摘要:CRISPR/Cas9(clustered regularly interspaced short palindromic repeats and CRISPR-associated protein 9)基因編輯技術(shù)可以對(duì)特定基因進(jìn)行改造,從而實(shí)現(xiàn)目標(biāo)性狀的定向改良,在作物遺傳改良中具有良好的應(yīng)用前景。而基于雄性不育系建立的雜交水稻育種體系是水稻雜種優(yōu)勢(shì)利用的重要途徑,編輯水稻雄性不育基因能夠定向創(chuàng)制新的雄性不育種質(zhì),有助于豐富雜交水稻不育系遺傳資源,更好地利用水稻雜種優(yōu)勢(shì)。綜述了CRISPR/Cas9基因編輯技術(shù)創(chuàng)制水稻雄性不育系的研究進(jìn)展,展望了基因編輯水稻雄性不育系未來研究方向,以期為雜交水稻育種技術(shù)的創(chuàng)新與發(fā)展提供參考。
關(guān)鍵詞:基因編輯;水稻;雄性不育系;育種應(yīng)用
doi:10.13304/j.nykjdb.2023.0460
中圖分類號(hào):S511;Q789 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):10080864(2025)03002411
基因編輯技術(shù)主要是指利用人工設(shè)計(jì)和改造的序列特異性核酸酶靶向識(shí)別切割目標(biāo)基因組位點(diǎn)而造成DNA鏈斷裂,誘發(fā)生物體的非同源末端連接或同源重組等DNA修復(fù)機(jī)制,從而導(dǎo)致修復(fù)基因位點(diǎn)的堿基變異,達(dá)到對(duì)靶基因的精確編輯[1]?;贑RISPR/Cas9 (clustered regularlyinterspaced short palindromic repeats and CRISPRassociatedprotein 9)的基因編輯系統(tǒng)能夠?qū)ι矬w特定DNA序列進(jìn)行編輯,從而實(shí)現(xiàn)基因定向修飾,具有操作便捷、高效編輯、通用性廣等特點(diǎn)。隨著越來越多的植物參考基因組,尤其是水稻等主要糧食作物的高質(zhì)量參考基因組序列的公布,以基因編輯為代表的遺傳操作技術(shù)更加廣泛地用于植物基因功能解析和農(nóng)藝性狀改良,表現(xiàn)出廣闊的應(yīng)用前景。
水稻雜種優(yōu)勢(shì)利用是提高水稻產(chǎn)量的重要途徑,發(fā)展雜交稻對(duì)于保障我國糧食安全具有重大意義。袁隆平院士明確提出了雜交水稻育種從三系法到兩系法、再到一系法的發(fā)展戰(zhàn)略[2]。三系法和兩系法已十分成熟,通過制種實(shí)現(xiàn)雜交水稻的規(guī)?;a(chǎn)。其中,水稻雄性不育系是水稻雜種優(yōu)勢(shì)利用的關(guān)鍵,目前主要是利用自然不育突變材料為供體進(jìn)行雜交選育,但水稻自然雄性不育具有不可預(yù)見性,且利用自然不育材料通過常規(guī)育種手段創(chuàng)制新的實(shí)用性水稻雄性不育系,具有育種周期長(zhǎng)、效率低等缺點(diǎn),嚴(yán)重制約了水稻雄性不育系的育種利用。選擇性狀優(yōu)異的水稻材料對(duì)已知雄性不育基因進(jìn)行編輯,可以快速創(chuàng)制具有實(shí)用價(jià)值的雄性不育系,拓寬水稻雄性不育系的遺傳多樣性,更好地利用水稻品種間或亞種間的雜種優(yōu)勢(shì)。近年來,隨著功能基因組學(xué)和基因工程技術(shù)的發(fā)展,控制減數(shù)分裂(如MiMe[34])、單倍體誘導(dǎo)(如BBM1[5]、MTL[6]、CENH3[7]、DMP[8])等相關(guān)基因被挖掘,結(jié)合基因編輯技術(shù)對(duì)水稻REC、PAIR、OSD1 及MTL 同時(shí)編輯,可以通過無融合生殖初步實(shí)現(xiàn)雜種優(yōu)勢(shì)固定,為一系法雜交水稻育種奠定了堅(jiān)實(shí)基礎(chǔ)[9],為進(jìn)一步實(shí)現(xiàn)水稻遠(yuǎn)緣雜種優(yōu)勢(shì)利用提供有效途徑,且較三系法和兩系法而言,一系法能夠減少制種環(huán)節(jié),降低水稻生產(chǎn)風(fēng)險(xiǎn),具有良好的應(yīng)用前景。本文總結(jié)了水稻不育類型,綜述了CRISPR/Cas9編輯系統(tǒng)在創(chuàng)制水稻不育系中的研究進(jìn)展,并展望了其未來發(fā)展方向,以期為雜交水稻育種的創(chuàng)新和發(fā)展提供參考。
1 水稻雄性不育主要類型與應(yīng)用現(xiàn)狀
目前,生產(chǎn)中應(yīng)用較為廣泛的水稻雄性不育系主要包括細(xì)胞質(zhì)雄性不育系及光溫敏不育等環(huán)境敏感型細(xì)胞核雄性不育系,其中,細(xì)胞質(zhì)不育主要包括野敗型、包臺(tái)型、紅蓮型3種類型;環(huán)境敏感型雄性不育包括光敏型、溫敏型及濕敏型3種類型[1011]。以上述兩大類雄性不育系為基礎(chǔ),雜交水稻形成了成熟的三系法和兩系法育種體系。由于三系法雜交水稻受恢保關(guān)系制約,需要實(shí)現(xiàn)三系配套才能用于生產(chǎn)實(shí)踐,因此,涉及三系法雜交水稻的基因編輯主要以恢復(fù)系的其他育種性狀(香味等)為編輯目標(biāo)[12],直接編輯細(xì)胞質(zhì)雄性不育基因創(chuàng)制不育系還未見報(bào)道。另外,水稻中也鑒定了其他類型的隱性核不育(普通隱性核不育)[13]和顯性核不育[1415]。由于普通隱性核不育系難以通過常規(guī)方法實(shí)現(xiàn)不育系的繁殖,顯性核不育直接利用存在后代育性分離,一般僅用作育種中間材料進(jìn)行群體改良。近年來報(bào)道的濕敏型不育系是一種濕度調(diào)控育性變化的不育系[11],但未有報(bào)道基因編輯或轉(zhuǎn)育的實(shí)例。
