the external pressure drop is a non-linear relationship (dashed line). This behavior is a correspondent to the shear rheology which has a long plateau and drop sharply in high shear area. The in-situ viscosity of the WLM system in the linear area can be calculated byusing Washburn equation (equation (4). For comparison of insitu viscosity between WLMs and HPAMs, in-situ viscosity of HPAMs in the 5.38 μm capillary is not constant but can be calculated by the equation (5) with= (3n + 1/4n)n(4v/r)29. The results and the ratio between in-situ viscosity and zero shear viscosity of bulk ηi/η0are listed in Table 5. The viscosity ratio of WLM system was approximately 60% of bulk viscosity recovered in the capillary displacement and higher than the HPAM solution. Although, the bulk viscosity of WLM system is much lower than that of HPAM solution, its in-situ viscosity is much higher than that of HPAMs. A full comparison running of liquid-gas displacement with FP3130S (1000 mg·L–1) is shown in Fig.7. A very similar velocity at the same external pressure can be observed regardless of the significant difference in bulk viscosity of the two fluids. This demonstration shows that when the WLM system flows into the capillary with a limited size, the assembled structure could be recovered insitu quickly, therefore, the fluid can maintain its bulk viscosity to a higher degree than that of HPAMs.

    Fig.4 Rheology and UV-Vis spectra of the HPAMs filtrate through the microporous filters

    Fig.5 TEM images of polyacrylamides in concentration of 1000 mg·L-1

    Fig.6 Displacement rate of 50 mmol·L-1WLM system displacing gas under different external pressure drop in capillaries with radius of 5.38 μm

    Table 5 In-situ shear viscosity of flow in the capillary with a radius of 5.38 μm at external pressure drop from 0 to 50 kPa

    Fig.7 Comparison of FP3130S (1000 mg·L-1) and WLM (50 mmol·L-1)displacement in 5.38 μm capillary

    4 Conclusions

    In summary, the in-situ viscosity and capillary size dependency of the HPAM fluids in capillaries with radii below 10 μm were demonstrated. Although the polymer molecules were able to enter into the micro-scale pores, the polymer cannot be reestablished in-situ, therefore, the ‘loss’ of bulk viscosity of polymers is very high. On the contrary, WLM composed by surfactant molecules exhibits higher maintainability of its bulk viscosity. It is well known that surfactant is the main component in displacing agents to achieve the ultra-low oil-water interfacial tension. The WLM system with much lower viscosity displays more effective thickening power by the self-assembly of surfactant molecules compared to large polymers. But in the real oil reservoirs, the low-permeability channels are much more complicated, and the temperature of the reservoirs is generally higher than 25 °C adopted in this work, we have a plan to study the in-situ viscosity difference between polymers and WLMs in the core in the later work.

    Supporting Information: The tensions of HPAMs solution, and displacement rate of FP3330S and ST5030 solution(1000 mg·L–1) with a range of length under different external pressures in capillaries with different radii have been included. This information is available free of charge via the internet at http://www.whxb.pku.edu.cn.

    (1)Lake, L. Enhanced Oil Recovery; Prentice Hall: New Jersey, 1989; pp 2–16, 43–92, 317–353.

    (2)Buchgraber, M.; Clemens, T.; Castanier, L. M.; Kovscek, A. R. SPE Reservoir Eval. Eng. 2011, 14, 269. doi: 10.2118/122400-PA

    (3)Vizika, O.; Avraam, D. G.; Payatakes, A. C. J. Colloid Interface Sci. 1994, 165, 386. doi: 10.1006/jcis.1994.1243

    (4)Jackson, G. T.; Balhoff, M. T.; Huh, C.; Delshad, M. J. Pet. Sci. Eng. 2011, 78, 86. doi: 10.1016/j.petrol.2011.05.007

    (5)Zhang, J.; Wang, S.; Lu, X.; He, X. Pet. Sci. 2011, 8, 79. doi: 10.1007/s12182-011-0118-0

    (6)Chauveteau, G. J. Rheol. 1982, 26, 111. doi: 10.1122/1.549660

    (7)Gramain, P.; Myard, P. Macromolecules 1980, 14, 180.

