摘要:為獲得高質(zhì)量的套圈滾動(dòng)面形貌,改善形狀精度,提高軸承服役性能,采用力流變拋光技術(shù)設(shè)計(jì)了正交試驗(yàn)方案,確認(rèn)了試驗(yàn)參數(shù)范圍,研究了力流變加工過程中拋光速度、磨粒粒徑和磨粒濃度對(duì)材料去除率(MRR)和表面粗糙度Ra的影響規(guī)律。對(duì)數(shù)據(jù)進(jìn)行信噪比分析,采用方差分析方法得到工藝參數(shù)對(duì)加工結(jié)果的影響權(quán)重和最優(yōu)工藝參數(shù)。對(duì)比了最優(yōu)參數(shù)加工前后套圈的形狀精度,建立了力流變加工模型來分析精度改善機(jī)理。結(jié)果表明,拋光速度對(duì)材料去除率和表面粗糙度的影響都最為顯著,磨粒粒徑和濃度的影響相對(duì)較低。在最優(yōu)工藝參數(shù)(拋光盤轉(zhuǎn)速90 r/min,磨粒粒徑2.5 μm,質(zhì)量分?jǐn)?shù)6%)下拋光90 min,Ra從初始的322 nm下降到12.982 nm,且方差不超過2.158 nm2,平均圓度從拋光前的約3.05 μm下降到約1.67 μm。仿真模型揭示了形狀精度改善的原因是凸出部位易形成更高的材料去除率。研究結(jié)果表明,采用優(yōu)化的力流變拋光工藝可有效提高軸承套圈滾道的表面質(zhì)量和形狀精度。在提高軸承服役性能的高質(zhì)量加工方面,力流變拋光技術(shù)提供了一種可行方案。
關(guān)鍵詞:力流變拋光;軸承;套圈;超精密加工;剪切增稠
中圖分類號(hào):TG739
Effects of Force Rheological Polishing Processes on Surface Quality and Accuracy of Bearing Raceways
GUO Luguang1,2 DAI Zhuohao1 WANG Dongfeng1,3 WANG Xu1 LYU Binghai1 YUAN Julong1*
1.College of Mechanical Engineering,Zhejiang University of Technology,Hangzhou,310014
2.College of Mechanical Engineering,Quzhou University,Quzhou,Zhejiang,324000
3.Luoyang Bearing Science and Technology Co.,Ltd.,Luoyang,Henan,471003
Abstract: To obtain high-quality ring rolling surface morphology, improve shape accuracy and improve bearing service performance. GCr15 ring raceway was polished by force rheological polishing technology. The orthogonal experimental scheme was designed and the range of experimental parameters was confirmed. The effects of polishing speed, abrasive particle size and abrasive concentration on material removal rate(MRR) and surface roughness Ra were studied. The signal-to-noise ratio of the datum was analyzed, and the variance analysis method was used to obtain the influence weight of the processing parameters on the processing results, and the optimal processing parameters were obtained. The shape accuracy of the rings before and after the optimal parameter processing was compared, and the force rheological processing model was established to analyze the improvement mechanism. The polishing speed has the most significant effects on the MRR and surface roughness, and the abrasive particle size and concentration have relatively low effects. Under the optimal processing parameters(polishing disc speed 90 r/min, abrasive particle size 2.5 μm, concentration 6%) polishing 90 min, the value of surface roughness Ra decreases from the initial 322 nm to 12.982 nm, and the variance do not exceed 2.158 nm2. The roundness decreases from about 3.05 μm before polishing to about 1.67 μm. The simulation model reveales that the reason for the improvement of shape accuracy is that the protruding part is easy to form a higher MRR. Polishing the bearing ring raceway with the optimized force rheological polishing processes may improve the surface quality and shape accuracy of the bearing ring raceway effectively, and provide a feasible solution for high-quality processing to improve the service performance of the bearings.