目前,利用不同來源的雄性不育資源或不同的研究途徑,水稻中已鑒定到較多的雄性不育基因,其中,已有8個(gè)細(xì)胞質(zhì)雄性不育基因被克隆,分別為WA352、orf79、orfH79、orf307、orf113、orf352、orf182 和FA182[16];普通核不育基因有29個(gè)被成功克?。ū?),它們主要參與小孢子母細(xì)胞發(fā)育、絨氈層降解、花粉壁合成等重要途徑。
除普通核不育基因外,在水稻中還報(bào)道了20 個(gè)光溫敏不育相關(guān)基因、3 個(gè)濕敏不育基因(表2),其中,僅有pms1、pms3/p/tms12-1、tms5、Ugp1、CSA、ostms18、OsOSC12/OsPTS1、hms1 和OsGL1-4被克隆[46]。目前應(yīng)用最廣泛的不育基因?yàn)闇孛舨挥騮ms5,其次是光敏不育基因pms3[47]。因此,需要挖掘更多具有實(shí)用價(jià)值的光溫敏不育基因,如ostms18,該不育基因編碼膽堿(glucosemethanol-choline,GMC)氧化還原酶,在23 ℃及以下溫度表現(xiàn)為育性恢復(fù),而29 ℃以上表現(xiàn)為完全不育,與被廣泛應(yīng)用的溫敏不育基因tms5 相比,具有相似的育性恢復(fù)性及不育穩(wěn)定性[46]。上述已克隆的不育基因均可以作為水稻基因編輯的靶標(biāo),創(chuàng)制不同類型的水稻細(xì)胞核雄性不育系。
2 CRISPR/Cas9 編輯系統(tǒng)在水稻不育系創(chuàng)制中的應(yīng)用
基因編輯技術(shù)能夠?qū)崿F(xiàn)對(duì)目標(biāo)性狀精確、快速地定向改良,基于成熟的CRISPR/Cas9基因編輯系統(tǒng),研究者已在水稻中開展了水稻雄性不育系創(chuàng)制,如基于光溫敏不育基因的兩系不育系、基于普通核不育的“智能”不育系等[69]。
2.1 CRISPR/Cas9 基因編輯創(chuàng)制水稻光溫敏核不育系
秈型溫敏和粳型光敏不育系是水稻兩系不育系應(yīng)用的2種主要類型。由于秈稻雜種優(yōu)勢(shì)利用研究較早且進(jìn)展良好,大多數(shù)基因編輯事件集中在溫敏不育基因tms5。Zhou等[70]通過CRISPR/Cas9雙元載體TMS5ab 實(shí)現(xiàn)對(duì)常規(guī)水稻材料TMS5 高效敲除,獲得了秈型三系保持系(珍汕97B、中浙B、泰豐B、宜香B、華農(nóng)B、華恢B、ReB)、秈型常規(guī)稻(粵晶絲苗、粵農(nóng)絲苗、五山絲苗)及常規(guī)粳稻GAZ等11份水稻材料為遺傳背景的不含轉(zhuǎn)基因成分的溫敏不育系,并與不同的恢復(fù)系配組后結(jié)實(shí)正常,部分雜交組合表現(xiàn)出較強(qiáng)的雜種優(yōu)勢(shì)。何溟[71]獲得了15個(gè)品種的TMS5 編輯材料,并對(duì)其中3個(gè)不同來源的不育突變材料進(jìn)行了育性轉(zhuǎn)換臨界溫度的探究,結(jié)果顯示,其育性轉(zhuǎn)換臨界溫度為24~28 ℃?;贑RISPR/Cas9 編輯系統(tǒng),中國水稻研究所對(duì)常規(guī)秈稻中嘉早17(YK17)TMS5進(jìn)行了編輯,新不育系YK17S 在日均溫22 ℃條件下正常結(jié)實(shí),而在日均溫24或26 ℃時(shí)表現(xiàn)為完全不育,利用其配制的部分雜交稻組合雜種優(yōu)勢(shì)明顯[72]。吳明基等[73] 通過定點(diǎn)突變GH89 材料的TMS5 位點(diǎn)獲得了2個(gè)具有典型溫敏特性的突變株tms5-1 和tms5-5,經(jīng)人工氣候箱鑒定,其育性轉(zhuǎn)換臨界溫度約為24 ℃。覃玉芬等[74]對(duì)優(yōu)異水稻品系GXU41 TMS5 基因的2個(gè)靶點(diǎn)進(jìn)行編輯,獲得的tms5 純合株系GXU41-5S,其育性轉(zhuǎn)換臨界溫度低于24 ℃,因具有育性轉(zhuǎn)換臨界溫度低的特點(diǎn),制種安全性高。
在粳稻中也開展了TMS5 基因編輯研究。宋成軍[75]利用CRISPR/Cas9技術(shù)對(duì)川農(nóng)香粳和遼寧引粳的TMS5 進(jìn)行定點(diǎn)編輯,獲得了具有溫敏特征的粳型不育株。黃忠明等[76]也基于CRISPR/Cas9技術(shù)對(duì)粳稻F197的TMS5 進(jìn)行編輯,獲得了株高、有效穗數(shù)、千粒重等與野生型無顯著差異的新不育系,其育性轉(zhuǎn)換臨界溫度在28 ℃左右。而基因編輯武運(yùn)粳7號(hào)TMS5 獲得的溫敏不育系的育性轉(zhuǎn)換臨界溫度低于28 ℃[77]。
對(duì)多倍體水稻種質(zhì)H2和H3的TMS5 進(jìn)行編輯,獲得了新型四倍體水稻不育系H2s和H3s,育性鑒定結(jié)果表明,其育性轉(zhuǎn)換臨界溫度為23~26 ℃。與不同來源的正常四倍體水稻品系雜交,F(xiàn)1在有效穗數(shù)、總粒數(shù)及結(jié)實(shí)率方面表現(xiàn)明顯優(yōu)勢(shì)[78],為新型多倍體水稻創(chuàng)制及雜種優(yōu)勢(shì)利用提供了可能。
為了選育更具育種價(jià)值的溫敏不育系,也有利用CRISPR/Cas9基因編輯系統(tǒng)創(chuàng)制多性狀同時(shí)得到改良的不育系。Li等[79]對(duì)常規(guī)稻品占的溫敏不育基因TMS5、稻瘟病抗性基因Pi21 及白葉枯病抗性基因Xa13 進(jìn)行定向編輯,創(chuàng)制了兼抗稻瘟病和白葉枯病的溫敏不育系,純合株系在23 ℃為可育,28 ℃表現(xiàn)為徹底不育;另外,也有研究對(duì)早秈品種中早70的溫敏不育基因TMS5、香味基因Badh2 及稻瘟病抗性位點(diǎn)Pi21 進(jìn)行多重編輯,創(chuàng)制了優(yōu)質(zhì)香型且高抗的兩系早稻不育系,具有極高的育種價(jià)值[80]。