    (8)Darwish, M. I. M.; McCray, J. E.; Currie, P. K.; Zitha, P. L. J. Groud Water Monitoring & Remediation 2003, 23, 92.

    (9)Wang, W.; Yue, X.; Chen, Y. J. Dispersion Sci. Technol. 2013,34, 639. doi: 10.1080/01932691.2012.686246

    (10)Gao, H. W.; Burchfield, T. E. SPE Reservoir Eng. 1995, 10, 129. doi: 10.2118/25453-PA

    (11)de Souza Mendes, P. R.; Dutra, E. S. S.; Siffert, J. R. R.;Naccache, M. F.J. Non-Newtonian Fluid Mech. 2007, 145, 30.

    (12)Srivastava, N.; Burns, M. A. Anal. Chem. 2006, 78, 1690. doi: 10.1021/ac0518046

    (13)Quintella, E. F.; Souza Mendes, P. R.; Carvalho, M. S. J. Non-Newtonian Fluid Mech. 2007, 147, 117. doi: 10.1016/j.jnnfm.2007.06.009

    (14)Chen, C.; Gao, C.; Zhuang, L.; Li, X.; Wu, P.; Dong, J.; Lu, J. Langmuir 2010, 26, 9533. doi: 10.1021/la100105f

    (15)Chen, C.; Zhuang, L.; Li, X.; Dong, J.; Lu, J. Langmuir 2012, 28, 1330. doi: 10.1021/la204207s

    (16)Washburn, E. W. Phys. Rev. 1921, 17, 273. doi: 10.1103/PhysRev.17.273

    (17)Zorin, Z. M.; Churaev, N. V. Adv. Colloid Interface Sci. 1992,40, 85. doi: 10.1016/0001-8686(92)80072-6

    (18)Zhmud, B. V.; Tiberg, F.; Hallstensson, K. J. Colloid Interface Sci. 2000, 228, 263. doi: 10.1006/jcis.2000.6951

    (19)Martic, G.; Gentner, F.; Seveno, D.; Coulon, D.; Coninck, J. D.;Blake, T. D. Langmuir 2002, 18, 7971. doi: 10.1021/la020068n

    (20)Blake, T. D.; Coninck, J. D. Colloids Surf. A 2004, 250, 395. doi: 10.1016/j.colsurfa.2004.05.024

    (21)Digilov, R. M. Langmuir 2008, 24, 13663. doi: 10.1021/la801807j

    (22)Zhou, W.; Gao, C.; Lu, Y.; Wang, Z.; Wu, P.; Li, X.; Dong, J. Energy Sources, Part A, 2011. doi: 10.1080/15567036.2011.585381

    (23)Zhou, W.; Lu, Y.; Gao, C.; Li, W.; Zhang, Y.; Li, X.; Chen, C.;Dong, J. Energy Fuels 2013, 27, 717.

    (24)Armarego, W. L. F.; Chai, C. L. L. Purification of Laboratory Chemicals; Elsevier Science: Burlington, 2003; p 185.

    (25)Lu, Y.; Zhou, T.; Fan, Q.; Dong, J.; Li, X. J. Colloid Interface Sci. 2013, 412, 107. doi: 10.1016/j.jcis.2013.09.014

    (26)Churaev, N. V.; Ershov, A. P.; Zorin, Z. M. J. Colloid Interface Sci. 1996, 177, 589. doi: 10.1006/jcis.1996.0073

    (27)Churaev, N. V.; Ershov, A. P.; Esipova, N. E.; Hill, R. M.;Sobolev, V. D.; Zorin, Z. M. Langmuir 2001, 17, 1349. doi: 10.1021/la000864y

    (28)Ershov, A. P.; Zorin, Z. M.; Sobolev, V. D.; Churaev, N. V. Colloid J. 2001, 63, 290. doi: 10.1023/A:1016687925562

    (29)Bird, R. B.; Armstrong, R. C.; Hassager, O. Fluid Mechanics. In Dynamics of Polymeric Liquids, Vol. 1; Wiley: New York, 1987;pp 169–179.