Key words: force rheological polishing; bearing; ring; ultra-precision machining; shear thickening
0 引言
影響軸承發(fā)生疲勞磨損的因素非常多,表面質(zhì)量是引發(fā)軸承疲勞磨損失效的主要原因[1]。初始表面質(zhì)量缺陷導(dǎo)致潤(rùn)滑狀態(tài)變差,服役狀態(tài)異常[2-3]。大量研究證明,在一定的接觸應(yīng)力下,良好的表面粗糙度和精度能改善潤(rùn)滑狀態(tài),初始裂紋不易發(fā)展,從而提高軸承鋼的抗疲勞磨損能力[4-7]。因此,尋找適合軸承滾道、滾動(dòng)體的超精密加工工藝,從而抑制軸承鋼表面的初始缺陷是必要的。當(dāng)前,軸承滾子采用無心磨削作為最后一道精密加工工序;套圈滾道常采用磨削后的油石超精作為最后一道精密加工工序。由于都采用磨粒強(qiáng)制性切入的加工方式,磨削熱和力不可避免,易造成表面變質(zhì)層。
先進(jìn)的超精密加工技術(shù)是提高工業(yè)基礎(chǔ)件表面質(zhì)量的有效方法[8-11]。在磨削領(lǐng)域,電化學(xué)磨削技術(shù)(electro-chemical grinding,ECG)是一種結(jié)合了傳統(tǒng)電解加工(electro-chemical machining,ECM)和機(jī)械磨削的復(fù)合加工方法[12]。王旭等[13]將ECG方法應(yīng)用于軸承滾道的光整加工,滾道表面粗糙度Ra降至27 nm,獲得了理想的表面形貌。NOVAK等[14]提出了砂輪在線電解修整(electrolytic in-process dressing,ELID)磨削方法,其原理是通過電解砂輪結(jié)合劑(主要是金屬結(jié)合劑)使磨粒不斷露出。RAFFLES等[15]研究了不同粒徑的磨粒磨削質(zhì)量的影響規(guī)律,并使用12000號(hào)超硬磨料磨削軸承鋼,得到了Ra=2 nm的表面。有學(xué)者結(jié)合ELID和ECG兩種電解方法,提出了雙電解磨削技術(shù)(dual electrolytic grinding,DEG)[16]。JIAO等[16]采用DEG技術(shù),順利得到了Ra=5 nm的軸承外圓。尹龍等[17]采用超聲振動(dòng)輔助磨削套圈滾道,可獲得最低表面粗糙度0.28 μm的表面。先進(jìn)磨削技術(shù)具有效率高、去除穩(wěn)定的優(yōu)勢(shì),但是引入了電源及振動(dòng)系統(tǒng),導(dǎo)致影響表面質(zhì)量的工藝參數(shù)過多,同時(shí)設(shè)備要求高,成本高昂,不夠綠色環(huán)保。磁流變加工技術(shù)和磨粒流光整技術(shù)是典型柔性超精密加工技術(shù),由于磨粒的非強(qiáng)制性切入磨削,可以得到近無殘余應(yīng)力的光滑表面。LIU等[18]采用小球端永磁拋光頭控制磁流變拋光,加工不規(guī)則表面,得到了Ra=10 nm的表面。WU等[19]拋光套圈滾道,Ra從初始的0.4 μm下降到0.1~0.2 μm。但磁流變拋光技術(shù)設(shè)備、材料成本高昂,不符合軸承大批量的生產(chǎn)特點(diǎn)。磨粒流工藝的粗糙度加工極限較高,不符合軸承滾動(dòng)面的加工要求。
1 力流變拋光原理