同tms5 基因相比,光敏不育基因pms1 或pms3的編輯研究較少,僅在部分材料中對(duì)主效的光敏不育基因pms3 進(jìn)行了基因編輯的探索研究。如利用CRISPR/Cas9技術(shù)對(duì)粳稻中花11的PMS3 進(jìn)行基因編輯,獲得了具有光敏特性的不育株,但未對(duì)其育性轉(zhuǎn)換臨界溫度等實(shí)用性指標(biāo)進(jìn)行細(xì)致研究[81]。林艷等[82]基于TALEN基因編輯技術(shù)對(duì)明恢86和日本晴中的PMS3 進(jìn)行定向突變,獲得了多種pms3 序列變異的純合突變體,但是其在夏季高溫條件下并不表現(xiàn)典型光敏特征,花粉育性表現(xiàn)與正??捎牧蠠o顯著差異,推測(cè)可能是單堿基C-G變異才能導(dǎo)致育性改變,間接表明pms3 育性調(diào)控的分子機(jī)制更加復(fù)雜。
另外,也有利用基因編輯技術(shù)創(chuàng)制反光敏型不育系的報(bào)道。csa(carbon starved anther)是反光敏型突變體[83],該材料在短日照條件下表現(xiàn)為雄性不育,而在長(zhǎng)日照條件下表現(xiàn)為正??捎?,通過CRISPR/Cas9 編輯粳稻9522、JY5B 和空育131 的CSA 基因獲得了3 個(gè)反光敏不育系[84],且空育131csa表現(xiàn)出一定的溫敏特性,即不同遺傳背景下表現(xiàn)不完全一致。對(duì)粳稻的CSA 不育基因進(jìn)行編輯可以豐富粳稻的不育系背景,為兩系雜交粳稻的利用提供技術(shù)支撐。
2.2 CRISPR/Cas9 編輯創(chuàng)制水稻“智能”不育系
水稻中存在許多自然突變的普通隱性核不育基因(表1),由于難以自身繁殖,無法應(yīng)用于水稻雜種優(yōu)勢(shì)利用。利用基因編輯技術(shù)創(chuàng)制普通核不育系,結(jié)合生物工程技術(shù),如單顆粒示蹤(single"particle tracking,SPT)[85]、工程保持系表達(dá)盒(包含花粉致死基因、育性恢復(fù)基因、篩選報(bào)告基因等連鎖表達(dá)元件)等可實(shí)現(xiàn)普通核不育系種子生產(chǎn)和雜種優(yōu)勢(shì)利用[86]。鄧興旺課題組于2016年報(bào)道將花粉特異表達(dá)基因OsNP1 與α淀粉酶基因、紅色熒光蛋白基因串聯(lián)轉(zhuǎn)化到水稻隱性核不育Osnp1 突變體中,獲得單合子的轉(zhuǎn)基因植株,其自交后代可產(chǎn)生轉(zhuǎn)基因的可育保持系和非轉(zhuǎn)基因雄性不育系,實(shí)現(xiàn)普通核不育基因的育種利用,這種不育系也被稱為“廣三系”不育系或“智能”不育系[69],育成的代表性不育系(圳18A等)得到了廣泛引種和測(cè)配。陳惠妹[87]以優(yōu)化的Ⅱ型CRISPR/Cas9基因編輯系統(tǒng)對(duì)水稻品種明恢86的隱性核不育基因OsUGP1、RAFTIN、MIL1 及UDT1 進(jìn)行了定向編輯,創(chuàng)制了徹底敗育的突變體材料,并以此為基礎(chǔ),開展了工程保持系的創(chuàng)建,轉(zhuǎn)化不育系即可獲得保持系,實(shí)現(xiàn)不育系和保持系的配套。此外,利用CRISPR/Cas9技術(shù)編輯正常水稻品種華占和泰豐B 的參與絨氈層降解和花粉發(fā)育基因PTC1,也能獲得柱頭外露率高、一般配合力好的攜帶ptc1 的新核不育系華占-SGMS 和泰豐B-SGMS[86]。
另外,擬南芥OPR3(oxophytodienoic acidreductase 3)基因參與小穗發(fā)育,通過CRISPR/Cas9技術(shù)編輯水稻中的同源基因OsOPR7 創(chuàng)制雄性不育系,且通過噴施茉莉酸甲酯恢復(fù)育性,可形成新型的兩系雜交育種系統(tǒng)[88]。
3 未來發(fā)展方向
3.1 多重編輯雄性不育基因創(chuàng)制新型安全水稻不育系
單個(gè)不育基因的簡(jiǎn)單編輯不能完全滿足水稻育種的實(shí)際需要。如光溫敏不育基因的編輯系統(tǒng)雖然可以創(chuàng)制不同背景來源的光溫敏不育系,但仍存在育性轉(zhuǎn)換臨界溫度偏高、制種風(fēng)險(xiǎn)較高的問題。研究發(fā)現(xiàn),僅編輯常規(guī)水稻的TMS5 基因,獲得的新不育系的育性轉(zhuǎn)換臨界溫度為24~28 ℃,往往高于我國對(duì)于育性轉(zhuǎn)換臨界的安全溫度23 ℃(秈稻)或24 ℃(粳稻)的標(biāo)準(zhǔn),這種現(xiàn)象在粳稻背景下更加明顯,可達(dá)28~32 ℃,故不育系無法滿足安全制種的要求[89]。因此,需加快開展育性穩(wěn)定的兩系不育基因編輯研究,例如同時(shí)編輯主效的光敏不育基因和溫敏不育基因,創(chuàng)制光溫互作型不育系。研究表明,在tms5 和pms3 同時(shí)存在時(shí),能夠獲得育性轉(zhuǎn)換臨界溫度低的不育系,從而提高兩系不育系的育性穩(wěn)定性[90],理論上也可以基于tms5 和其他溫敏不育基因的同時(shí)編輯,選育出育性轉(zhuǎn)換臨界溫度較低的不育系。
育性轉(zhuǎn)換臨界溫度是關(guān)系到兩系雜交稻制種、繁種安全性的核心,已有的光溫敏不育基因往往不參與育性轉(zhuǎn)換臨界溫度的調(diào)控,因此,進(jìn)一步挖掘與育性轉(zhuǎn)換臨界溫度相關(guān)的調(diào)控基因是更好地實(shí)現(xiàn)兩系法雜交水稻穩(wěn)步發(fā)展的關(guān)鍵。鄭卓等[91]認(rèn)為,溫敏不育系的育性轉(zhuǎn)換臨界溫度與tms5 無關(guān),而是育性轉(zhuǎn)換調(diào)控基因A及抑制子B共同作用調(diào)控。這個(gè)擬定的A基因和B基因也是潛在的基因編輯位點(diǎn),可用于創(chuàng)制育性轉(zhuǎn)換臨界溫度低的不育系。另外,本研究組從1份秈稻突變體中挖掘到1 個(gè)光溫敏不育基因,暫命名為Ostms118(未發(fā)表),其育性轉(zhuǎn)換臨界溫度為23~24 ℃,具有典型的光溫敏特性,在長(zhǎng)日高溫下徹底不育,而在武漢秋季或海南春季的短日適溫條件下表現(xiàn)為正??捎庉婳sTMS118 基因可以創(chuàng)制新型的秈型光溫敏不育系。