    In-situ Viscosity of Hydrolyzed Polyacrylamides and Surfactant Worm-Like Micelle Solutions in Microscale Capillaries

    LU Ye-Chang1LI Wen-Hong2,3ZHANG Yong-Qiang2,3LI Xue-Feng1DONG Jin-Feng1,*
    (1College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China;2National Engineering Laboratory for Exploration and Development of Low-Permeability Oil & Gas Fields, Xi'an 710021, P. R. China;3Research Institute of Exploration and Development, PetroChina Changqing Oilfield Company, Xi'an 710021, P. R. China)

    Hydrolyzed polyacrylamides (HPAMs) are shear-thinning polymers and haνe wide application in enhanced oil recoνery (EOR), whereas worm-like micelles (WLMs) are known as “l(fā)iνing polymers”, which can be constructed by the self-assembly of surfactant molecules. Here, a series of experiments were conducted on the fluid behaνior of HPAMs and worm-like micelles in microscale capillaries with radii from 1 to 10 μm. The results show that the size of capillary has a decisiνe effect on the in-situ νiscosity of the polymer aqueous phase. It was obserνed that the shear thinning effect of HPAMs is more pronounced in smaller size of capillaries, where the non-Newtonian polymer flow turns into the Newtonian flow. Eνidences from filtration with a microporous filter and transmission electron microscopy (TEM) reνeal that the polymer network was broken down when entering into the capillary. Conνersely, WLMs can maintain their bulk νiscosity to a wide extent. We assume that surfactant molecules may reassemble their aggregates and recoνer their network in-situ. The results suggest that WLMs haνe a much lower νiscosity, but display similar thickening power compared with large polymers in the low or ultra-low permeability reserνoirs.

    Micro-scale capillary flows; In-situ νiscosity; HPAMs; Worm-like micelles; Capillary pressure


    The project was supported by the National Natural Science Foundation of China (21573164, 21273165) and PetroChina Changqing Oilfield Co.
    國家自然科學(xué)基金(21573164, 21273165)和中國石油長慶油田分公司資助項(xiàng)目
    ?Editorial office of Acta Physico-Chimica Sinica

    O647

    10.3866/PKU.WHXB201511102

    Received: September 30, 2015; Revised: November 10, 2015; Published on Web: November 10, 2015.
    *