采用具有剪切增稠效應(yīng)的拋光液[20]沖擊工件表面去除材料,即為剪切增稠拋光(shear-thickening polishing),有學(xué)者將這種利用拋光液受剪切力產(chǎn)生流變進(jìn)行柔性加工的技術(shù)歸納為力流變拋光(force rheological polishing,F(xiàn)RP)[21]。相比于磁流變等拋光技術(shù),F(xiàn)RP具有高效高質(zhì)、綠色環(huán)保的優(yōu)點(diǎn)[22]。根據(jù)經(jīng)典Bingham模型,剪切增稠拋光液的本構(gòu)方程為
τ=τs+μ0(uy)n(1)
其中,τs為拋光液所具有的初始的屈服剪應(yīng)力,在某一具體環(huán)境中為常數(shù)。壁面所受拋光液的切應(yīng)力τ與來流速度u、間隙y以及拋光液本身流變特性相關(guān)。如圖1所示,當(dāng)沒有工件時(shí),勢(shì)流速度梯度為0,磨粒、增稠相在拋光液里均勻分布。當(dāng)拋光液的勢(shì)流流動(dòng)受到工件的阻礙時(shí),工件表面會(huì)形成剪切流動(dòng)。由于ngt;1,故當(dāng)增稠相受剪切作用時(shí),拋光液表觀黏度和作用在工件表面的剪切力急劇增大,磨粒被增稠的拋光液牢固把持,在勢(shì)流的推動(dòng)作用下,增稠的拋光液對(duì)工件表面材料進(jìn)行微切削,從而達(dá)到超精密加工的目的。
在此前的研究中,學(xué)者們專注于將FRP方法應(yīng)用到不同材料、結(jié)構(gòu)的零件的超精密加工。如WANG等[23]提出了化學(xué)增強(qiáng)輔助FRP拋光方法,通過氧化作用拋光Ti-6Al-4V鈦合金,在15 min加工時(shí)間內(nèi)將表面粗糙度從124 nm降到8.6 nm。針對(duì)內(nèi)表面流體拋光難的問題,GUO等[24]研究了沖擊角度與內(nèi)表面加工一致性的關(guān)系,并對(duì)套圈內(nèi)表面進(jìn)行試加工,得到了Ra=11.16 nm、方差0.58 nm2的均勻表面。SHAO等[25]結(jié)合力流變拋光中化學(xué)增強(qiáng)作用和拋光角度的影響,拋光高溫鎳基合金材料的渦輪葉片,在9 min內(nèi)將表面粗糙度從72.3 nm降到4.2 nm。也有學(xué)者對(duì)拋光液本身作了相關(guān)研究。HUANG等[26]用無水基的剪切增稠拋光液來拋光水溶性KDP晶體,得到了Ra=2.23 nm的無損表面。ZHANG等[27]研究了不同石英粉形狀對(duì)拋光液流變性能的影響規(guī)律,并認(rèn)為其影響流變性能的本質(zhì)是顆粒間相互作用。
為了提高GCr15套圈滾道的服役性能,本文以表面粗糙度和去除率為目標(biāo),通過正交試驗(yàn)得到了FRP最佳工藝條件,對(duì)比了拋光前后套圈滾道的形狀精度,建立了仿真模型來分析其精度改善原因,以驗(yàn)證FRP在提高軸承服役性能方面的可行性。
2 力流變拋光試驗(yàn)設(shè)置
剪切增稠液由去離子水(DI Water)和高羥基聚合物按一定比例調(diào)配而成,混合氧化鋁磨粒作為拋光液。本研究采用自制的六軸力流變拋光機(jī)(圖2a)作為試驗(yàn)平臺(tái),拋光加工示意圖見圖2b。試驗(yàn)以7009C內(nèi)套圈外滾道作為研究對(duì)象,套圈使用專用夾具夾持,工件繞其圓心通過電機(jī)帶動(dòng)自轉(zhuǎn),電機(jī)主軸與水平面垂直。拋光盤以角速度ω1轉(zhuǎn)動(dòng),帶動(dòng)拋光液旋轉(zhuǎn),沖擊工件表面。套圈以角速度ω2與拋光盤相向轉(zhuǎn)動(dòng),其外圓及端面通過夾具和聚氨酯膠帶保護(hù),防止被拋光。當(dāng)拋光液流經(jīng)工件附近區(qū)域時(shí),套圈和拋光盤壁面之間形成剪切梯度,引發(fā)剪切增稠效應(yīng),如圖3所示。其余加工工藝參數(shù)見表1。
