摘要: 水泵機(jī)組振動(dòng)信號(hào)的診斷對(duì)機(jī)組安全穩(wěn)定運(yùn)行至關(guān)重要.基于現(xiàn)有技術(shù)存在的諸多問題,提出一種基于EEMD分解融合多尺度排列熵和多策略優(yōu)化算法結(jié)合的水泵機(jī)組故障診斷模型.利用EEMD對(duì)原始信號(hào)進(jìn)行分解并進(jìn)行重構(gòu),然后計(jì)算重構(gòu)信號(hào)的多尺度排列熵組作為特征集,最后建立DBO-BP故障診斷模型.針對(duì)DBO算法易陷入局部最優(yōu)解和迭代速度慢等問題,采用萊維飛行、混沌映射和自適應(yīng)t分布3種方法對(duì)蜣螂算法進(jìn)行優(yōu)化,最終得到LCTDBO-BP的新模型.為探究?jī)?yōu)化后模型的性能,引入多種維度的函數(shù)進(jìn)行再次分析.結(jié)果表明,在單峰和多峰函數(shù)下,所提模型具有明顯的優(yōu)越性.同時(shí)利用轉(zhuǎn)子故障平臺(tái)數(shù)據(jù)模擬水泵機(jī)組典型故障并進(jìn)行故障分類驗(yàn)證,仿真結(jié)果表明該模型的準(zhǔn)確度達(dá)到了98%,與未優(yōu)化模型對(duì)比提高了8%.該項(xiàng)研究為水泵機(jī)組故障診斷提供了新的手段.
關(guān)鍵詞: 水泵機(jī)組;故障診斷;優(yōu)化算法;特征提取
中圖分類號(hào): TM312;S277.9 文獻(xiàn)標(biāo)志碼: A 文章編號(hào): 1674-8530(2025)01-0038-07
DOI:10.3969/j.issn.1674-8530.24.0011
呂順利,曾云,李想,等.基于EEMD結(jié)合LCTDBO-BP的水泵機(jī)組故障診斷[J].排灌機(jī)械工程學(xué)報(bào),2025,43(1):38-44.
LYU Shunli, ZENG Yun, LI Xiang, et al. Fault diagnosis of pump units based on EEMD and LCTDBO-BP[J].Journal of drainage and irrigation machinery engineering(JDIME),2025,43(1):38-44.(in Chinese)
Fault diagnosis of pump units based on EEMD and LCTDBO-BP
LYU Shunli1, ZENG Yun1*, LI Xiang1, ZHANG Jianbo1, WANG Yang2, ZHAO Xiangkuan3
(1. School of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China; 2. Manwan Hydropower Plant, Huaneng Lancang River Hydropower Inc., Lincang, Yunnan 675805,China; 3. Energy Consulting Center, China Huaneng Group Co., Ltd., Beijing 100031, China)
Abstract: The diagnosis of vibration signals of pump unit is very important for the safe and stable ope-ration of the units. Based on EEMD decomposition and multi-scale permutation entropy and multi-strategy optimization algorithms, a pump unit fault diagnosis model was proposed. The original signal was decomposed and reconstructed by EEMD, and then the multi-scale permutation entropy group of the reconstructed signal was calculated as the feature set, and finally the DBO-BP fault diagnosis model was established. Aiming at the problems of DBO algorithm, such as easy to fall into local optimal solution and slow iteration speed, three methods, such as Lévy flight, chaotic mapping and adaptive t-distribution were used to optimize the Dung Beetle algorithm, and finally a new model of LCTDBO-BP was obtained. In order to explore the performance of the optimized model, a variety of dimensional functions were introduced for re-analysis. The results indicate that the proposed model has significant advantages under unimodal and multimodal functions. At the same time, the rotor fault platform data was used to simulate the typical faults of the pump unit and verify the fault classification. The simulation results show that the accuracy of the model reaches 98%, which is 8% higher than that of the unoptimized model. This study provides a new methods for diagnosing fault of pump units.