    猜你喜歡
    牛頓流體蠕蟲長慶油田
    蠕蟲狀MoS2/C的制備及其在鋰離子電池負(fù)極材料中的應(yīng)用
    長慶油田節(jié)能技術(shù)研究
    非牛頓流體
    秋季謹(jǐn)防家禽蠕蟲病
    什么是非牛頓流體
    少兒科技(2019年3期)2019-09-10 07:22:44
    區(qū)別牛頓流體和非牛頓流體
    長慶油田設(shè)備再制造又創(chuàng)三個(gè)國內(nèi)第一
    首款XGEL非牛頓流體“高樂高”系列水溶肥問世
    青海海晏縣牛羊寄生蠕蟲種調(diào)查與防治
    長慶油田的環(huán)保之爭
    能源(2015年8期)2015-05-26 09:15:45
    国产精品av久久久久免费| 精品福利永久在线观看| 国产高清国产精品国产三级| 久久久久国产一级毛片高清牌| 成熟少妇高潮喷水视频| 高清在线国产一区| 国产高清videossex| 首页视频小说图片口味搜索| 大码成人一级视频| 欧美大码av| 99国产精品99久久久久| 精品高清国产在线一区| 女同久久另类99精品国产91| 欧美午夜高清在线| 69av精品久久久久久| 亚洲成国产人片在线观看| 日日爽夜夜爽网站| 99久久人妻综合| 久久久水蜜桃国产精品网| 黄片大片在线免费观看| 精品国产乱子伦一区二区三区| 女性被躁到高潮视频| 国产亚洲精品第一综合不卡| 日本免费a在线| 久久这里只有精品19| 日日爽夜夜爽网站| 男人舔女人的私密视频| 成在线人永久免费视频| 18禁黄网站禁片午夜丰满| 一级毛片女人18水好多| 久久久久久人人人人人| 琪琪午夜伦伦电影理论片6080| 制服诱惑二区| 丁香六月欧美| 亚洲精品一区av在线观看| 久久精品人人爽人人爽视色| 国产国语露脸激情在线看| 日日夜夜操网爽| 久久婷婷成人综合色麻豆| 岛国视频午夜一区免费看| 又大又爽又粗| 人人妻人人添人人爽欧美一区卜| 纯流量卡能插随身wifi吗| 亚洲熟妇熟女久久| 久久久精品国产亚洲av高清涩受| 中文字幕高清在线视频| www.自偷自拍.com| 91av网站免费观看| 亚洲成国产人片在线观看| 国产伦一二天堂av在线观看| 久久狼人影院| www.www免费av| 伦理电影免费视频| 国产免费男女视频| 悠悠久久av| 巨乳人妻的诱惑在线观看| 另类亚洲欧美激情| 日本免费a在线| 午夜精品在线福利| 多毛熟女@视频| 亚洲专区字幕在线| 亚洲av成人不卡在线观看播放网| 日本欧美视频一区| 日本精品一区二区三区蜜桃| 91av网站免费观看| 母亲3免费完整高清在线观看| 琪琪午夜伦伦电影理论片6080| 在线天堂中文资源库| 久久久久久大精品| 日本a在线网址| 一个人观看的视频www高清免费观看 | 成人18禁在线播放| 人妻丰满熟妇av一区二区三区| 可以在线观看毛片的网站| 午夜日韩欧美国产| 亚洲在线自拍视频| 99久久人妻综合| 波多野结衣av一区二区av| 亚洲片人在线观看| 琪琪午夜伦伦电影理论片6080| av超薄肉色丝袜交足视频| 色婷婷av一区二区三区视频| 国产精品永久免费网站| 亚洲av成人一区二区三| 曰老女人黄片| 成人特级黄色片久久久久久久| 成人特级黄色片久久久久久久| 黑人巨大精品欧美一区二区蜜桃| 久久亚洲精品不卡| 国产一区二区三区在线臀色熟女 | 亚洲一区中文字幕在线| 精品少妇一区二区三区视频日本电影| 人人妻人人爽人人添夜夜欢视频| 村上凉子中文字幕在线| 国产野战对白在线观看| 国产一卡二卡三卡精品| 日韩视频一区二区在线观看| 欧美乱妇无乱码| 一级片'在线观看视频| 中文字幕高清在线视频| 丰满饥渴人妻一区二区三| 十八禁网站免费在线| 