采用光學(xué)3D表面輪廓儀(中途SuperView W1)和超景深顯微鏡(VHX-S650E)觀測(cè)滾道微觀表面形貌。采用馬爾圓度圓柱度儀(Mahr)測(cè)量滾道形狀精度。
2.1 正交試驗(yàn)參數(shù)選擇
為了確定不同因素對(duì)拋光質(zhì)量的影響規(guī)律,并簡(jiǎn)化試驗(yàn)過程,本文采用正交試驗(yàn)設(shè)計(jì)。田口法(Taguchi method)是基于正交試驗(yàn)結(jié)果,采用信噪比作為作為優(yōu)化質(zhì)量的指標(biāo),得到最佳工藝水平組合的優(yōu)化方法。應(yīng)盡可能選擇較大的因素水平范圍,確保包含每一個(gè)工藝參數(shù)的最佳工藝水平。磨粒尺寸和拋光液中的濃度是影響拋光質(zhì)量的關(guān)鍵因素。由FRP的原理可知,剪切速率是影響增稠的重要參數(shù),故選取拋光盤轉(zhuǎn)速、磨粒濃度和磨粒尺寸作為工藝參數(shù)。
理論上,只要處于拋光液的增稠區(qū)間內(nèi),相對(duì)速度越高,則黏度越高,材料的去除效果越好。但在實(shí)際加工中發(fā)現(xiàn),高黏度引起的溫升是不能避免的。如圖4所示,在100 r/min下,拋光液的溫度在60 min內(nèi)上升了12 ℃,其溫升接近于線性,斜率達(dá)0.224。在110 r/min下,其溫升情況可分為兩個(gè)區(qū)域。區(qū)域1中,10 min內(nèi)溫升曲線斜率達(dá)0.58,但在區(qū)域2區(qū)域降至0.061。這是因?yàn)?,高溫高速下水分快速流失,拋光液固化,與工件的相互作用區(qū)域減少。由此可見,高速會(huì)導(dǎo)致拋光液性能、壽命下降。為了保持拋光液的長(zhǎng)時(shí)間使用性能,設(shè)計(jì)正交試驗(yàn)最高轉(zhuǎn)速為90 r/min。
本次試驗(yàn)選取L9(34)正交表,見表2。A、B、C分別代表拋光盤轉(zhuǎn)速、磨粒濃度和磨粒尺寸。拋光盤轉(zhuǎn)速水平選擇50,70,90 r/min, 磨粒質(zhì)量分?jǐn)?shù)選擇3%、6%、9 %, 磨粒尺寸(微粉名義直徑)選擇1.5,2.5,5 μm。
2.2 正交試驗(yàn)設(shè)計(jì)
試驗(yàn)結(jié)果以表面粗糙度Ra和材料去除效率(material removal rate, MRR)RMR為評(píng)價(jià)指標(biāo)。材料表面的平均表面粗糙度x-、標(biāo)準(zhǔn)差Dst分別為
x-=1n∑ni=1xi(2)
Dst=1n∑ni=1xi(3)
信噪比(S/N,單位dB)是田口法中對(duì)試驗(yàn)結(jié)果分析的評(píng)估特征,能夠反映試驗(yàn)過程中拋光質(zhì)量(Ra)的偏差。由于表面粗糙度指標(biāo)具有望小特性,故采用下式計(jì)算其信噪比值:
S/NRa=-10lg(1m∑mi=1y2i)(4)
而去除率具有望大特性,故采用下式計(jì)算其信噪比值:
S/NRMR=-10lg(1m∑mj=1y2i)(5)
3 結(jié)果與分析
正交試驗(yàn)得到的表面粗糙度及其S/N響應(yīng)值見表3。各因素水平對(duì)試驗(yàn)結(jié)果的平均響應(yīng)變化曲線如圖5所示。方差分析(analysis of variance, ANOVA)通過評(píng)估工藝參數(shù)水平對(duì)試驗(yàn)結(jié)果的影響程度,并能以此確定各參數(shù)的貢獻(xiàn)度,如圖6所示。通過對(duì)圖5、圖6的分析,可以得出以下結(jié)論:
1)隨著拋光盤速度的升高,粗糙度降低而材料去除速率增大。原因一是轉(zhuǎn)速越高,導(dǎo)致增稠效應(yīng)越明顯,增稠相對(duì)磨粒的把持更加穩(wěn)定;原因二是根據(jù)Preston去除方程,更高的速度具有更高的去除率,在相同試驗(yàn)的加工時(shí)間內(nèi)更接近FRP的加工極限。
2)隨著磨粒濃度的增大,加工區(qū)域內(nèi)參與加工的磨粒增加,相同加工時(shí)間內(nèi)粗糙度下降更多,工件表面粗糙度呈現(xiàn)逐漸減小的趨勢(shì)。
3)隨著磨粒粒度的增大,相同加工時(shí)間內(nèi)粗糙度下降率減小。這是因?yàn)槿嵝話伖鈱?duì)粒度不敏感,而高濃度下參與加工的小粒徑磨粒更多,所以加工效率也更高。
4)相較于拋光盤轉(zhuǎn)速,磨粒濃度和粒度對(duì)粗糙度和去除率的影響都相對(duì)較小。如圖6所示,拋光盤轉(zhuǎn)速對(duì)Ra和MRR值的影響程度分別達(dá)86.24%和61.00%。這證明在拋光中,拋光盤的速度是最重要的因素。
4 表面質(zhì)量與精度演變情況
由正交試驗(yàn)結(jié)果的方差分析可以看出,對(duì)拋光表面質(zhì)量影響最大的是拋光液對(duì)工件的沖擊速度,這是因?yàn)楦咿D(zhuǎn)速下,拋光液形成了更高的速度梯度,從而黏度更高,去除效果更好。相比之下,磨粒粒徑和濃度對(duì)拋光效果的影響較小。故優(yōu)化試驗(yàn)采用A3B2C2的組合。
優(yōu)化的拋光試驗(yàn)結(jié)果如圖7所示。隨著拋光時(shí)間的增加,套圈表面粗糙度首先從322 nm快速下降到65.319 nm,隨后下降趨勢(shì)略有減緩,60 min時(shí)下降到27.491 nm,其方差為7.792 nm2,最終在90 min時(shí)達(dá)12.982 nm,方差為2.158 nm2。拋光后滾道表面達(dá)到了鏡面效果(圖8),且原有的磨削形貌已基本消除(圖9、圖10)。
在力流變拋光過程中,滾道的形狀精度隨加工時(shí)間的演變改善情況如圖11所示。在初始狀態(tài)下,滾道的平均圓度達(dá)3.05 μm,且數(shù)據(jù)離散度高。隨著力流變拋光過程的進(jìn)行,圓度顯示出和粗糙度類似的演變情況。在初始的30 min加工時(shí)間內(nèi),圓度迅速下降到2.12 μm,隨后改善效率放緩,最終在經(jīng)歷90 min力流變拋光后下降到平均圓度1.67 μm。
需要說明,為了保證精度改善的有效性,必須對(duì)工裝安裝精度進(jìn)行精密測(cè)量,確保不引入其他不可控誤差。試驗(yàn)結(jié)果證明,力流變拋光有效改善了套圈表面質(zhì)量,可作為套圈滾道加工的一種高效精密加工工藝。
5 CFD仿真
5.1 CFD流程與模型
仿真流程如圖12所示。簡(jiǎn)化的仿真模型如圖13所示,為了凸顯可視化效果,套圈滾道截面被簡(jiǎn)化為一個(gè)橢圓,其長(zhǎng)軸長(zhǎng)度為80 mm,短軸長(zhǎng)度為60 mm。模型設(shè)置一個(gè)入口和一個(gè)出口,邊界為固壁邊界。工件距離上邊界足夠遠(yuǎn),保證上邊界不對(duì)仿真產(chǎn)生干擾。下邊界模擬的是拋光盤壁面。在工件周圍對(duì)邊界層網(wǎng)格進(jìn)行了加密。拋光液流變參數(shù)設(shè)置參見文獻(xiàn)[18],拋光液速度按照A3(90 r/min)設(shè)置。動(dòng)網(wǎng)格設(shè)置工件為剛體運(yùn)動(dòng),UDF文件見附錄。