Key words: pump unit;fault diagnosis;optimization algorithm;feature extraction
水泵機(jī)組在工業(yè)、農(nóng)業(yè)及日常生活中有著廣泛的應(yīng)用,其正常運(yùn)行對(duì)于保障人民生產(chǎn)生活具有重要的意義.然而,由于各種因素的影響,水泵機(jī)組在運(yùn)行過程中可能會(huì)出現(xiàn)各種故障[1].如常見的旋轉(zhuǎn)部件不對(duì)中、不平衡,部件間的磨損、碰撞等.這些容易引起異常振動(dòng),造成機(jī)械零部件磨損和疲勞,甚至導(dǎo)致部件損壞和斷裂,顯著降低設(shè)備的壽命.其次,旋轉(zhuǎn)部件的不平衡運(yùn)行會(huì)導(dǎo)致機(jī)械系統(tǒng)工作時(shí)不穩(wěn)定,增加摩擦力和能耗,從而使設(shè)備的運(yùn)行效率下降,能耗增加,甚至引發(fā)安全事故[2].因此,對(duì)水泵機(jī)組進(jìn)行故障診斷,及時(shí)發(fā)現(xiàn)和解決故障,對(duì)于保障設(shè)備安全穩(wěn)定運(yùn)行具有重要意義.
水泵機(jī)組作為旋轉(zhuǎn)機(jī)械的主要代表之一,其振動(dòng)信號(hào)包含了豐富的機(jī)組運(yùn)行狀態(tài)信息,可以通過分析這些信息來診斷出故障的類型和程度[3].機(jī)組振動(dòng)信號(hào)的分析方法主要分為時(shí)域分析、頻域分析和時(shí)頻域分析[4].然而,傳統(tǒng)的時(shí)域和頻域分析方法主要適用于平穩(wěn)信號(hào),對(duì)于水泵機(jī)組這類具有顯著時(shí)頻變化的信號(hào)則難以對(duì)其局部信息進(jìn)行精準(zhǔn)描述.時(shí)頻方法克服了以上缺陷,能夠有效分析旋轉(zhuǎn)機(jī)械運(yùn)行產(chǎn)生的非平穩(wěn)信號(hào),成為機(jī)械設(shè)備信號(hào)分析中的主流手段.
目前常用的時(shí)頻方法主要有短時(shí)Fourier變換[5] 、小波變換[6]、經(jīng)驗(yàn)?zāi)B(tài)分解(EMD)[7]、變分模態(tài)分解(VMD)[8]、奇異值分解[9]等.而EEMD算法在處理旋轉(zhuǎn)機(jī)械振動(dòng)信號(hào)時(shí),能夠有效應(yīng)對(duì)非線性振動(dòng)特性、精細(xì)頻譜分解、提取隱含信息、抑制模態(tài)混疊以及展現(xiàn)自適應(yīng)性等優(yōu)勢(shì),有助于準(zhǔn)確分析振動(dòng)特征、識(shí)別潛在故障,提高水泵機(jī)組的可靠性和運(yùn)行效率.而熵作為非線性動(dòng)力學(xué)參數(shù)能夠?qū)崿F(xiàn)對(duì)信號(hào)的不確定性和復(fù)雜度進(jìn)行衡量,排列熵廣泛應(yīng)用于信號(hào)處理、故障診斷等領(lǐng)域.傳統(tǒng)的排列熵方法只能對(duì)數(shù)據(jù)進(jìn)行全局分析,難以考慮數(shù)據(jù)的局部特征.多尺度排列熵能在不同時(shí)間尺度上對(duì)振動(dòng)信號(hào)進(jìn)行分析,從而捕捉信號(hào)在不同頻率范圍內(nèi)的振動(dòng)特征,有助于綜合考慮信號(hào)的時(shí)序性和頻域特性.