国产熟女午夜一区二区三区| 一本大道久久a久久精品| 99re在线观看精品视频| 国产色视频综合| 久久 成人 亚洲| 国产亚洲精品第一综合不卡| 日韩高清综合在线| 成人精品一区二区免费| 日韩精品免费视频一区二区三区| 真人一进一出gif抽搐免费| 日日摸夜夜添夜夜添小说| 波多野结衣高清无吗| 久久中文字幕人妻熟女| 高清在线国产一区| 老熟妇仑乱视频hdxx| 嫩草影院精品99| 操美女的视频在线观看| 757午夜福利合集在线观看| 久久精品aⅴ一区二区三区四区| 视频在线观看一区二区三区| 男男h啪啪无遮挡| 婷婷精品国产亚洲av在线| 少妇裸体淫交视频免费看高清 | 午夜激情av网站| 午夜免费观看网址| 在线观看日韩欧美| www日本在线高清视频| 他把我摸到了高潮在线观看| 精品国产一区二区久久| 香蕉久久夜色| 日韩欧美一区视频在线观看| 99在线视频只有这里精品首页| 精品高清国产在线一区| 国产高清激情床上av| 国产精华一区二区三区| 亚洲专区字幕在线| 久久精品国产清高在天天线| 精品一区二区三区四区五区乱码| 侵犯人妻中文字幕一二三四区| 国产蜜桃级精品一区二区三区| tocl精华| 国产精品久久久久成人av| av欧美777| 成人手机av| 99国产精品99久久久久| 在线永久观看黄色视频| 免费在线观看黄色视频的| 咕卡用的链子| 免费av毛片视频| 如日韩欧美国产精品一区二区三区| 免费一级毛片在线播放高清视频 | 亚洲av第一区精品v没综合| 伦理电影免费视频| 日韩成人在线观看一区二区三区| 制服诱惑二区| 久久久国产欧美日韩av| 岛国视频午夜一区免费看| 日本wwww免费看| 女性被躁到高潮视频| 亚洲av美国av| 成熟少妇高潮喷水视频| 亚洲精品中文字幕在线视频| 人成视频在线观看免费观看| 亚洲 欧美一区二区三区| 色在线成人网| 99精品久久久久人妻精品| 一本综合久久免费| 长腿黑丝高跟| 国产精品永久免费网站| 久久久国产欧美日韩av| 久久久久九九精品影院| 欧美性长视频在线观看| 在线免费观看的www视频| 国产国语露脸激情在线看| 亚洲va日本ⅴa欧美va伊人久久| 亚洲第一青青草原| 久久草成人影院| 亚洲中文字幕日韩| 欧美成人性av电影在线观看| 成人精品一区二区免费| 免费在线观看完整版高清| 三级毛片av免费| 亚洲午夜精品一区,二区,三区| 亚洲,欧美精品.| 日本一区二区免费在线视频| 久久青草综合色| 999久久久精品免费观看国产| 午夜免费观看网址| 午夜亚洲福利在线播放| 久久亚洲精品不卡| 国产av精品麻豆| 欧美日韩一级在线毛片| 久久热在线av| 黑人巨大精品欧美一区二区mp4| 自拍欧美九色日韩亚洲蝌蚪91| netflix在线观看网站| 久久久国产成人免费| 天堂影院成人在线观看| 免费人成视频x8x8入口观看| 91大片在线观看| 亚洲一区二区三区不卡视频| 久久香蕉激情| 欧美乱码精品一区二区三区| 在线观看一区二区三区| a在线观看视频网站| www.精华液| 757午夜福利合集在线观看| 亚洲国产精品sss在线观看 | 麻豆成人av在线观看| 久久精品91蜜桃| 婷婷六月久久综合丁香| 99riav亚洲国产免费| 欧美日韩亚洲国产一区二区在线观看| 无限看片的www在线观看| 亚洲少妇的诱惑av| 免费高清在线观看日韩| 国产97色在线日韩免费| 黑人操中国人逼视频| 亚洲国产看品久久| 很黄的视频免费| 亚洲精品成人av观看孕妇| 国产一区二区三区在线臀色熟女 | 啦啦啦 在线观看视频| 99久久综合精品五月天人人| 日韩欧美国产一区二区入口| 麻豆av在线久日| 精品久久久久久久久久免费视频 | 午夜福利欧美成人| 中文字幕另类日韩欧美亚洲嫩草| 