• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Molecular Dynamics Simulations on the Role of Structural Mg2+Ions in Phosphoryl Transfer Catalyzed by GSK-3β

    2014-10-14 03:44:12SUNHaoJIANGYongJunYUQingSenGAOHui
    物理化學(xué)學(xué)報(bào) 2014年5期
    關(guān)鍵詞:林業(yè)大學(xué)構(gòu)象糖原

    SUN Hao JIANG Yong-Jun YU Qing-Sen GAO Hui

    (1Southwest Forestry University,Kunming 650224,P.R.China;2Key Laboratory for Molecular Design and Nutrition Engineering of Ningbo City,Ningbo Institute of Technology,Zhejiang University,Ningbo 315100,Zhejiang Province,P.R.China;3Department of Chemistry,Zhejiang University,Hangzhou 310027,P.R.China)

    Molecular Dynamics Simulations on the Role of Structural Mg2+Ions in Phosphoryl Transfer Catalyzed by GSK-3β

    SUN Hao1JIANG Yong-Jun2,*YU Qing-Sen3GAO Hui3

    (1Southwest Forestry University,Kunming 650224,P.R.China;2Key Laboratory for Molecular Design and Nutrition Engineering of Ningbo City,Ningbo Institute of Technology,Zhejiang University,Ningbo 315100,Zhejiang Province,P.R.China;3Department of Chemistry,Zhejiang University,Hangzhou 310027,P.R.China)

    Abstract:Glycogen synthase kinase-3β (GSK-3β)is a kind of serine/threonine protein kinase.It regulates the synthesis of glycogen and plays an important part in several signal pathways.It is believed to be an important target for a number of diseases such as diabetes,cancers,chronic inflammation,and Alzheimer′s disease.Mg2+ions are conserved structural metal ions in GSK-3β and they interact with adenosine-triphosphate(ATP).They are very important in phosphoryl transfer in the kinase.In this paper,the effect of two Mg2+ions(Mg,Mg)on GSK-3β is illustrated.Mg2+can stabilize the conformation of GSK-3β and ATP.Without Mg2+,the stabilization of GSK-3β reduces explicitly and the conformation of ATP changes.Mgis important in the phosphorylation reaction while Mgis essential and Lys183 alone cannot maintain the conformation of ATP without the assistance of Mg.ATP forms intramolecular hydrogen bonds and adopts a folded conformation when both Mgand Mgare absent.

    Key Words: GSK-3β kinase;Phosphoryl transfer;Mg2+;Structural metal ion;Molecular dynamics simulation

    There are more than 500 protein kinase genes identified,representing about 1.7%of all human genes[1].In the large and very diverse family of protein kinases,glycogen synthase kinase-3(GSK-3)is of particular interest.It was originally identified in 1980 and was initially believed to phosphorylate and inactivate glycogen synthase(GS)which was the rate-limiting enzyme of glycogen biosynthesis[2].It is ubiquitously expressed in eukaryote[3-4].There are two major isoforms of GSK-3 in mammals:GSK-3β and GSK-3α,which are encoded by different genes.The kinase domain sequences of the two isoforms are almost the same and the main differences occur at the N and C termini[5-7].

    Many different pathways have been described in which GSK-3β plays an important role.Historically GSK-3β fulfilled a significant role in the insulin/IGF1(insulin-like growth factor 1)and Wnt/Shaggy signaling pathways.However,recently it has become clear that GSK-3β is present in many other pathways such as those involving NGF(nerve growth factor)signaling,estradiol signaling,or reelin pathways[8].

    GSK-3β phosphorylates many of its substrates via a primedphosphorylation mechanism,recognizing the canonical phosphorylation motif SXXXpS.This motif contains the phosphoaccepting Ser or Thr that is separated by three residues from a phospho-serine or phospho-threonine.The phosphorylation mechanism is called primed-phosphorylation because a different kinase must first phosphorylate the substrate at the P+4 position before GSK-3β can phosphorylate the P0 residue[9].

    Since GSK-3β has more than 40 substrates and the list is still growing[10],it has being considered as one of the most promising drug targets for adult onset type 2 diabetes[11-13],stroke[14-15],neurodegenerative disorders(Alzheimer′s disease)[16-17],bipolar disorder[18],and schizophrenia[19-20],acute inflammatory processes[21],cancer[2223],and so forth.

    Structural metal ions are important.They can influence the structure of kinases,and the binding of structural metal ions is energetically favored[24].Mg2+is conserved structural metal ion in GSK-3β.Experimental studies[8]on GSK-3β revealed that in GSK-3β,two Mg2+binding sites mainly involve the conserved residues Asn186 and Asp200,like PKA(protein kinase A),CDK(cyclin-dependent kinases)and other protein kinases.

    Many studies showed that Mg2+could increase the activity of GSK-3β,but the details of Mg2+function in GSK-3β still were indistinct.However,some useful information can be learned by referring the other kinase:PKA,because of the structural similarity[8].In PKA,Mg(Mg2+binding with β-and γ-phosphates of ATP)is generally identified as a catalytic activator,while Mg(Mg2+binding with α-and γ-phosphates of ATP)as an inhibitor[25-26].Ab initio studies[1]on PKA revealed that the phosphorylation reaction probably proceeded through a mainly dissociative transition state,and the conserved Asp166(corresponding to Asp181 in GSK-3β)served as the catalytic base to accept the late proton transfer,shown in Fig.1.That study also reported that both metal ions contributed greatly to lower the energy barrier through electrostatic interactions,and the catalytic role of Lys168(corresponding to Lys183 in GSK-3β)was demonstrated to keep ATP and substrate peptide in the near-attack reactive conformation[1,27-28].Because of the conservation of kinase domain structures,we can presume the functions of Mg2+in GSK-3β on the foundation of PKAstudies.In order to reveal the functions of Mg2+in GSK-3β,we performed computational studies on GSK-3β using molecular mechanical methods.In this paper,four enzyme complexes were investigated,which respectively contained two Mg2+,Mgonly,Mgonly,and no Mg2+.