5.2 CFD結(jié)果與討論
圖14~圖16分別為拋光區(qū)域壓力、速度和去除率的分布情況,其中去除率采用p.v值代替[28]。對(duì)比短軸靠近壁面時(shí),當(dāng)工件處于長(zhǎng)軸在靠近壁面一側(cè)時(shí),壓力減小但幅度有限。從圖14中云圖觀察得出,其正壓區(qū)壓力都在1230 Pa左右,短軸靠壁面情況下,正壓區(qū)范圍較大。相比之下,兩者的速度差距非常大。如圖15所示,在長(zhǎng)軸靠壁面時(shí),最大速度達(dá)到了4 m/s,而在短軸靠壁面時(shí),最大速度只有約2 m/s。圖16中p.v值的分布則直觀確認(rèn)了精度改善原因。無論長(zhǎng)軸短軸,面向拋光液來流方向部位的材料去除率最高,但兩者峰值基本相等;而當(dāng)長(zhǎng)軸和短軸分別靠近壁面時(shí),其去除率分布有了明顯變化。在一個(gè)自轉(zhuǎn)周期內(nèi),長(zhǎng)軸端具有更高的材料去除,這是因?yàn)樗瑫r(shí)具有更高的p.v值和更長(zhǎng)的有效拋光駐留時(shí)間。
6 結(jié)語
本研究中,力流變拋光技術(shù)在軸承領(lǐng)域的應(yīng)用可能性得到了證明。試驗(yàn)結(jié)果證明,拋光液沖擊速度是影響加工效率的關(guān)鍵因素。在保證表面質(zhì)量和拋光液可持續(xù)性的前提下,高轉(zhuǎn)速得到了最高的去除效率和最好的表面粗糙度。磨粒粒徑和濃度對(duì)去除率和粗糙度的影響不顯著。在優(yōu)化的加工參數(shù)(拋光盤轉(zhuǎn)速90 r/min,磨粒粒徑2.5 μm,質(zhì)量分?jǐn)?shù)6%)下加工了90 min,粗糙度Ra由原始的322 nm下降到12.982 nm。對(duì)比了拋光前后的套圈滾道圓度變化,發(fā)現(xiàn)平均圓度精度由初始的3.05 μm提高到1.67 μm。建立了基于動(dòng)網(wǎng)格的內(nèi)套圈力流變拋光模型,分析了圓度改善機(jī)理。仿真結(jié)果揭示了高剪切速率導(dǎo)致的高去除率是圓度改善的原因。研究結(jié)果證明了力流變拋光技術(shù)在軸承精密加工應(yīng)用領(lǐng)域的可行性。
參考文獻(xiàn):
[1] BARROIS W. Repeated Plastic Deformation as a Cause of Mechanical Surface Damage in Fatigue, Wear, Fretting-fatigue, and Rolling Fatigue[J]. International Journal of Fatigue, 1979, 1(4):167-189.
[2] EL LAITHY M, WANG Ling, HARVEY T J, et al. Further Understanding of Rolling Contact Fatigue in Rolling Element Bearings—a Review[J]. Tribology International, 2019, 140:105849.
[3] SADEGHI F, JALALAHMADI B, SLACK T S, et al. A Review of Rolling Contact Fatigue[J]. Journal of Tribology, 2009, 131(4):041403.