另外,通過利用反溫敏不育基因也能有效降低兩系制種的安全性風(fēng)險(xiǎn)。盡管對(duì)于反溫敏不育種質(zhì)的報(bào)道和研究較少[92-94],大大限制了其在育種中的應(yīng)用。2017年安徽省農(nóng)業(yè)科學(xué)院水稻研究所報(bào)道了利用溫敏不育系矮紫S和反溫敏不育系雁農(nóng)S作為不育基因供體,分別培育攜帶2類不育基因的天豐B近等基因系——天豐S和天豐s,進(jìn)而兩兩雜交(天豐S/天豐s)創(chuàng)制永久核不育系天豐Ss,從理論上解決了兩系不育系育性穩(wěn)定性的問題。通過進(jìn)一步克隆反溫敏不育基因RTMS10,將為同時(shí)基因編輯溫敏和反溫敏不育基因創(chuàng)制永久核不育系,降低甚至避免兩系雜交稻制種安全問題提供可能[95]。
3.2 普通核不育基因編輯與“第三代”雜交水稻系統(tǒng)
2020年,在玉米中報(bào)道了利用基因編輯技術(shù)實(shí)現(xiàn)“一步法”創(chuàng)制核不育系及其保持系的方法,該研究利用CRISPR/Cas9編輯技術(shù)對(duì)玉米育性基因的功能結(jié)構(gòu)域進(jìn)行了定點(diǎn)、定向刪除,從而創(chuàng)制了核不育系,并利用基因編輯技術(shù)精確地創(chuàng)制出操控型核不育保持系。該保持系具有以下3個(gè)特點(diǎn):一是恢復(fù)不育系孢子體雄花育性;二是攜帶的保持系技術(shù)元件,僅能通過雌配子向后代遺傳;三是籽粒上帶有紅色熒光標(biāo)記[96]。水稻也可基于此系統(tǒng)創(chuàng)制相應(yīng)的核不育系和保持系,實(shí)現(xiàn)育性穩(wěn)定、配組自由兼顧的“一步法”雜交水稻育種系統(tǒng)。
4 結(jié)語
CRISPR/Cas9基因編輯技術(shù)已在水稻雄性不育系創(chuàng)制中取得了較好的進(jìn)展,為充分利用水稻雜種優(yōu)勢(shì)奠定了堅(jiān)實(shí)的材料基礎(chǔ),但仍在雄性不育系的不育穩(wěn)定性、育性恢復(fù)、編輯效率等方面存在問題,需要進(jìn)一步挖掘具有實(shí)用價(jià)值的水稻雄性不育基因,并結(jié)合更加精準(zhǔn)高效的基因編輯系統(tǒng)或技術(shù),快速定向創(chuàng)制優(yōu)異的、有實(shí)用價(jià)值的水稻雄性不育材料,豐富水稻雄性不育系遺傳資源,更便捷地發(fā)揮水稻雜種優(yōu)勢(shì)。
參考文獻(xiàn)
[1] 李紅,謝卡斌.植物CRISPR基因組編輯技術(shù)的新進(jìn)展[J].生
物工程學(xué)報(bào),2017,33(10):1700-1711.
LI H, XIE K B. Recent progresses in CRISPR genome editing
in plants [J]. Chin. J. Biotechnol., 2017, 33(10):1700-1711.
[2] 袁隆平.雜交水稻的育種戰(zhàn)略設(shè)想[J].雜交水稻,1987(1):1-3.
[3] D’ERFURTH I, JOLIVET S, FROGER N, et al .. Turning
meiosis into mitosis [J/OL]. PLoS Biol., 2009, 7(6):e1000124
[2023-05-10]. https://doi.org/10.1371/journal.pbio.1000124.
[4] MIEULET D, JOLIVET S, RIVARD M, et al .. Turning rice
meiosis into mitosis [J]. Cell Res., 2016, 26(11): 1242-1254.
[5] KHANDAY I, SKINNER D, YANG B, et al .. A male-expressed
rice embryogenic trigger redirected for asexual propagation
through seeds [J]. Nature, 2019, 565(7737):91-95.
[6] KELLIHER T, STARR D, RICHBOURG L, et al.. MATRILINEAL,
a sperm-specific phospholipase, triggers maize haploid induction [J].
Nature, 2017, 542(7639):105-109.
[7] MARUTHACHALAM R, CHAN S W L. Haploid plants
produced by centromere-mediated genome elimination [J].
Nature, 2010, 464(7288):615-618.
[8] ZHONG Y, LIU C X, QI X L, et al .. Mutation of ZmDMP
enhances haploid induction in maize [J]. Nat. Plants, 2019,
5(6):575-580.
[9] WANG C, LIU Q, SHEN Y, et al .. Clonal seeds from hybrid
rice by simultaneous genome engineering of meiosis and
fertilization genes [J]. Nat. Biotechnol., 2019, 37(3):283-286.
[10] XUE Z Y, XU X, ZHOU Y, et al .. Deficiency of a triterpene
pathway results in humidity-sensitive genic male sterility in
rice [J/OL]. Nat. Commun., 2018, 9:604 [2023-05-10]. https://
doi.org/10.1038/s41467-018-03048-8.