    1 Computational methods

    1.1 Preparation of the systems

    The structure of GSK-3β in a complex with ATP mimic AMP-PNP(PDB code:1PYX)was chosen as the initial structure.Absent residues on disordered loop of the crystal structure were added and the conformations of the residues were modeled using Loop Search module of Sybyl 6.8(Tripos Inc.).The structure of AMP-PNP was changed to that of ATP by replacing the nitrogen atom N3B in 1PYX with an oxygen atom.Four systems were prepared.System 1,complex-2Mg featured GSK-3β with ATP and two Mg2+ions.System 2,complex-MgI,featured GSK-3β with ATP and Mg,whileMgwas removed.System 3,complex-MgII featured GSK-3β with ATP and Mgwhile Mgwas removed.System 4,complex-noMg,featured GSK-3β withATP,while both Mgand Mgwere removed.

    1.2 Molecular dynamics simulations

    Molecular dynamics simulations were carried out on the four systems respectively,using the SANDER module of AMBER 9.0 with the Amber FF03[29-30]and GAFF force field[31].The parameters of ATP were provided by Amber web site[32].All simulations were carried out at neutral pH.Lys and Arg residues were positively charged,and Asp and Glu residues were negatively charged.Default His protonation state in AMBER9 was adopted.To maintain the electroneutrality of the systems,seven counterions(Cl-)were added into complex-2Mg;fivecounterions(Cl-)were added into complex-MgI and complex-MgII;and three counterions(Cl-)were added into complex-noMg.Every system was immersed in a 1 nm truncated octahedron periodic water box,and the structure water molecules were maintained.The box of water molecules in all systems contained around 13635 TIP3P[33]water molecules.A 2 fs time step was used in all simulations,and long-range electrostatic interactions were treated with the particle mesh Ewald(PME)procedure[34]with a 1 nm non-bonded cutoff.Bond lengths involving hydrogen atoms were constrained using the SHAKE algorithm[35].All systems were minimized prior to the production run.The minimization employed SANDER module under constant volume condition.The solvent molecules were firstly relaxed,while all heavy atoms in both protein and ATP were restrained with forces of 2.0×105kJ·mol-1·nm-2.Then,the systems were continually relaxed.All heavy atoms of the system were restrained with forces of 2.0×105kJ·mol-1·nm-2,except the atoms of the residues modeled by Loop Search module of Sybyl 6.8.Finally,all restraints were lifted and whole system was relaxed.The 3 steps above all featured 1000 cycles of steepest descent followed by 1000 cycles of conjugate gradient minimization.After the relaxation,300 ps of MD simulations were carried out at constant volume,with 4.0×103kJ·mol-1·nm-2restraint on solute.Then 2 ns of equilibration MD followed by 3 ns of production MD were respectively carried out on all systems at constant pressure(101325 Pa).All simulations were performed at 300 K.

    2 Results and discussion

    The root-mean-squared deviations(RMSD)value curves of backbone atoms during the MD simulation have been obtained.The curves in Fig.2 show that corresponding to the relaxation of the systems,the RMSD values of backbone atoms of the complex increase slowly before 1000 ps.And after 1000 ps,the RMSD values are fairly stable around 0.20 nm.The total potential energy fluctuates around a constant mean value after 2 ns.This indicates that the systems attain equilibrium.

    Mg2+can stabilize the structure of GSK-3β.RMS fluctuation(RMSF)values from structure provide an approach to evaluate the convergence of the dynamical properties of the system.As shown in Fig.3,the fluctuation values of complex-2Mg(black curve)are the lowest,while the values of complex-noMg(blue curve)are the highest.The fluctuation values of systems containing only one Mg2+are moderate,and the values of complex-MgI(green curve)are lower than that of complex-MgII(red curve).These indicate that Mg2+can stabilize GSK-3β,just like Mg2+in other kinases[26,36].Furthermore,we can conclude that Mgis more powerful than Mgin stabilizing GSK-3β,because of the lower fluctuation values of complex-MgI.

    Mg2+can influence the conformation of ATP.The stability of conformation of ATP is essential to catalytic reaction[37-38].RMSD values of ATP in different systems during simulations confirm the importance of Mg2+and the necessity of Mg.As shown in Fig.4,the RMSD values of ATP of complex-2Mg(black curve)and complex-MgI(green curve)are stable around 0.025 nm,while the values of complex-MgII are stable around 0.050 nm(red curve).The RMSD values of ATP of complex-noMg(blue curve)increase continuously,corresponding to remarkable conformation change of ATP,which is adverse to phosphoryl transfer.

    To facilitate phosphoryl transfer,ATP and substrates must keep the near-attack reactive conformations(in-line phosphoryl transfer mechanism)[38].The right conformation of ATP is guaranteed by the H-bond between γ-phosphate of ATP and conserved Lys183[1,39-40].As shown in Fig.5(a),in complex-2Mg,the oxygen atom on γ-phosphate of ATP can form H-bond with Lys183,and ATP can adopt right conformation.As shown in Fig.5(d),in complex-noMg,ATP moves away from phosphate transfer region and forms H-bond with Asn64 and Ser66,but without Lys183.As shown in Fig.5(b),in complex-MgII,ATP can form H-bond with Lys183,while as shown in Fig.5(c),in complex-MgI,ATP does not form H-bond with Lys183,but forms H-bond with Ser66.These indicate that Mgplays an important role in keeping the right position of γ-phosphate ofATP.