成人国语在线视频| 欧美乱码精品一区二区三区| 乱人伦中国视频| 精品免费久久久久久久清纯| 高清av免费在线| 99国产精品一区二区三区| 巨乳人妻的诱惑在线观看| 高清黄色对白视频在线免费看| 久久久国产一区二区| 国产亚洲精品一区二区www| 久久欧美精品欧美久久欧美| 日韩视频一区二区在线观看| 日本vs欧美在线观看视频| 热re99久久国产66热| 男女午夜视频在线观看| 免费观看人在逋| 欧美一级毛片孕妇| 在线观看66精品国产| 国产精品一区二区三区四区久久 | 黄频高清免费视频| 91在线观看av| 十八禁网站免费在线| 亚洲国产中文字幕在线视频| 无遮挡黄片免费观看| 麻豆国产av国片精品| 又黄又爽又免费观看的视频| 午夜福利免费观看在线| 精品国内亚洲2022精品成人| 亚洲第一青青草原| 伦理电影免费视频| 日韩精品免费视频一区二区三区| 成年女人毛片免费观看观看9| 色哟哟哟哟哟哟| 老鸭窝网址在线观看| 咕卡用的链子| 91成年电影在线观看| 欧美久久黑人一区二区| 国产蜜桃级精品一区二区三区| 十分钟在线观看高清视频www| 亚洲精品国产区一区二| 99riav亚洲国产免费| 亚洲va日本ⅴa欧美va伊人久久| av有码第一页| 日韩大尺度精品在线看网址 | 中国美女看黄片| 欧美乱色亚洲激情| 俄罗斯特黄特色一大片| 9191精品国产免费久久| 90打野战视频偷拍视频| 黄色毛片三级朝国网站| 老汉色av国产亚洲站长工具| 男女高潮啪啪啪动态图| 国产精品香港三级国产av潘金莲| 可以免费在线观看a视频的电影网站| 自线自在国产av| 18禁裸乳无遮挡免费网站照片 | 高清av免费在线| 国产男靠女视频免费网站| 男人操女人黄网站| 妹子高潮喷水视频| 午夜免费激情av| 一边摸一边抽搐一进一出视频| 露出奶头的视频| 人人妻人人添人人爽欧美一区卜| 另类亚洲欧美激情| 美女扒开内裤让男人捅视频| 国产真人三级小视频在线观看| 日本vs欧美在线观看视频| 成人av一区二区三区在线看| 午夜精品久久久久久毛片777| 国产精品免费视频内射| 国产精品 国内视频| 老司机深夜福利视频在线观看| 国产精品九九99| 成人18禁高潮啪啪吃奶动态图| 午夜a级毛片| 久久久国产成人精品二区 | 成人亚洲精品av一区二区 | 91大片在线观看| 一区二区日韩欧美中文字幕| 日韩欧美在线二视频| 无遮挡黄片免费观看| 美女 人体艺术 gogo| 精品少妇一区二区三区视频日本电影| 亚洲一区二区三区欧美精品| 亚洲欧美日韩另类电影网站| 亚洲精华国产精华精| 老司机亚洲免费影院| 人人妻,人人澡人人爽秒播| 99国产精品一区二区蜜桃av| 国产精品国产高清国产av| 欧美激情高清一区二区三区| 成人永久免费在线观看视频| 久久人妻熟女aⅴ| 免费一级毛片在线播放高清视频 | 麻豆国产av国片精品| 久久久久国产精品人妻aⅴ院| 在线观看一区二区三区激情| 日本黄色视频三级网站网址| 天堂√8在线中文| aaaaa片日本免费| 免费日韩欧美在线观看| avwww免费| 一进一出抽搐动态| 日韩国内少妇激情av| 男女做爰动态图高潮gif福利片 | 亚洲,欧美精品.| 国产区一区二久久| 久久精品91蜜桃| 黄频高清免费视频| 热99国产精品久久久久久7| 叶爱在线成人免费视频播放| 国产成人欧美在线观看| 精品国产亚洲在线| 欧美精品一区二区免费开放| 国产成人欧美| 成人黄色视频免费在线看| 妹子高潮喷水视频| 午夜精品久久久久久毛片777| 亚洲一区二区三区色噜噜 | 9热在线视频观看99| 精品免费久久久久久久清纯| 又黄又爽又免费观看的视频| 老鸭窝网址在线观看| 激情在线观看视频在线高清| 国产精品久久视频播放| 夜夜看夜夜爽夜夜摸 | 亚洲色图av天堂| 