同時(shí),人工智能和大數(shù)據(jù)技術(shù)的不斷發(fā)展將進(jìn)一步推動(dòng)故障診斷技術(shù)的智能化.通過建立智能化的故障診斷系統(tǒng),可以實(shí)現(xiàn)自學(xué)習(xí)、自適應(yīng)的故障識(shí)別和預(yù)測(cè),提高故障診斷的準(zhǔn)確性和效率.通過建立故障診斷系統(tǒng)、雙向長(zhǎng)短時(shí)記憶、支持向量機(jī)等方法,可以實(shí)現(xiàn)智能化的故障診斷.BP神經(jīng)網(wǎng)絡(luò)擁有強(qiáng)大的非線性建模能力,但需要通過調(diào)整權(quán)重和閾值來逼近任何非線性函數(shù),因此,利用LCTDBO算法對(duì)BP神經(jīng)網(wǎng)絡(luò)2個(gè)參數(shù)進(jìn)行優(yōu)化,增強(qiáng)BP神經(jīng)網(wǎng)絡(luò)的特征分類效果.
綜上,文中將EEMD與多尺度排列熵相結(jié)合,利用轉(zhuǎn)子故障平臺(tái),將提取的特征向量集輸入到LCTDBO-BP中實(shí)現(xiàn)故障診斷與狀態(tài)分類,并采用多種方法與未經(jīng)優(yōu)化模型作對(duì)比.
1 研究方法
1.1 基于EEMD融合多尺度排列熵和LCTDBO-BP的水泵機(jī)組故障診斷
采用文獻(xiàn)[10]中的轉(zhuǎn)子故障平臺(tái)數(shù)據(jù)模擬水泵機(jī)組健康、不平衡、不對(duì)中和磨碰4種工況.首先將原始信號(hào)用EEMD分解并重構(gòu).對(duì)于重構(gòu)后的信號(hào)采用多尺度排列熵計(jì)算并歸一化處理形成特征集.然后利用LCTDBO-BP對(duì)特征集進(jìn)行特征提取與故障分類.其流程如圖1所示.
1.2 EEMD和多尺度排列熵理論
EEMD是對(duì)于EMD的進(jìn)一步改進(jìn),主要在EMD的基礎(chǔ)上加入了隨機(jī)擾動(dòng),它可以有效改善EMD的模態(tài)混疊問題,并降低噪聲對(duì)分解結(jié)果的影響,有效提高分解結(jié)果的精度和穩(wěn)定性.EEMD分解算法通過多次向原始信號(hào)中加入隨機(jī)白噪聲,并針對(duì)每個(gè)噪聲增強(qiáng)的信號(hào)執(zhí)行經(jīng)驗(yàn)?zāi)B(tài)分解(EMD),計(jì)算對(duì)應(yīng)IMF分量的平均值以得到更加穩(wěn)定的模態(tài)分量,從而有效地提高信號(hào)分解的準(zhǔn)確性和可靠性.其計(jì)算公式見文獻(xiàn)[11].文中將轉(zhuǎn)子故障原始數(shù)據(jù)采用EEMD分解并進(jìn)行重構(gòu),為后續(xù)的特征提取做好鋪墊.
排列熵是一種衡量一維時(shí)間序列復(fù)雜度的平均熵參數(shù),常用于提取機(jī)械故障的特征.但旋轉(zhuǎn)機(jī)械在運(yùn)轉(zhuǎn)過程中的故障特征信息分布在多尺度中,僅用單一尺度的排列熵進(jìn)行分析,會(huì)遺漏其余尺度上的故障信息.多尺度排列熵(MPE)是多尺度熵和排列熵的結(jié)合,將時(shí)間序列進(jìn)行多尺度粗?;?,然后計(jì)算不同尺度下粗?;蛄械呐帕徐?其原始信號(hào)經(jīng)過EEMD算法分解后,得到長(zhǎng)度為N的子頻帶信號(hào)x(t),計(jì)算其排列熵的主要流程見文獻(xiàn)[12].