    Mg2+can influence the interactions between ATP and Lys85.Lys85 is a conserved catalytic residue which anchors α-and βphosphate of ATP by H-bond.Experimental studies illustrated that if Lys85 was mutated to Arg,GSK-3β would lose its activity[37,41].Calculation studies showed that in kinase,PKA for example,this conserved Lys could strongly stabilize the transition state through electrostatic interactions during phosphoryl transfer[1].To investigate the effect of Mg2+on the interactions between ATP and Lys85,the distances between atoms were monitored:the distances between the oxygen atom of ATP,O1α,and the nitrogen atom of Lys85,NZ,are shown in Fig.6;the distances between the oxygen atom of ATP,O2β,and the nitrogen atom of Lys85,NZ,are shown in Fig.7.As shown in Fig.6 and Fig.7,in complex-2Mg(black curve)and complex-MgI(green curve),the distances between O1αand NZ,and between O2βand NZ are around 0.30 nm,which indicates that stable H-bond between ATP and Lys85 can form,referring to Fig.5(a)and Fig.5(c).In complex-MgII(red curve),the distances are more than 0.35 nm,which indicates that stable H-bonds between ATP and Lys85 can not form,referring to Fig.5(b).In complex-noMg(blue curve),the distances increase continuously,which indicates that ATP is moving away from Lys85,referring to Fig.5(d).The interactions between ATP and Lys85 are important to phosphoryl transfer.The important roles of Mgare evident,because the interactions are demolished when Mgions are absent.

    Mg2+can influence the formation of the conserved H-bonds between adenine moiety of ATP and GSK-3β.The H-bonds between adenine moiety of ATP and Asp133,Val135 are conserved in kinase ATP binding sites[6].These H-bonds can strengthen the binding of ATP to kinases.As shown in Figs.5(a),5(b),and 5(c),in complex-2Mg,complex-MgII,and complex-MgI,the conserved H-bonds can form.As shown in Fig.5(d),in complex-noMg,the conserved H-bonds can not form,suggesting the drifting of ATP in binding site and the weakening ofATP binding.

    We found interesting phenomena during the simulations.Without Mg2+,ATP can form an intramolecular H-bond intermittently,like ATP in CheA histidine kinase[42].The distances between O3′and O1αwere monitored.As shown in Fig.8,in complex-2Mg(black curve),complex-MgII(red curve),and complex-MgI(green curve),the distances between O3′and O1αareabout 0.60 nm.H-bond can not form obviously.In complexnoMg(blue curve),the distances swing between 0.25 and 0.40 nm,indicating the intermittent forming of H-bond between O3′and O1α,Fig.9 shows the process of the H-bond formation.When this H-bond forms,ATP will adopt folded conformation,which is adverse to phosphoryl transfer.

    3 Conclusions

    Mg2+ions stabilize the structure of GSK-3β.Complex containing two Mg2+ions has the lowest RMSF values,while complex containing no Mg2+ion has the highest RMSF values.Mg2+Iis more powerful than Mgin stabilizing GSK-3β,because the RMSF values of complex-MgI are lower than those of complex-MgII.Mg2+can also stabilize the conformation of ATP.Without Mg2+,conformation of ATP will change remarkably and the in-line phosphoryl transfer mechanism will be demolished.Mgguarantees the interactions between ATP and Lys85,while Mgguarantees the right position of γ-phosphate of ATP.Without Mg2+,the conserved H-bonds between adenine moiety ofATP and GSK-3β can not form,and the binding of ATP will weaken.Without Mg2+,an intramolecular H-bond of ATP will form intermittently,which disturbs the catalytic reaction.Mg2+ions take an important role in GSK-3β.Mgseems more important than Mg,while Mgis not dispensable.

    1 Cheng,Y.H.;Zhang,Y.K.;McCammon,J.A.J.Am.Chem.Soc.,2005,127:1553

    2 Embi,N.;Rylatt,D.B.;Cohen,P.Eur.J.Biochem.,1980,107:519

    3 Cross,D.A.;Alessi,D.R.;Cohen,P.;Andelkovich,M.;Hemmings,B.A.Nature,1995,378:785

    4 Hoeflich,K.P.;Luo,J.;Rubie,E.A.;Tsao,M.S.;Jin,O.;Woodgett,J.R.Nature,2000,406:86

    5 Sun,H.;Jiang,Y.J.;Yu,Q.S.;Zou,J.W.Acta Phys.-Chim.Sin.,2009,25:635 [孫 浩,蔣勇軍,俞慶森,鄒建衛(wèi).物理化學(xué)學(xué)報(bào),2009,25:635]