[11] CHEN H Q, ZHANG Z G, NI E D, et al .. HMS1 interacts with
HMS1I to regulate very-long-chain fatty acid biosynthesis and
the humidity-sensitive genic male sterility in rice (Oryza
sativa) [J]. New Phytol., 2020, 225(5):2077-2093.
[12] HUI S Z, LI H J, MAWIA A M, et al .. Production of aromatic
three-line hybrid rice using novel alleles of BADH2 [J]. Plant
Biotechnol. J., 2022, 20(1):59-74.
[13] 馬西青,方才臣,鄧聯(lián)武,等.水稻隱性核雄性不育基因研究
進(jìn)展及育種應(yīng)用探討[J].中國水稻科學(xué),2012,26(5):511-520.
MA X Q, FANG C C, DENG L W, et al .. Research progress
and breeding application of recessive genic male sterility in
rice [J]. Chin. J. Rice Sci., 2012, 26(5):511-520.
[14] 顏龍安,張俊才,朱成,等.水稻顯性雄性不育基因鑒定初報(bào)
[J].作物學(xué)報(bào),1989,15(2):174-181.
YAN L A, ZHANG J C, ZHU C, et al .. The preliminary
evaluation of a dominant male sterile gene in rice [J]. Acta.
Agron. Sin., 1989, 15(2):174-181.
[15] 黃顯波,田志宏,鄧則勤,等.水稻三明顯性核不育基因的初
步鑒定[J].作物學(xué)報(bào),2008,34(10):1865-1868.
HUANG X B, TIAN Z H, DENG Z Q, et al .. Preliminary
identification of a novel Sanming dominant male sterile gene in
rice (Oryza sativa L.) [J]. Acta. Agron. Sin., 2008, 34(10):1865-
1868.
[16] JIANG H C, LU Q, QIU S Q, et al .. Fujian cytoplasmic male
sterility and the fertility restorer gene OsRf19 provide a
promising breeding system for hybrid rice [J/OL]. Proc. Natl.
Acad. Sci. USA, 2022, 119(34): e2208759119 [2023-05-10].
https://doi.org/10.1073/pnas.2208759119.
[17] NONOMURA K, MIYOSHI K, EIGUCHI M, et al .. The MSP1
gene is necessary to restrict the number of cells entering into
male and female sporogenesis and to initiate anther wall
formation in rice [J]. Plant Cell, 2003, 15:1728-1739.
[18] FU Z Z, YU J, CHENG X W, et al .. The rice basic helix-loophelix
transcription factor TDR INTERACTING PROTEIN2 is a
central switch in early anther development [J]. Plant Cell,
2014, 26:1512-1524.
[19] ZHANG L, MAO D H, XING F, et al .. Loss of function of
OsMADS3 via the insertion of a novel retrotransposon leads to
recessive male sterility in rice (Oryza sativa) [J]. Plant Sci.,
2015, 238:188-197.
[20] XU D W, SHI J X, RAUTENGARTEN C, et al .. Defective
Pollen Wall 2 (DPW2) encodes an acyl transferase required for
rice pollen development [J]. Plant Physiol., 2017, 173(1):
240-255.
[21] LI X W, GAO X Q, WEI Y, et al .. Rice apoptosis inhibitor5
coupled with two DEAD-Box adenosine 5’-triphosphatedependent
RNA helicases regulates tapetum degeneration [J].
Plant Cell, 2011, 23(4):1416-1434.
[22] TAN H X, LIANG W Q, HU J P, et al .. MTR1 encodes a
secretory fasciclin glycoprotein required for male reproductive
development in rice [J]. Dev. Cell, 2012, 22(6):1127-1137.
[23] DENG H F, SONG Y X, CHEN S F, et al.. An anther development
F-box (ADF) protein regulated by tapetum degeneration retardation
(TDR) controls rice anther development [J]. Plants, 2015, 241:
157-166.
[24] UZAIR M, XU D, SCHREIBER L, et al .. persistent tapetal cell2
is required for normal tapetal programmed cell death and
pollen wall patterning [J]. Plant Physiol., 2020, 182(2):
962-976.
[25] LI H, PINOT F, SAUVEPLANE V, et al .. Cytochrome P450
family member CYP704B2 catalyzes the ω -hydroxylation of
fatty acids and is required for anther cutin biosynthesis and
pollen exine formation in rice [J]. Plant Cell, 2010, 22(1):
173-190.
[26] SHI J, TAN H X, YU X H, et al .. Defective pollen wall is
required for anther and microspore development in rice and
encodes a fatty acyl carrier protein reductase [J]. Plant Cell,
2011, 23(6):2225-2246.
[27] CAI C F, ZHU J, LOU Y, et al .. The functional analysis of
OsTDF1 reveals a conserved genetic pathway for tapetal
development between rice and Arabidopsis [J]. Sci. Bull., 2015,
60:1073-1082.
[28] YU J, MENG Z L, LIANG W Q, et al .. A rice Ca2+ binding
protein is required for tapetum function and pollen formation
[J]. Plant Physiol., 2016, 172(3):1772-1786.
[29] BASNET R, HUSSAIN N, SHU Q. OsDGD2β is the sole
digalactosyldiacylglycerol synthase gene highly expressed in
anther, and its mutation confers male sterility in rice [J/OL].
Rice, 2019, 12(1): 66 [2023-05-10]. https://doi.org/10.1186/
s12284-019-0320-z.
[30] YANG Z F, SUN L P, ZHANG P P, et al.. TDR interacting protein
3, encoding a PHD-finger transcription factor, regulates Ubisch
bodies and pollen wall formation in rice [J]. Plant J., 2019, 99
(5):844-861.
[31] NIU N, LIANG W, YANG X, et al .. EAT1 promotes tapetal
cell death by regulating aspartic proteases during male
reproductive development in rice [J/OL]. Nat. Commun., 2013,
4:1445 [2023-05-10]. https://doi.org/10.1038/ncomms2396.
[32] LI Y L, LI D D, GUO Z L, et al .. OsACOS12, an orthologue of
Arabidopsis acyl-CoA synthetase5, plays an important role in
pollen exine formation and anther development in rice [J/OL].
BMC Plant Biol., 2016, 16:256 [2023-05-10]. https//doi.org/
10.1186/s12870-016-0943-9.
[33] NIU B X, HE F R, HE M, et al .. The ATP-binding cassette
transporter OsABCG15 is required for anther development and
pollen fertility in rice [J]. J. Integr. Plant Biol., 2013, 55(8):
710-720.
[34] YUN D P, LIANG W Q, DRENI L, et al.. OsMADS16 genetically
interacts with OsMADS3 and OsMADS58 in specifying floral
patterning in rice [J]. Mol. Plant, 2013, 6(3):743-756.