1.3 LCTDBO-BP模型建立
蜣螂優(yōu)化算法(Dung Beetle optimizer,DBO)是一種新型的群智能優(yōu)化算法,靈感來源于蜣螂在自然界中的各種行為,包括滾球、跳舞、覓食等.在DBO算法中,蜣螂的位置和變化遵循一定的規(guī)則[13]:當(dāng)遇到障礙物時(shí),蜣螂會(huì)通過跳舞來重新確定方向;同時(shí),糞球在DBO中作為解的載體,通過模擬蜣螂的滾球行為來更新解的位置.此外,DBO還模擬了蜣螂的覓食行為,通過競(jìng)爭(zhēng)和合作機(jī)制來尋找最優(yōu)解.其具體步驟如下[14].
1) 滾球行為.在自然環(huán)境中,蜣螂在滾動(dòng)糞球時(shí)通常依賴于天體線索來確保糞球沿直線滾動(dòng).考慮到光線強(qiáng)度可能會(huì)對(duì)蜣螂的路徑造成影響,那么在滾球過程中,蜣螂的位置變化可以根據(jù)式(1)描述.
2 仿真驗(yàn)證
2.1 信號(hào)分解
轉(zhuǎn)子試驗(yàn)臺(tái)是專門設(shè)計(jì)用于模擬旋轉(zhuǎn)機(jī)械(如水泵)動(dòng)態(tài)行為的設(shè)備.在試驗(yàn)條件下,這類設(shè)備可以重現(xiàn)運(yùn)行中的物理現(xiàn)象,如軸承磨損、轉(zhuǎn)子不對(duì)中等運(yùn)行狀態(tài).這些物理原理在不同規(guī)模的旋轉(zhuǎn)機(jī)械中是類似的[15].
通過利用轉(zhuǎn)子試驗(yàn)臺(tái)進(jìn)行研究,可以在可控的環(huán)境下引入并微調(diào)故障狀況.在精確控制故障嚴(yán)重程度的同時(shí),還可以監(jiān)測(cè)并記錄關(guān)鍵數(shù)據(jù).與在實(shí)際大型機(jī)組上進(jìn)行故障試驗(yàn)相比,轉(zhuǎn)子試驗(yàn)臺(tái)的成本較低且風(fēng)險(xiǎn)較小.并且在旋轉(zhuǎn)機(jī)械中,不同類型故障其頻率成分大不相同.高頻振動(dòng)信號(hào)往往與滾動(dòng)軸承故障有關(guān),如滾珠脫落或齒輪損傷等;中頻振動(dòng)則常見于轉(zhuǎn)子不平衡和扭轉(zhuǎn)剛度不足引起的問題;而低頻信號(hào)則通常與磨損、松動(dòng)以及設(shè)備不對(duì)中等故障相關(guān).
通過對(duì)這些故障按照高、中、低頻進(jìn)行分類,可以更準(zhǔn)確地識(shí)別和定位故障,有針對(duì)性地進(jìn)行維護(hù)和修復(fù)工作,以確保旋轉(zhuǎn)機(jī)械的安全穩(wěn)定運(yùn)行,延長(zhǎng)設(shè)備壽命.
因此,將4種工況的原始信號(hào)采用EEMD進(jìn)行分解并按照高頻、中頻和低頻進(jìn)行重構(gòu),如圖3所示,圖中A為幅值,下標(biāo)1—4分別表示原始信號(hào)、高頻、中頻、低頻;N為樣本序號(hào).
2.2 特征提取
將重構(gòu)后的信號(hào)進(jìn)行多尺度排列熵計(jì)算,并進(jìn)行歸一化組成特征集,為驗(yàn)證采用多尺度排列熵的合理性,采用T-SEN將機(jī)組不同狀態(tài)信號(hào)的特征進(jìn)行可視化展現(xiàn),如圖4所示,圖中x,y為映射維度.從圖中可以看出,多尺度排列熵有效地將各類故障信號(hào)進(jìn)行區(qū)分,但不平衡狀態(tài)與健康狀態(tài)有極小部分混疊.