    6 Zhang,N.;Jiang,Y.J.;Zou,J.W.;Zhuang,S.L.;Jin,H.X.;Yu,Q.S.Proteins,2007,67:941

    7 Zhang,N.;Jiang,Y.J.;Zou,J.W.;Zhang,B.;Wang,Y.H.;Yu,Q.S.Eur.J.Med.Chem.,2006,41:373

    8 Martinez,A.;Castro,A.;Medina,M.Glycogen synthase kinase 3(gsk-3)and its inhibitors.New Jersey:Wiley,2006:51-54

    9 Fiol,C.J.;Wang,A.;Roeske,R.W.;Roach,P.J.J.Biol.Chem.,1990,265:6061

    10 Jope,R.S.;Johnson,G.V.Trends Biochem.Sci.,2004,29:95

    11 Summers,S.A.;Kao,A.W.;Kohn,A.D.;Backus,G.S.;Roth,R.A.;Pessin,J.E.;Birnbaum,M.J.J.Biol.Chem.,1999,274:17934

    12 Ross,S.E.;Erickson,R.L.;Hemati,N.;MacDougald,O.A.Mol.Cell.Biol.,1999,19:8433

    13 Wagman,A.S.;Johnson,K.W.;Bussiere,D.E.;Curr.Pharm.Des.,2004,10:1105

    14 Martinez,A.;Castro,A.;Dorronsoro,I.;Alonso,M.Med.Res.Rev.,2002,22:373

    15 Schafer,M.;Goodenough,S.;Moosmann,B.;Behl,C.Brain Res.,2004,1005:84

    16 Phiel,C.J.;Wilson,C.A.;Lee,V.M.;Klein,P.S.Nature,2003,423:435

    17 Hernandez,F.;Perez,M.;Lucas,J.J.;Mata,A.M.;Bhat,R.;Avila,J.J.Biol.Chem.,2004,279:3801

    18 Gould,T.D.;Zarate,C.A.;Manji,H.K.J.Clin.Psych.,2004,65:10

    19 Emamian,E.S.;Hall,D.;Birnbaum,M.J.;Karayiorgou,M.;Gogos,J.A.Nat.Genet.,2004,36:131

    20 Bhat,R.V.;Budd,H.S.L.;Avila,J.J.Neurochem.,2004,89:1313

    21 Ghosh,S.;Karin,M.Cell,2002,109:81

    22 Peifer,M.;Polakis,P.Science,2000,287:1606

    23 Pap,M.;Cooper,G.M.J.Biol.Chem.,1998,273:19929

    24 Diaz,N.;Suarez,D.Biochemistry,2007,46:8943

    25 Ryves,W.J.;Dajani,R.;Pearl,L.;Harwood,A.J.Biochem.Biophys.Res.Commun.,2002,290:967

    26 Herberg,F.W.;Doyle,M.L.;Cox,S.;Taylor,S.S.Biochemistry,1999,38:6352

    27 Valiev,M.;Kawai,R.;Adams,J.A.;Weare,J.H.J.Am.Chem.Soc.,2003,125:9926

    28 Diaz,N.;Field,M.J.J.Am.Chem.Soc.,2004,126:529

    29 Duan,Y.;Wu,C.;Chowdhury,S.;Lee,M.C.;Xiong,G.;Zhang,W.;Yang,R.;Cieplak,P.;Luo,R.;Lee,T.J.Comput.Chem.,2003,24:1999

    30 Lee,M.C.;Duan,Y.Proteins,2004,55:620

    31 Wang,J.;Wolf,R.M.;Caldwell,J.W.;Kollamn,P.A.;Case,D.A.J.Comput.Chem.,2004,25:1157

    32 Meagher,K.L.;Redman,L.T.;Carlson,H.A.J.Comput.Chem.,2003,24:1016

    33 Jorgensen,W.L.;Chandrasekhar,J.;Madura,J.;Klein,M.L.J.Chem.Phys.,1983,79:926

    34 Darden,T.;York,D.;Pedersen,L.J.Chem.Phys.,1993,98:10089

    35 Ryckaert,J.P.;Ciccotti,G.;Berendsen,H.J.C.J.Comput.Phys.,1977,23:327

    36 Adams,J.A.;Taylor,S.S.Biochemistry,1992,31:8516

    37 Hao,S.;Jiang,Y.J.;Yu,Q.S.;Luo,C.C.;Zou,J.W.Biochem.Biophys.Res.Commun.,2008,377:962

    38 http://dx.doi.org/10.1007/s00894-010-0738-0

    39 Hanks,S.K.;Quinn,A.M.Methods Enzymol.,1991,200:38

    40 Knighton,D.R.;Cadena,D.L.;Zheng,J.H.;Teneyck,L.F.;Taylor,S.S.;Sowadski,J.M.;Gill,G.N.Proc.Natl.Acad.Sci.U.S.A.,1993,90:5001

    41 Gómez-Sintes,R.;Hernandez,F.;Avila,J.;Gotteland,J.P.;Zaratin,P.;Lucas,J.J.SENC.Rev.Neurol.,2005,41:71

    42 Zhang,J.;Xu,Y.H.;Shen,J.H.;Luo,X.M.;Chen,J.G.;Chen,K.X.;Zhu,W.L.;Jiang,H.L.J.Am.Chem.Soc.,2005,127:11709

    分子動(dòng)力學(xué)模擬研究結(jié)構(gòu)金屬鎂離子在GSK-3β激酶磷酸化中的作用

    孫 浩1蔣勇軍2,*俞慶森3高 慧3

    (1西南林業(yè)大學(xué),昆明650224;2浙江大學(xué)寧波理工學(xué)院分子設(shè)計(jì)與營養(yǎng)工程市重點(diǎn)實(shí)驗(yàn)室,浙江寧波315100;3浙江大學(xué)化學(xué)系,杭州310027)

    糖原合成酶激酶-3β(GSK-3β)是一種絲氨酸/蘇氨酸蛋白激酶,調(diào)節(jié)糖原合成酶的活性,并在生物體內(nèi)的多條信號通路中發(fā)揮作用.GSK-3β是糖尿病,腫瘤,急性炎癥,早老性癡呆等多種復(fù)雜疾病的藥物作用靶標(biāo).Mg2+是GSK-3β激酶的保守結(jié)構(gòu)金屬離子,與三磷酸腺苷(ATP)分子作用,在激酶的磷酸化中扮演重要的角色,本文闡明了兩個(gè)Mg2+離子(Mg,Mg)在激酶磷酸化中的作用:Mg2+穩(wěn)定GSK-3β與ATP的構(gòu)象.缺乏Mg2+離子,GSK-3β結(jié)構(gòu)的柔性增強(qiáng),同時(shí)ATP的構(gòu)象發(fā)生改變,相對Mg離子而言,Mg離子在磷酸化反應(yīng)中的作用更突出,但Mg離子也是必不可少的,如果沒有Mg離子,Lys183無法獨(dú)立穩(wěn)定ATP的合適構(gòu)象.當(dāng)兩個(gè)Mg2+離子都不存在時(shí),ATP形成分子內(nèi)的氫鍵,成為一種折疊的構(gòu)象.