[35] HONG L L, TANG D, ZHU K M, et al .. Somatic and
reproductive cell development in rice anther is regulated by a
putative glutaredoxin [J]. Plant Cell, 2012, 24:577-588.
[36] YI J, KIM S R, LEE D Y, et al .. The rice gene defective tapetum
and meiocytes 1 (DTM1) is required for early tapetum
development and meiosis [J]. Plant J., 2012, 70(2):256-270.
[37] JUNG K, HAN M, LEE Y, et al .. Rice undeveloped tapetum1
is a major regulator of early tapetum development [J]. Plant
Cell, 2005, 17:2705-2722.
[38] YI J, MOON S, LEE Y, et al .. Defective tapetum cell death 1
(DTC1) regulates ROS levels by binding to metallothionein
during tapetum degeneration [J]. Plant Physiol., 2016, 170:
1611-1623.
[39] YANG X F, WU D X, SHI J P, et al .. Rice CYP703A3, a
cytochrome P450 hydroxylase, is essential for development of
anther cuticle and pollen exine [J]. J. Integr. Plant Biol., 2014,
56(10):979-994.
[40] LI H, YUAN Z, VIZCAY-BARRENA G, et al .. persistent
tapetal cell1 encodes a PHD-Finger protein that is required for
tapetal cell death and pollen development in rice [J]. Plant
Physiol., 2011, 156:615-630.
[41] WANG C, HIGGINS J, HE Y, et al .. Resolvase OsGEN1
mediates DNA repair by homologous recombination [J]. Plant
Physiol., 2017, 173(2):1316-1329.
[42] JUNG K, HAN M, LEE D, et al .. Wax-deficient anther1 is
involved in cuticle and wax production in rice anther walls and
is required for pollen development [J]. Plant Cell, 2006, 18(11):
3015-3032.
[43] CHANG Z Y, CHEN Z F, YAN W, et al .. An ABC transporter,
OsABCG26, is required for anther cuticle and pollen exine
formation and pollen-pistil interactions in rice [J]. Plant Sci.,
2016, 253:21-30.
[44] ZHANG D, LIANG W, YIN C, et al .. OsC6, encoding a lipid
transfer protein, is required for postmeiotic anther development
in rice [J]. Plant Physiol., 2010, 154(1):149-162.
[45] MEN X, SHI J X, LIANG W Q, et al .. Glycerol-3-phosphate
acyltransferase 3 (OsGPAT3) is required for anther development
and male fertility in rice [J]. J. Exp. Bot., 2017, 68(3):513-526.
[46] ZHANG Y F, LI Y L, ZHONG X, et al .. Mutation of glucosemethanol-
choline oxidoreductase leads to thermosensitive genic
male sterility in rice and Arabidopsis [J]. Plant Biotechnol. J., 2022,
20(10):2023-2035.
[47] 張華麗,陳曉陽,黃建中,等.中國兩系雜交稻光溫敏核不育
基因的鑒定與演化分析[J].中國農(nóng)業(yè)科學(xué),2015,48(1):1-9.
ZHANG H L, CHEN X Y, HUANG J Z, et al .. Identification
and transition analysis of photo- /thermo-sensitive genic male
sterile genes in two-line hybrid rice in China [J]. Sci. Agric.
Sin., 2015, 48(1):1-9.
[48] FAN Y R, YANG J Y, MATHIONI S M, et al.. PMS1T, producing
phased small-interfering RNAs, regulates photoperiod-sensitive
male sterility in rice [J]. Proc. Natl. Acad. Sci. USA, 2016, 113:
15144-15149.
[49] ZHANG Q, SHEN B Z, DAI X K, et al .. Using bulked extremes
and recessive class to map genes for photoperiod-sensitive
genic male sterility in rice [J]. Proc. Natl. Acad. Sci. USA,
1994, 91:8675-8679.
[50] DING J H, LU Q, OUYANG Y, et al .. A long noncoding RNA
regulates photoperiod-sensitive male sterility, an essential
component of hybrid rice [J]. Proc. Natl. Acad. Sci. USA, 2012,
109:2654-2659.
[51] ZHOU H, LIU Z L, CHEN L T, et al .. Photoperiod- and thermosensitive
genic male sterility in rice are caused by a point
mutation in a novel noncoding RNA that produces a small
RNA [J]. Cell Res., 2012, 2:649-660.
[52] HUANG T Y, WANG Z, HU Y G, et al .. Genetic analysis and
primary mapping of pms4, a photoperiod-sensitive genic male
sterility gene in rice (Oryza sativa) [J]. Rice Sci., 2008, 15(2):
153-156.
[53] XU J J, WANG B H, WU Y H, et al .. Fine mapping and
candidate gene analysis of ptgms2-1, the photoperiod-thermosensitive
genic male sterile gene in rice (Oryza sativa L.) [J].
Theor. Appl. Genet., 2011, 122:365-372.
[54] PENG H F, ZHANG Z F, WU B, et al .. Molecular mapping of
two reverse photoperiod-sensitive genic male sterility genes
(rpms1 and rpms2) in rice (Oryza sativa L.) [J]. Theor. Appl.
Genet., 2008, 118:77-83.
[55] ZHANG H, LIANG W, YANG X, et al .. Carbon starved anther
encodes a MYB domain protein that regulates sugar partitioning
required for rice pollen development [J]. Plant Cell, 2010, 22:
672-689.
[56] CHUEASIRI C, CHUNTHONG K, PITNJAM K, et al .. Rice
ORMDL controls sphingolipid homeostasis affecting fertility
resulting from abnormal pollen development [J/OL]. PLoS One,
2014, 9(9):e106386 [2023-05-10]. https://doi.org/10.1371/journal.
pone.0106386.
[57] SUBUDHI P, BORKAKATI R, VIRMANI S, et al .. Molecular
mapping of a thermosensitive genetic male sterility gene in rice
using bulked segregant analysis [J]. Genome, 1997, 40(2):
188-194.
[58] DONG N, SUBUDHI P, LUONG P, et al .. Molecular mapping
of a rice gene conditioning thermosensitive genic male sterility
using AFLP, RFLP and SSR techniques [J]. Theor. Appl.
Genet., 2000, 100:727-734.
[59] ZHOU H, ZHOU M, YANG Y Z, et al .. RNase ZS1 processes
UbL40 mRNAs and controls thermosensitive genic male sterility
in rice [J]. Nat. Commun., 2014, 5:4884-4892.