欧美在线一区亚洲| 美女国产高潮福利片在线看| 啪啪无遮挡十八禁网站| 在线观看免费视频日本深夜| 久久性视频一级片| 国产成人欧美| 热99re8久久精品国产| 妹子高潮喷水视频| 在线观看免费午夜福利视频| 少妇粗大呻吟视频| 国产极品粉嫩免费观看在线| 大型黄色视频在线免费观看| 99久久精品国产亚洲精品| 日韩欧美国产一区二区入口| 在线av久久热| 每晚都被弄得嗷嗷叫到高潮| av网站免费在线观看视频| 欧美一级毛片孕妇| av福利片在线| 香蕉久久夜色| 久久久国产欧美日韩av| 一级片免费观看大全| 亚洲精品av麻豆狂野| 1024香蕉在线观看| 日韩一卡2卡3卡4卡2021年| 欧美不卡视频在线免费观看 | 99久久久亚洲精品蜜臀av| 日本黄色日本黄色录像| 国产成人欧美在线观看| 黑人巨大精品欧美一区二区mp4| 午夜精品国产一区二区电影| 久久天躁狠狠躁夜夜2o2o| 国产av一区在线观看免费| 亚洲三区欧美一区| 成人亚洲精品一区在线观看| 国产日韩一区二区三区精品不卡| 天天躁狠狠躁夜夜躁狠狠躁| 欧美日韩视频精品一区| 国产乱人伦免费视频| 19禁男女啪啪无遮挡网站| 麻豆一二三区av精品| 露出奶头的视频| 美国免费a级毛片| 一夜夜www| www日本在线高清视频| 精品福利永久在线观看| 夜夜看夜夜爽夜夜摸 | 老司机在亚洲福利影院| 嫁个100分男人电影在线观看| 久久久久久免费高清国产稀缺| 99在线视频只有这里精品首页| 午夜精品国产一区二区电影| 成人国语在线视频| 男女做爰动态图高潮gif福利片 | 国产免费男女视频| 最近最新免费中文字幕在线| 亚洲精品国产区一区二| 久久久精品国产亚洲av高清涩受| 最好的美女福利视频网| 国产亚洲欧美精品永久| 久久天堂一区二区三区四区| 久久青草综合色| 91成年电影在线观看| 久久精品亚洲精品国产色婷小说| 日韩人妻精品一区2区三区| 亚洲三区欧美一区| 视频区图区小说| 涩涩av久久男人的天堂| 免费久久久久久久精品成人欧美视频| 欧美激情 高清一区二区三区| 亚洲精品久久午夜乱码| 91成年电影在线观看| 又黄又粗又硬又大视频| 亚洲国产欧美一区二区综合| 亚洲精品国产区一区二| 日本vs欧美在线观看视频| 国产又爽黄色视频| 国产精品国产高清国产av| 老鸭窝网址在线观看| 亚洲三区欧美一区| 人人妻人人澡人人看| 亚洲美女黄片视频| 国产精品永久免费网站| 在线天堂中文资源库| 欧美日韩国产mv在线观看视频| 日韩欧美免费精品| 亚洲欧美日韩另类电影网站| 99香蕉大伊视频| 日韩欧美国产一区二区入口| 精品日产1卡2卡| 午夜福利一区二区在线看| 9色porny在线观看| 成人亚洲精品一区在线观看| 日韩精品中文字幕看吧| 欧美乱妇无乱码| 国产深夜福利视频在线观看| 欧美日韩亚洲国产一区二区在线观看| 深夜精品福利| 搡老熟女国产l中国老女人| 交换朋友夫妻互换小说| 999精品在线视频| 亚洲欧美激情综合另类| 午夜福利欧美成人| 精品国产乱子伦一区二区三区| 国产一区二区三区在线臀色熟女 | 波多野结衣一区麻豆| 久久欧美精品欧美久久欧美| 亚洲男人的天堂狠狠| 88av欧美| 好看av亚洲va欧美ⅴa在| 久久久久久久久久久久大奶| 欧美日韩亚洲高清精品| 精品久久蜜臀av无| 亚洲,欧美精品.