    GSK-3β激酶; 磷酸化;Mg2+; 結(jié)構(gòu)金屬離子; 分子動(dòng)力學(xué)模擬

    O641

    Received:September 1,2010;Revised:October 15,2010;Published on Web:November 30,2010.

    ?Corresponding author.Email:yjjiang@nit.zju.edu.cn;Tel:+86-574-88229517.

    The project was supported by the National High Technology Research and Development Program of China(863)(2007AA02Z301),National Natural Science Foundation of China(20803063),Natural Science Foundation of Ningbo,China(2010A610024),and Key Scientific Research Foundation of Southwest Forestry University,China(110932).

    國家高技術(shù)研究發(fā)展計(jì)劃(863)(2007AA02Z301),國家自然科學(xué)基金(20803063),寧波市自然科學(xué)基金(2010A610024)及西南林業(yè)大學(xué)重點(diǎn)科研基金(110932)資助項(xiàng)目

    猜你喜歡
    林業(yè)大學(xué)構(gòu)象糖原
    《南京林業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版)》征稿簡則
    糖原在雙殼貝類中的儲(chǔ)存、轉(zhuǎn)運(yùn)和利用研究進(jìn)展
    《南京林業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版)》征稿簡則
    體育運(yùn)動(dòng)后快速補(bǔ)糖對肌糖原合成及運(yùn)動(dòng)能力的影響
    《南京林業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版)》征稿簡則
    《南京林業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版)》征稿簡則
    王建設(shè):糖原累積癥
    肝博士(2021年1期)2021-03-29 02:32:08
    一種一枝黃花內(nèi)酯分子結(jié)構(gòu)與構(gòu)象的計(jì)算研究
    玉米麩質(zhì)阿拉伯木聚糖在水溶液中的聚集和構(gòu)象
    Cu2+/Mn2+存在下白花丹素對人血清白蛋白構(gòu)象的影響
    国产淫语在线视频| 国产成人精品久久久久久| 十八禁国产超污无遮挡网站| 免费搜索国产男女视频| a级毛片免费高清观看在线播放| 日韩成人av中文字幕在线观看| 欧美激情在线99| 久久韩国三级中文字幕| 精品一区二区三区视频在线| 嘟嘟电影网在线观看| 老女人水多毛片| 麻豆一二三区av精品| 国产精品国产高清国产av| 国产一级毛片七仙女欲春2| 黄片无遮挡物在线观看| 亚洲熟妇中文字幕五十中出| 狠狠狠狠99中文字幕| 好男人在线观看高清免费视频| 青春草国产在线视频| or卡值多少钱| 99久久精品国产国产毛片| 日韩亚洲欧美综合| 久久草成人影院| 国产成人a区在线观看| 久久久久免费精品人妻一区二区| 夫妻性生交免费视频一级片| 中文欧美无线码| 国产一区亚洲一区在线观看| 天天躁日日操中文字幕| 美女高潮的动态| av线在线观看网站| 91狼人影院| 亚洲电影在线观看av| 日日啪夜夜撸| 欧美日本亚洲视频在线播放| 国产一区亚洲一区在线观看| 美女cb高潮喷水在线观看| 桃色一区二区三区在线观看| 中文在线观看免费www的网站| 黄色欧美视频在线观看| 三级经典国产精品| 深夜a级毛片| 国产男人的电影天堂91| videossex国产| 热99re8久久精品国产| 在线免费十八禁| 特大巨黑吊av在线直播| 亚洲精华国产精华液的使用体验| 国产精品久久久久久久电影| 久久精品夜夜夜夜夜久久蜜豆| 日本猛色少妇xxxxx猛交久久| 两个人视频免费观看高清| 六月丁香七月| 精品人妻熟女av久视频| 精品久久久久久久久久久久久| 舔av片在线| 18禁在线播放成人免费| 春色校园在线视频观看| 99久国产av精品| 国产又黄又爽又无遮挡在线| 久久久久免费精品人妻一区二区| 22中文网久久字幕| 久久婷婷人人爽人人干人人爱| 欧美一区二区国产精品久久精品| 一区二区三区乱码不卡18| 欧美成人a在线观看| 久久人人爽人人片av| 久久精品国产鲁丝片午夜精品| 亚洲国产日韩欧美精品在线观看| 看黄色毛片网站| 在线天堂最新版资源| 日韩精品青青久久久久久| 国产三级在线视频| 