[60] 唐杰,龍湍,吳春瑜,等.水稻光溫敏雄性不育突變體tms3650
的鑒定和基因定位[J].中國水稻科學(xué),2023,37(1):45-54.
TANG J, LONG T, WU C Y, et al .. Identification and gene
mapping of a new photo-thermo-sensitive male sterile mutant
tms3650 in Rice [J]. Chin. J. Rice Sci., 2023, 37(1):45-54.
[61] LEE D S, CHEN L J, SUH H S. Genetic characterization and
fine mapping of a novel thermos-sensitive genic male-sterile
gene tms6 in rice (Oryza sativa L.) [J]. Theor. Appl. Genet.,
2005, 111:1271-1277.
[62] QI Y B, LIU Q L, ZHANG L, et al .. Fine mapping and
candidate gene analysis of the novel thermos-sensitive genic
male sterility tms9-1 gene in rice [J]. Theor. Appl. Genet.,
2014, 127:1173-1182.
[63] YU J P, HAN J J, KIM H Y, et al .. Two rice receptor-like
kinases maintain male fertility under changing temperatures [J].
Proc. Natl. Acad. Sci. USA, 2017, 114:12327-12332.
[64] CHEN R Z, ZHAO X, SHAO Z, et al .. Rice UDP-glucose
pyrophosphorylase1is essential for pollen callose deposition
and its cosuppression results in a new type of thermosensitive
genic male sterility [J]. Plant Cell, 2007, 19:847-861.
[65] JIA J H, ZHANG D S, LI C Y, et al .. Molecular mapping of the
reverse thermos-sensitive genic male-sterile gene (rtms1) in
rice [J]. Theor. Appl. Genet., 2001, 103:607-612.
[66] LIU X, LI X H, ZHANG X, et al .. Genetic analysis and
mapping of a thermosensitive genic male sterility gene, tms6(t),
in rice (Oryza sativa L.) [J]. Genome, 2010, 53:119-124.
[67] NI J L, WANG D Z, NI D H, et al .. Characterization and fine
mapping of RTMS10, a semi-dominant reverse thermossensitive
genic male sterile locus in rice [J]. J. Integr. Agric.,
2022, 21(2):316-325.
[68] YU B, LIU L T, WANG T. Deficiency of very long chain
alkanes biosynthesis causes humidity-sensitive male sterility
via affecting pollen adhesion and hydration in rice [J]. Plant
Cell Environ., 2019, 42(12):3340-3354.
[69] CHANG Z Y, CHEN Z F, WANG N, et al .. Construction of a
male sterility system for hybrid rice breeding and seed
production using a nuclear male sterility gene [J]. Proc. Natl.
Acad. Sci. USA, 2016, 113(49):14145-14150.
[70] ZHOU H, HE M, LI J, et al .. Development of commercial
thermo-sensitive genic male sterile rice accelerates hybrid rice
breeding using the CRISPR/Cas9-mediated TMS5 editing
system [J/OL]. Sci. Rep., 2016, 6:37395 [2023-05-10]. https://
doi.org/10.1038/srep37395.
[71] 何溟.水稻工程溫敏核雄性不育系的創(chuàng)建[D].廣州:華南農(nóng)
業(yè)大學(xué),2017.
HE M. Development of genetic engineered thermo-sensitive
genetic male sterile rice lines using the CRISPR/Cas9 system [D].
Guangzhou: South China Agricultural University, 2017.
[72] BARMAN H, SHENG Z, FIAZ S, et al .. Generation of a new
thermo-sensitive genic male sterile rice line by targeted
mutagenesis of TMS5 gene through CRISPR/Cas9 system [J/OL].
BMC Plant Biol., 2019, 19:109 [2023-05-10]. https://doi.org/
10.1186/s12870-019-1715-0.
[73] 吳明基,林艷,劉華清,等.利用CRISPR/Cas9技術(shù)創(chuàng)制水稻溫
敏核不育系[J].福建農(nóng)業(yè)學(xué)報(bào),2018,33(10):1011-1015.
WU M J, LIN Y, LIU H Q, et al .. Development of thermosensitive
male sterile rice with CRISPR/Cas9 technology [J]. J.
Fujian Agric. Sci., 2018, 33(10):1011-1015.
[74] 覃玉芬,廖山岳,郭新穎,等.利用 CRISPR/Cas9基因編輯系
統(tǒng)創(chuàng)制新型水稻溫敏雄性核不育系[J].分子植物育種,2023,
21(5):1551-1561.
QIN Y F, LIAO S Y, GUO X Y, et al.. Generation of a new thermosensitive
genic male sterile line by using CRISPR/Cas9 gene
editing system [J]. Mol. Plant Breeding, 2023, 21(5):1551-1561.
[75] 宋成軍.利用基因編輯技術(shù)對(duì)水稻品質(zhì)和育性相關(guān)性狀的
遺傳改良研究[D].成都:四川農(nóng)業(yè)大學(xué),2018.
SONG C J. Genetic improvement of several important agronomic
traits in rice using genome editing techniques [D]. Chengdu:
Sichuan Agricultural University, 2018.
[76] 黃忠明,周延彪,唐曉丹,等. 基于CRISPR/Cas9 技術(shù)的水稻
溫敏不育基因tms5 突變體的構(gòu)建[J].作物學(xué)報(bào),2018,44(6):
844-851.
HUANG Z M, ZHOU Y B, TANG X D, et al .. Construction of
tms5 mutants in rice based on CRISPR/Cas9 technology [J].
Acta. Agron. Sin., 2018, 44(6):844-851.
[77] 杜茜,費(fèi)云燕,王芳權(quán),等.敲除TMS5 基因獲得溫敏不育粳稻
新材料[J].中國水稻科學(xué),2019,33(5):429-435.
DU X, FEI Y Y, WANG F Q, et al .. Thermo-sensitive male
sterile line created by editing TMS5 gene in japonica rice [J].
Chin. J. Rice Sci., 2019, 33(5):429-435.
[78] CHEN Y, SHAHID M, WU J, et al .. Thermo-sensitive genic
male sterile lines of neo-tetraploid rice developed through gene
editing technology revealed high levels of hybrid vigor [J/OL].
Plants, 2022, 11(11):1390 [2023-05-10]. https://doi.org/10.3390/
plants11111390.
[79] LI S F, SHEN L, HU P, et al .. Developing disease-resistant
thermosensitive male sterile rice by multiplex gene editing [J].