| 午夜日韩欧美国产| 一级片免费观看大全| 身体一侧抽搐| 国产成人欧美在线观看| 欧美激情 高清一区二区三区| 在线观看免费高清a一片| 久久人妻熟女aⅴ| 久久香蕉精品热| 热99re8久久精品国产| 国产真人三级小视频在线观看| 久久国产精品人妻蜜桃| 亚洲性夜色夜夜综合| 欧美激情久久久久久爽电影 | 黄色a级毛片大全视频| 天天添夜夜摸| 老司机在亚洲福利影院| av福利片在线| 日韩 欧美 亚洲 中文字幕| 久久人人爽av亚洲精品天堂| 国产av精品麻豆| 久久国产精品影院| 日本wwww免费看| 国产主播在线观看一区二区| 久久 成人 亚洲| 国产成人精品久久二区二区91| 热re99久久精品国产66热6| 久久这里只有精品19| 欧美黑人精品巨大| 91精品国产国语对白视频| 亚洲av第一区精品v没综合| 日本黄色视频三级网站网址| 亚洲免费av在线视频| 黄色女人牲交| 中文字幕高清在线视频| 日韩人妻精品一区2区三区| 老熟妇仑乱视频hdxx| 精品午夜福利视频在线观看一区| 一二三四社区在线视频社区8| 韩国av一区二区三区四区| 1024视频免费在线观看| 神马国产精品三级电影在线观看 | 啦啦啦 在线观看视频| 热99国产精品久久久久久7| 久久性视频一级片| 在线视频色国产色| 50天的宝宝边吃奶边哭怎么回事| 免费女性裸体啪啪无遮挡网站| 在线观看免费视频日本深夜| 免费不卡黄色视频| 91麻豆精品激情在线观看国产 | 欧美在线一区亚洲| 欧美一区二区精品小视频在线| 成熟少妇高潮喷水视频| 国产午夜精品久久久久久| 亚洲一区中文字幕在线| 欧美日韩一级在线毛片| 日韩 欧美 亚洲 中文字幕| 国产99久久九九免费精品| 午夜亚洲福利在线播放| 亚洲精品国产区一区二| 一级毛片女人18水好多| 国产亚洲精品久久久久5区| 国产亚洲精品久久久久久毛片| 操出白浆在线播放| 在线观看一区二区三区| 一级毛片高清免费大全| 久久精品91无色码中文字幕| 韩国精品一区二区三区| 中文字幕最新亚洲高清| 精品国产乱码久久久久久男人| 久久精品91蜜桃| 中文字幕色久视频| 久久精品影院6| 美女国产高潮福利片在线看| 国产极品粉嫩免费观看在线| 久热这里只有精品99| 精品卡一卡二卡四卡免费| 这个男人来自地球电影免费观看| 午夜影院日韩av| 精品一区二区三区av网在线观看| 久久精品国产亚洲av高清一级| 亚洲成人久久性| 国产精品久久电影中文字幕| videosex国产| 亚洲成人免费电影在线观看| www国产在线视频色| 天堂√8在线中文| 欧美日韩av久久| 日本wwww免费看| 欧美老熟妇乱子伦牲交| 国产亚洲精品一区二区www| 成年人黄色毛片网站| 久久国产精品男人的天堂亚洲| 日韩大尺度精品在线看网址 | 国产av一区在线观看免费| 极品教师在线免费播放| 热re99久久精品国产66热6| 91麻豆av在线| 亚洲av日韩精品久久久久久密| 亚洲精品一卡2卡三卡4卡5卡| 亚洲人成伊人成综合网2020| 岛国视频午夜一区免费看| 在线十欧美十亚洲十日本专区| 久9热在线精品视频| 一a级毛片在线观看| 色综合婷婷激情| 亚洲人成电影观看| 国产在线观看jvid| 国产成人免费无遮挡视频| 一边摸一边抽搐一进一小说| 亚洲欧美日韩无卡精品| 亚洲精品av麻豆狂野| 亚洲一区二区三区欧美精品| 久久久国产欧美日韩av| 国产精品电影一区二区三区| 一级,二级,三级黄色视频| 久久久久亚洲av毛片大全| 久久午夜综合久久蜜桃| 久久精品国产亚洲av高清一级| 天天躁夜夜躁狠狠躁躁| 91大片在线观看| 最近最新中文字幕大全免费视频| 成人国产一区最新在线观看| 成人影院久久| 在线看a的网站| 99久久人妻综合| 我的亚洲天堂| 久久久久久久精品吃奶| 99国产极品粉嫩在线观看| 午夜免费鲁丝| 色精品久久人妻99蜜桃| 波多野结衣av一区二区av| 亚洲精品av麻豆狂野| 18禁裸乳无遮挡免费网站照片 | 777久久人妻少妇嫩草av网站| 国产亚洲欧美98| 国产欧美日韩精品亚洲av| av免费在线观看网站| 女人被狂操c到高潮| 黄色视频不卡| 亚洲中文字幕日韩| 精品久久久久久成人av|