久久久久精品久久久久真实原创| 成人特级av手机在线观看| 日韩欧美精品免费久久| 国产精品久久电影中文字幕| 伦精品一区二区三区| 国产免费一级a男人的天堂| 少妇丰满av| 日韩强制内射视频| 国产精品熟女久久久久浪| 国产精品蜜桃在线观看| 欧美人与善性xxx| 午夜福利网站1000一区二区三区| 婷婷色综合大香蕉| 一二三四中文在线观看免费高清| 免费看日本二区| 午夜福利成人在线免费观看| 看片在线看免费视频| 最近中文字幕2019免费版| 国产免费福利视频在线观看| 亚洲精品成人久久久久久| 国产av不卡久久| 我要搜黄色片| 三级国产精品片| 亚洲在线自拍视频| 少妇熟女aⅴ在线视频| 91午夜精品亚洲一区二区三区| 久久久久久久久大av| 午夜亚洲福利在线播放| 在现免费观看毛片| 国产av一区在线观看免费| 亚洲性久久影院| 成人高潮视频无遮挡免费网站| 午夜福利成人在线免费观看| 九九热线精品视视频播放| 久久久久久久久中文| 伦精品一区二区三区| 免费观看精品视频网站| 天堂网av新在线| 真实男女啪啪啪动态图| 国产精品伦人一区二区| 国产午夜福利久久久久久| 国产乱人偷精品视频| 成人午夜高清在线视频| 久久精品人妻少妇| 看免费成人av毛片| 国产一级毛片七仙女欲春2| 免费看a级黄色片| 国产亚洲5aaaaa淫片| 国产三级中文精品| 精品人妻偷拍中文字幕| 精品人妻偷拍中文字幕| .国产精品久久| 黄色一级大片看看| 亚洲成人av在线免费| 久久热精品热| 中文亚洲av片在线观看爽| 国产毛片a区久久久久| 在线播放无遮挡| 亚洲精华国产精华液的使用体验| 看片在线看免费视频| 国产精品永久免费网站| 欧美成人免费av一区二区三区| 国产精品蜜桃在线观看| 欧美丝袜亚洲另类| av国产久精品久网站免费入址| 亚洲内射少妇av| 免费观看a级毛片全部| 久久久亚洲精品成人影院| 国产免费一级a男人的天堂| 亚洲三级黄色毛片| 免费黄网站久久成人精品| 成人亚洲精品av一区二区| 国模一区二区三区四区视频| 欧美一区二区亚洲| 少妇的逼好多水| 26uuu在线亚洲综合色| 国产白丝娇喘喷水9色精品| 久久这里有精品视频免费| 高清在线视频一区二区三区 | 男女啪啪激烈高潮av片| 国产探花极品一区二区| 亚洲熟妇中文字幕五十中出| www.色视频.com| 国产伦在线观看视频一区| 日韩视频在线欧美| 丰满少妇做爰视频| 欧美性猛交黑人性爽| 婷婷色综合大香蕉| 日韩人妻高清精品专区| 精品酒店卫生间| 亚洲性久久影院| 又黄又爽又刺激的免费视频.| av黄色大香蕉| 午夜福利成人在线免费观看| 天堂影院成人在线观看| 99久久精品一区二区三区| 亚洲国产日韩欧美精品在线观看| 国产探花在线观看一区二区| 久久久精品大字幕| 天天躁日日操中文字幕| 能在线免费看毛片的网站| 成人漫画全彩无遮挡| 亚洲成人中文字幕在线播放| 看非洲黑人一级黄片| 婷婷色综合大香蕉| 亚洲精品日韩av片在线观看| 亚洲精品乱久久久久久| 日日撸夜夜添| 久久久亚洲精品成人影院| 亚洲经典国产精华液单| 白带黄色成豆腐渣| 高清毛片免费看| 成人亚洲精品av一区二区| 亚洲国产欧洲综合997久久,| 黄片wwwwww| 男女啪啪激烈高潮av片| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 午夜免费男女啪啪视频观看| 99热精品在线国产| 午夜免费男女啪啪视频观看| av专区在线播放| av卡一久久| av视频在线观看入口| 两个人视频免费观看高清| 日日干狠狠操夜夜爽| 欧美成人一区二区免费高清观看| 日本欧美国产在线视频| 能在线免费看毛片的网站| av女优亚洲男人天堂| 欧美3d第一页| 女人被狂操c到高潮| 中文字幕制服av| 国模一区二区三区四区视频| 国产成年人精品一区二区| 亚洲av男天堂| 精品一区二区三区人妻视频| 日本黄大片高清| 国内精品宾馆在线| 久久久久久久久大av| 美女脱内裤让男人舔精品视频| 国产人妻一区二区三区在| av在线天堂中文字幕| 婷婷色综合大香蕉| 在线观看av片永久免费下载| 小蜜桃在线观看免费完整版高清| 国产淫语在线视频| 青青草视频在线视频观看| 中国国产av一级| 中国国产av一级| 欧美又色又爽又黄视频| 亚洲av中文av极速乱| 中文天堂在线官网| 亚洲电影在线观看av| 永久免费av网站大全| 2022亚洲国产成人精品| 91av网一区二区| 国产午夜福利久久久久久| 亚洲不卡免费看| 国产精品一二三区在线看| 成人性生交大片免费视频hd| 少妇丰满av| 国产精品av视频在线免费观看| 22中文网久久字幕| 日本熟妇午夜| 欧美人与善性xxx| 亚洲无线观看免费| 欧美日韩国产亚洲二区| 国产 一区精品| 亚洲精品自拍成人| 国产亚洲5aaaaa淫片| 97人妻精品一区二区三区麻豆| 国产一区二区三区av在线| 黄片无遮挡物在线观看| 看非洲黑人一级黄片| 在线观看一区二区三区| 成人三级黄色视频| 一个人看的www免费观看视频| 美女脱内裤让男人舔精品视频| 日日摸夜夜添夜夜添av毛片| 伊人久久精品亚洲午夜| 身体一侧抽搐| 国产 一区精品| 