J. Integr. Plant Biol., 2019, 61(12):1201-1205.
[80] 梁敏敏,張華麗,陳俊宇,等.利用CRISPR/Cas9技術(shù)創(chuàng)制抗稻
瘟病香型早秈溫敏核不育系[J].中國水稻科學(xué),2022,36(3):
248-258.
LIANG M M, ZHANG H L, CHEN J Y, et al .. Developing
fragrant early indica TGMS line with blast resistance by using
CRISPR/Cas9 technology [J]. Chin. J. Rice Sci., 2022, 36(3):
248-258.
[81] 農(nóng)春曉.水稻光溫敏不育系湘陵628S的開花期定向改良和
粳型光溫敏不育系創(chuàng)建[D].武漢:華中農(nóng)業(yè)大學(xué),2019.
NONG C X. Direct genetic improvement of heading date for
rice photo-thermo-sensitive genic male sterile line XL628S and
development of japonica thermo-sensitive genic male sterile
lines [D]. Wuhan: Huazhong Agricultural University, 2019.
[82] 林艷,劉華清,付艷萍,等.利用TALEN技術(shù)編輯水稻光溫敏
核不育基因PMS3[J].福建農(nóng)業(yè)學(xué)報(bào),2019,34(4):381-386.
LIN Y, LIU H Q, FU Y P, et al .. TALEN-mediated editing of
photoperiod-temperature-sensitive male sterility PMS3 gene in
rice [J]. J. Fujian Agric. Sci., 2019, 34(4):381-386.
[83] ZHANG H, XU C X, HE Y, et al .. Mutation in CSA creates a
new photoperiod-sensitive genic male sterile line applicable for
hybrid rice seed production [J]. Proc. Natl. Acad. Sci. USA,
2013, 110:76-81.
[84] LI Q L, ZHANG D B, CHEN M J, et al .. Development of
japonica photo-sensitive genic male sterile rice lines by editing
carbon starved anther Using CRISPR/Cas9 [J]. J. Genet. Genomics,
2016, 43:415-419.
[85] WU Y Z, FOX T W, TRIMNELL M R, et al .. Development of a
novel recessive genetic male sterility system for hybrid seed
production in maize and other cross-pollinating crops [J]. Plant
Biotechnol. J., 2016, 14:1046-1054.
[86] 余東.第三代雜交水稻ptc1 普通核不育系種子繁殖體系構(gòu)
建及應(yīng)用[D].長(zhǎng)沙:湖南農(nóng)業(yè)大學(xué),2020.
YU D. Construction and application of seeds propagation system for
spontaneous genic male sterile line in the third generation hybrid
rice [D]. Changsha: Hunan Agricultural University, 2020.
[87] 陳惠妹.利用基因組編輯技術(shù)創(chuàng)制水稻不育系材料[D].福
州:福建師范大學(xué),2016.
CHEN H M. Creating male sterile lines of rice using the
genome editing technologies [D]. Fuzhou: Fujian Normal
University, 2016.
[88] PAK H, WANG H Y, KIM Y S, et al .. Creation of male-sterile
lines that can be restored to fertility by exogenous methyl
jasmonate for the establishment of a two-line system for the
hybrid production of rice (Oryza sativa L.) [J]. Plant Biotechnol. J.,
2021, 19:365-374.
[89] 陳日榮,周延彪,王黛君,等.利用CRISPR/Cas9技術(shù)編輯水稻
溫敏不育基因TMS5[J].作物學(xué)報(bào),2020,46(8):1157-1165.
CHEN R R, ZHOU Y B, WANG D J, et al .. CRISPR/Cas9-
mediated editing of the thermo-sensitive genic male-sterile
gene TMS5 in rice [J]. Acta Agron. Sin., 2020, 46(8):1157-1165.
[90] 王芳權(quán),范方軍,夏士健,等.水稻光溫敏核不育基因tms5 與
pms3 的互作效應(yīng)[J].作物學(xué)報(bào),2020,46(3):317-329.
WANG F Q, FAN F J, XIA S J, et al .. Interactive effects of the
photoperiod-/thermo-sensitive genic male sterile genes tms5
and pms3 in rice [J]. Acta Agron. Sin., 2020, 46(3):317-329.
[91] 鄭卓,孫慧敏.一種安全性溫敏核不育系高效選育方法、兩
系雜交水稻: CN107466845A [P]. 2017-07-15.
[92] 李訓(xùn)貞,陳良碧,周庭波.新型低溫不育水稻(N-10s, N-13s)育
性的初步鑒定[J]. 湖南師范大學(xué)自然科學(xué)學(xué)報(bào)(自然科學(xué)
版),1991,14(2):376-378,382.
LI X Z, CHEN L B, ZHOU T B. Preliminary observation of
fertility changes in the new type low temperature sensitive
male sterile rice N-10s and N-13s [J]. J. Hunan Norm. Univ.
(Nat. Sci.), 1991, 14(2): 376-378,382.
[93] 吳厚雄,李必湖,向陽,等.低溫敏核不育水稻go543S育性對(duì)
溫,光的反應(yīng)[J].生態(tài)學(xué)報(bào),2003,23(3):463-470.
WU H X, LI B H, XIANG Y, et al .. Effects of temperature and
photoperiod on the fertility of low temperature sensitive genic
male sterile rice [J]. Acta Ecol. Sin., 2003, 23(3):463-470.
[94] 徐孟亮,張俊,龔曼,等.一個(gè)反向水稻兩用核不育系育性對(duì)
溫度與光周期的反應(yīng)[J].湖南師范大學(xué)自然科學(xué)學(xué)報(bào)(自然
科學(xué)版),2010,33(4):85-88.
XU M L, ZHANG J, GONG M, et al .. Response of fertility of a
new reverse P(T)GMS line to temperature and photoperiod in
rice [J]. J. Hunan Norm. Univ. (Nat. Sci.), 2010, 33(4):85-88.
[95] 江建華,倪金龍,吳爽,等.聚合水稻溫敏核不育基因和反溫
敏核不育基因創(chuàng)制永久核不育系[J].中國水稻科學(xué),2017,31
(4):371-378.
JIANG J H, NI J L, WU S,et al .. Development of permanent
genic male sterile line by pyramiding thermos-sensitive male
sterile genes and reverse temperature induced genic male
sterile genes in rice (Oryza sativa L.) [J]. Chin. J. Rice Sci.,
2017, 31(4):371-378.
[96] QI X, ZHANG C, ZHU J, et al .. Genome editing enables nextgeneration
hybrid seed production technology [J]. Mol. Plant
2020, 13(9):1262-1269.