[4] DEOLALIKAR N, SADEGHI F. Fatigue Life Reduction in Mixed Lubricated Elliptical Contacts[J]. Tribology Letters, 2007, 27(2):197-209.
[5] AKAMATSU Y, TSUSHIMA N, GOTO T, et al. Influence of Surface Roughness Skewness on Rolling Contact Fatigue Life[J]. Tribology Transactions, 1992, 35(4):745-750.
[6] CUI Li, SU Yin. Contact Fatigue Life Prediction of Rolling Bearing Considering Machined Surface Integrity[J]. Industrial Lubrication and Tribology, 2022, 74(1):73-80.
[7] LORENZ S J, SADEGHI F, TRIVEDI H K, et al. A Continuum Damage Mechanics Finite Element Model for Investigating Effects of Surface Roughness on Rolling Contact Fatigue[J]. International Journal of Fatigue, 2021, 143:105986.
[8] CHEN Hongyu, WANG Lin, PENG Feng, et al. Hydrogen Retention and Affecting Factors in Rolled Tungsten:Thermal Desorption Spectra and Molecular Dynamics Simulations[J]. International Journal of Hydrogen Energy, 2023, 48(78):30522-30531.
[9] WANG Jiahuan, ZHOU Yu, QIAO Zhen, et al. Surface Polishing and Modification of Ti-6Al-4V Alloy by Shear Thickening Polishing[J]. Surface and Coatings Technology, 2023, 468:129771.
[10] WANG Jiahuan, TANG Zewei, GOEL S, et al. Mechanism of Material Removal in Tungsten Carbide-cobalt Alloy during Chemistry Enhanced Shear Thickening Polishing[J]. Journal of Materials Research and Technology, 2023, 25:6865-6879.
[11] WANG Lin, PENG Feng, CHEN Hongyu, et al. The Influence of pH and H2O2 on Surface Quality and Material Removal Rate during W-CMP[J]. The International Journal of Advanced Manufacturing Technology, 2023, 127(9):4097-4110.
[12] SORKHEL S, SUR B. Mechanism of Electro-chemical Grinding[J]. Journal of the Institution of Engineers (India), 1972, 53(1):45-48.
[13] 王旭, 趙萍, 呂冰海, 等. 滾動(dòng)軸承工作表面超精密加工技術(shù)研究現(xiàn)狀[J]. 中國機(jī)械工程, 2019, 30(11):1301-1309.
WANG Xu, ZHAO Ping, LYU Binghai, et al. Research Status of Ultra-precision Machining Technologies for Working Surfaces of Rolling Bearings[J]. China Mechanical Engineering, 2019, 30(11):1301-1309.
[14] NOVAK M, KASUGA H, OHMORI H. Comparison of Roughness and Profile between ELID and Ground Surfaces[C]∥Proceedings of the 7th International Congress of Precision Machining (ICPM 2013). Miskolc, 2013:378-383.
[15] RAFFLES M H, STEPHENSON D J, SHORE P, et al. Electrolytic In-process Dressing Superfinishing of Spherical Bearings Using MetalResin Bond Ultra-fine CBN Wheels[J]. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture, 2011, 225(1):112-122.
[16] JIAO F, MA X, BIE W, et al. Research Status and Prospects of Electrochemical Grinding Technology[J]. Acta Armamentarii, 2022, 43(12):3247-64.
[17] 尹龍, 趙波, 郭星晨, 等. 超聲輔助內(nèi)圓磨削40Cr15Mo2VN軸承套圈的試驗(yàn)研究[J]. 中國機(jī)械工程, 2021, 32(10):1172-1180.
YIN Long, ZHAO Bo, GUO Xingchen, et al. Experimental Research on Ultrasonic Assisted Internal Grinding of 40Cr15Mo2VN Bearing Rings[J]. China Mechanical Engineering, 2021, 32(10):1172-1180.