2021天堂中文幕一二区在线观| 精品久久久久久久人妻蜜臀av| 欧美日韩国产亚洲二区| 国产熟女欧美一区二区| 日日啪夜夜撸| 日本wwww免费看| 91av网一区二区| 美女大奶头视频| 国产成年人精品一区二区| 少妇丰满av| 日本熟妇午夜| 欧美激情在线99| 卡戴珊不雅视频在线播放| 亚洲欧美日韩高清专用| 久久综合国产亚洲精品| 日本欧美国产在线视频| 中文字幕熟女人妻在线| 日本免费a在线| 国产精品一区www在线观看| 又爽又黄a免费视频| 一个人看的www免费观看视频| 亚洲国产精品sss在线观看| 久久久久久久午夜电影| 久久精品夜夜夜夜夜久久蜜豆| 又粗又爽又猛毛片免费看| 欧美一级a爱片免费观看看| 国产黄色视频一区二区在线观看 | 精品人妻视频免费看| 国产精品一区二区三区四区免费观看| 一级毛片久久久久久久久女| 国产午夜精品久久久久久一区二区三区| 国产一区有黄有色的免费视频 | 国产综合懂色| 国产亚洲最大av| h日本视频在线播放| 欧美极品一区二区三区四区| 两个人视频免费观看高清| 在线观看66精品国产| 免费av不卡在线播放| 免费一级毛片在线播放高清视频| 国产伦在线观看视频一区| 特级一级黄色大片| 少妇的逼水好多| 免费观看在线日韩| 91av网一区二区| АⅤ资源中文在线天堂| 国产亚洲最大av| 日韩亚洲欧美综合| 干丝袜人妻中文字幕| 日韩三级伦理在线观看| 国产一区二区在线av高清观看| 亚洲成av人片在线播放无| 亚洲av成人精品一区久久| 久久精品熟女亚洲av麻豆精品 | 国产一区二区亚洲精品在线观看| 日韩欧美三级三区| 色哟哟·www| 日韩欧美三级三区| 欧美日韩综合久久久久久| 纵有疾风起免费观看全集完整版 | 少妇的逼水好多| 亚洲在线自拍视频| 亚洲av成人精品一区久久| 国产精品野战在线观看| 亚洲最大成人中文| 神马国产精品三级电影在线观看| 国产精品一区二区三区四区久久| 亚洲精品影视一区二区三区av| 热99re8久久精品国产| 国产高清三级在线| 亚洲精华国产精华液的使用体验| 你懂的网址亚洲精品在线观看 | 精品人妻熟女av久视频| 午夜老司机福利剧场| 热99re8久久精品国产| 桃色一区二区三区在线观看| 亚洲高清免费不卡视频| 大香蕉97超碰在线| 一级av片app| 18禁动态无遮挡网站| 国产精品野战在线观看| 国产av码专区亚洲av| 久久99精品国语久久久| 国产成年人精品一区二区| 91久久精品国产一区二区成人| 国产真实乱freesex| 欧美成人a在线观看| 热99re8久久精品国产| 嫩草影院精品99| 国产在视频线精品| 韩国高清视频一区二区三区| 精品久久久久久成人av| 国产激情偷乱视频一区二区| 欧美最新免费一区二区三区| 亚洲自拍偷在线| av在线老鸭窝| 亚洲最大成人中文| 亚洲国产日韩欧美精品在线观看| 99热6这里只有精品| 亚洲美女搞黄在线观看| 少妇猛男粗大的猛烈进出视频 | 久久人人爽人人片av| 18禁裸乳无遮挡免费网站照片| 国产片特级美女逼逼视频| 亚洲久久久久久中文字幕| 国产精品野战在线观看| 国产真实伦视频高清在线观看| 亚洲欧美日韩卡通动漫| av在线播放精品| 丝袜美腿在线中文| 九九爱精品视频在线观看| 中文字幕av在线有码专区| 国产 一区精品| 国产在视频线精品| 亚洲成av人片在线播放无| 少妇丰满av| 亚洲五月天丁香| 中文字幕免费在线视频6| 欧美性猛交黑人性爽| 国产成人精品婷婷| 欧美日本视频| 小蜜桃在线观看免费完整版高清| 成年免费大片在线观看| 国产单亲对白刺激| 午夜福利成人在线免费观看| 国产亚洲精品av在线| 日韩av在线免费看完整版不卡| 国内揄拍国产精品人妻在线| 有码 亚洲区| 亚洲av免费高清在线观看| 精品久久久噜噜| 白带黄色成豆腐渣| 自拍偷自拍亚洲精品老妇| 久久久久久久久大av| 亚洲精品aⅴ在线观看| 久久99精品国语久久久| 97人妻精品一区二区三区麻豆| 国产精品三级大全| 亚洲欧美中文字幕日韩二区| 亚洲天堂国产精品一区在线| 成人午夜精彩视频在线观看| 国产午夜福利久久久久久| 久久久精品94久久精品| 欧美xxxx性猛交bbbb| 日韩欧美国产在线观看| 亚洲中文字幕日韩| 国产欧美另类精品又又久久亚洲欧美| 青青草视频在线视频观看| 老女人水多毛片| 国产精品人妻久久久久久| 国产精品久久久久久久电影| 日韩强制内射视频| 少妇熟女欧美另类| 免费黄网站久久成人精品| 精品久久久久久久人妻蜜臀av| 天天一区二区日本电影三级| 国产精品久久久久久久电影| 国产精品av视频在线免费观看| 男女国产视频网站| 日韩亚洲欧美综合| 免费人成在线观看视频色| 日韩亚洲欧美综合| 国产精品99久久久久久久久| 国产成人福利小说| 中文字幕制服av| 日本与韩国留学比较| 亚洲欧美清纯卡通| 欧美潮喷喷水| www.色视频.com| 日韩亚洲欧美综合| 日韩一区二区三区影片| 看非洲黑人一级黄片| 日本午夜av视频| 亚洲aⅴ乱码一区二区在线播放| 日本一本二区三区精品| 欧美日韩在线观看h| 97热精品久久久久久| 久久草成人影院| 两性午夜刺激爽爽歪歪视频在线观看| ponron亚洲| 久久久久久久久大av| 乱系列少妇在线播放| 国产在线男女| 精品一区二区免费观看| 男插女下体视频免费在线播放| 日韩视频在线欧美| 村上凉子中文字幕在线| 深爱激情五月婷婷| 三级国产精品片| 黄色日韩在线| 少妇人妻一区二区三区视频| 狠狠狠狠99中文字幕| 国产精品久久视频播放| 能在线免费观看的黄片| videos熟女内射| 在线a可以看的网站| 我要看日韩黄色一级片| 欧美3d第一页| 国产黄片美女视频| 五月玫瑰六月丁香| 日韩一区二区三区影片| 欧美区成人在线视频| 久久精品人妻少妇| 国产私拍福利视频在线观看| 国内精品宾馆在线| 日韩在线高清观看一区二区三区| 哪个播放器可以免费观看大片| 六月丁香七月| 又黄又爽又刺激的免费视频.| 22中文网久久字幕| 观看美女的网站| 国产黄色视频一区二区在线观看 | 成年免费大片在线观看| 国产成人一区二区在线| 欧美日韩在线观看h| 欧美激情在线99| av线在线观看网站| 一区二区三区高清视频在线| 菩萨蛮人人尽说江南好唐韦庄 | 男的添女的下面高潮视频| 日韩制服骚丝袜av| 六月丁香七月| 国产高清三级在线| 精品一区二区三区人妻视频| 97超视频在线观看视频| 最近手机中文字幕大全| 国产单亲对白刺激| 欧美激情国产日韩精品一区| 日韩精品有码人妻一区| 男人的好看免费观看在线视频| 国产精品野战在线观看| 国产精品福利在线免费观看| 亚洲aⅴ乱码一区二区在线播放| 级片在线观看| 亚洲第一区二区三区不卡| 精品久久久久久久久av| 国产精品国产三级国产专区5o | 亚洲色图av天堂| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产精品一区二区性色av| 97在线视频观看| 午夜福利成人在线免费观看| 久久鲁丝午夜福利片| 日日撸夜夜添| 99在线视频只有这里精品首页| 免费av观看视频| 国产精品无大码| 18禁在线无遮挡免费观看视频| 国产精品电影一区二区三区| 久久久成人免费电影| 1024手机看黄色片| 精品酒店卫生间| 爱豆传媒免费全集在线观看| 少妇人妻精品综合一区二区| 特级一级黄色大片| 午夜福利在线在线| 国产91av在线免费观看| 国产熟女欧美一区二区| 男女国产视频网站| 久久综合国产亚洲精品| 99在线人妻在线中文字幕| 建设人人有责人人尽责人人享有的 | 亚洲av二区三区四区| 国产精品一区二区三区四区久久| 建设人人有责人人尽责人人享有的 | 国产精品乱码一区二三区的特点| 在线免费观看的www视频| 少妇人妻精品综合一区二区| 搞女人的毛片| 国产精品精品国产色婷婷| 亚洲在线自拍视频| 国产成人精品久久久久久| 午夜福利在线观看吧| 建设人人有责人人尽责人人享有的 | 国产精品麻豆人妻色哟哟久久 | 看非洲黑人一级黄片| 免费观看性生交大片5| 蜜桃久久精品国产亚洲av| 久久欧美精品欧美久久欧美| 久久久国产成人免费| 偷拍熟女少妇极品色| 综合色丁香网| 老女人水多毛片| 欧美bdsm另类| 日韩强制内射视频| 人人妻人人看人人澡| 色综合亚洲欧美另类图片| 韩国av在线不卡| 国产精品.久久久| 免费播放大片免费观看视频在线观看 | 天天一区二区日本电影三级| 午夜亚洲福利在线播放| 天堂av国产一区二区熟女人妻| 日韩大片免费观看网站 | av.在线天堂| 亚洲国产欧美在线一区| 中文字幕久久专区| a级毛片免费高清观看在线播放| 91精品一卡2卡3卡4卡| 搡女人真爽免费视频火全软件| 级片在线观看| 国产真实伦视频高清在线观看| 成人亚洲精品av一区二区| 日日啪夜夜撸| 六月丁香七月| 黄色一级大片看看| 国产精品国产三级国产av玫瑰| 亚洲一区高清亚洲精品| 男人舔奶头视频| 国产人妻一区二区三区在| 亚洲精品自拍成人| 99久久精品国产国产毛片| 久久久精品大字幕| 天堂√8在线中文| 中文字幕亚洲精品专区| 国产午夜精品久久久久久一区二区三区| 男人狂女人下面高潮的视频| 午夜日本视频在线| 午夜免费激情av| 老司机影院毛片| 少妇猛男粗大的猛烈进出视频 | 伦理电影大哥的女人| 欧美日韩精品成人综合77777| 少妇熟女欧美另类| 亚洲精品成人久久久久久| 日日摸夜夜添夜夜爱| 免费一级毛片在线播放高清视频| 亚洲欧洲国产日韩| 国产精品日韩av在线免费观看| 中文字幕免费在线视频6| 国产黄片美女视频| 亚洲欧美精品自产自拍| 深爱激情五月婷婷| 成人综合一区亚洲| 中文欧美无线码| 久久婷婷人人爽人人干人人爱| 色播亚洲综合网| 亚洲最大成人中文| 丝袜美腿在线中文| 欧美+日韩+精品| av又黄又爽大尺度在线免费看 | 欧美精品国产亚洲| 一级av片app| 亚洲欧美日韩无卡精品| 国产麻豆成人av免费视频| 麻豆久久精品国产亚洲av| 日本猛色少妇xxxxx猛交久久| 91久久精品国产一区二区三区| 国产精品人妻久久久久久| 精品午夜福利在线看| 色视频www国产| 国产av一区在线观看免费| 黄色日韩在线| 极品教师在线视频| 亚洲av不卡在线观看| 三级国产精品欧美在线观看| 好男人在线观看高清免费视频| 联通29元200g的流量卡| 最新中文字幕久久久久| 干丝袜人妻中文字幕|