[18] LIU Henan, CHENG Jian, WANG Tingzhang, et al. Magnetorheological Finishing of an Irregular-shaped Small-bore Complex Component Using a Small Ball-end Permanent-magnet Polishing Head[J]. Nanotechnology and Precision Engineering, 2019, 2(3):125-129.
[19] WU M Y, GAO H. Experimental Study on Large Size Bearing Ring Raceways Precision Polishing with Abrasive Flowing Machine(AFM) Method[J]. The International Journal of Advanced Manufacturing Technology, 2016, 83(9):1927-1935.
[20] WEI Minghai, LIN Kun, SUN Li. Shear Thickening Fluids and Their Applications[J]. Materials amp; Design, 2022, 216:110570.
[21] 袁巨龍, 王金虎, 呂冰海, 等. 力流變拋光技術(shù)[J]. 機(jī)械工程學(xué)報(bào), 2022, 58(15):21-30.
YUAN Julong, WANG Jinhu, L Binghai, et al. Force Rheological Polishing Technology[J]. Journal of Mechanical Engineering, 2022, 58(15):21-30.
[22] ZHU Wule, BEAUCAMP A. Compliant Grinding and Polishing:a Review[J]. International Journal of Machine Tools and Manufacture, 2020, 158:103634.
[23] WANG Jiahuan, LYU Binghai, JIANG Liang, et al. Chemistry Enhanced Shear Thickening Polishing of Ti-6Al-4V[J]. Precision Engineering, 2021, 72:59-68.
[24] GUO Luguang, WANG Xu, LYU Binghai, et al. Shear-thickening Polishing of Inner Raceway Surface of Bearing and Suppression of Edge Effect[J]. The International Journal of Advanced Manufacturing Technology, 2022, 121(5):4055-4068.
[25] SHAO Qi, LYU Binghai, YUAN Julong, et al. Shear Thickening Polishing of the Concave Surface of High-temperature Nickel-based Alloy Turbine Blade[J]. Journal of Materials Research and Technology, 2021, 11:72-84.
[26] HUANG Linbin, WANG Xu, CHEN Fangyuan, et al. Anhydros-based Shear-thickening Ultra-precision Polishing of KDP Crystal[J]. The International Journal of Advanced Manufacturing Technology, 2023, 125(7):3103-3115.
[27] ZHANG Xiaoyan, DU Haiyan, GONG Xiaoxiao, et al. The Importance of Surface Hydration and Particle Shape on the Rheological Property of Silica-based Suspensions[J]. Ceramics International, 2014, 40(4):5473-5480.
[28] 付有志. 粘性擠壓磨料流加工邊緣效應(yīng)及抑制策略[D]. 大連:大連理工大學(xué), 2018.
FU Youzhi. Edge Effect of Viscous Extrusion Abrasive Flow Machining and Its Suppression Strategy[D]. Dalian:Dalian University of Technology, 2018.
(編輯 陳 勇)
作者簡(jiǎn)介:郭路廣,男,1990年生,講師、博士。研究方向?yàn)槌芗庸ぜ夹g(shù)與裝備。
袁巨龍*(通信作者),男,1962年生,教授、博士研究生導(dǎo)師。研究方向?yàn)槌芗庸ぜ夹g(shù)與裝備。E-mail:jlyuan@zjut.edu.cn。
本文引用格式:郭路廣,戴卓豪,王東峰,等.力流變工藝對(duì)軸承滾道表面質(zhì)量與精度的影響[J]. 中國機(jī)械工程,2025,36(2):271-279.
GUO Luguang, DAI Zhuohao, WANG Dongfeng, et al. Effects of Force Rheological Polishing Processes on Surface Quality and Accuracy of Bearing Raceways[J]. China Mechanical Engineering, 2025, 36(2):271-279.
基金項(xiàng)目:國家重點(diǎn)研發(fā)計(jì)劃(2018YFB2000402);浙江省自然科學(xué)基金(QZQN25E050002)