2.3 故障識(shí)別
故障診斷的實(shí)質(zhì)是故障識(shí)別與分類.為驗(yàn)證文中所設(shè)計(jì)模型的優(yōu)越性與合理性,將采用2組單峰F1和F2函數(shù),2組多峰F8和F10進(jìn)行充分驗(yàn)證.并引入灰狼優(yōu)化算法GWO、麻雀搜索算法SSA、鯨魚優(yōu)化算法WOA、北方蒼鷹優(yōu)化算法NGO以及DBO進(jìn)行對(duì)比,如圖5所示,圖中SY為適應(yīng)度,t為迭代次數(shù).
從圖5可知,在單峰函數(shù)和多峰函數(shù)中,LCTDBO算法均展現(xiàn)出卓越的性能.它能夠迅速實(shí)現(xiàn)搜索收斂,并具備深入開發(fā)的潛力.這證明了LCTDBO算法在全局探索和局部開發(fā)之間實(shí)現(xiàn)了出色的平衡.與其他算法相比,LCTDBO算法在最終收斂精度和收斂速度上都展現(xiàn)出了顯著的優(yōu)勢(shì).
表1為4種函數(shù)試驗(yàn)的適應(yīng)度.通過對(duì)比表1中的數(shù)據(jù),可以清晰地看到該算法性能表現(xiàn).在這些對(duì)比中,LCTDBO算法的優(yōu)越性顯而易見,它能在不同的函數(shù)上取得更好的結(jié)果,為實(shí)際應(yīng)用提供了更加精確和快速的解決方案.LCTDBO算法的優(yōu)秀表現(xiàn)主要?dú)w功于其獨(dú)特的優(yōu)化策略和迭代方式.這種算法采用了新型優(yōu)化策略,在處理復(fù)雜問題時(shí)能夠更有效地逼近最優(yōu)解.相比其他算法,LCTDBO不僅在收斂精度上有所提升,而且在收斂速度上也表現(xiàn)出顯著優(yōu)勢(shì).
將第2.2條中的特征集輸入到LCTDBO-BP中進(jìn)行分類驗(yàn)證,將改進(jìn)的算法優(yōu)化BP神經(jīng)網(wǎng)絡(luò)的權(quán)重和閾值,同時(shí)與未經(jīng)過LCTDBO優(yōu)化的BP神經(jīng)網(wǎng)絡(luò)作對(duì)比.其中,訓(xùn)練集和測(cè)試集的比例按2∶8進(jìn)行劃分.具體分類情況和混淆矩陣如圖6所示,圖中k為測(cè)試集樣本數(shù),E表示不同狀態(tài)(1,2,3,4分別代表正常狀態(tài)、磨碰狀態(tài)、不平衡狀態(tài)、不對(duì)中狀態(tài)).由圖可知,未經(jīng)過優(yōu)化的SVM算法診斷準(zhǔn)確率僅為78.75%;替換為BP神經(jīng)網(wǎng)絡(luò)后,準(zhǔn)確率上升到90%,說明BP神經(jīng)網(wǎng)絡(luò)在此模型下效果優(yōu)于SVM,優(yōu)化后的BP神經(jīng)網(wǎng)絡(luò)模型故障診斷率高達(dá)98%(與未優(yōu)化模型對(duì)比提高了8%),僅錯(cuò)誤地將一個(gè)不平衡狀態(tài)樣本識(shí)別為正常狀態(tài),再次驗(yàn)證了LCTDBO算法的良好效果,此識(shí)別錯(cuò)誤與上述多尺度排列熵不平衡狀態(tài)與健康狀態(tài)有少量混疊有一定關(guān)系.
試驗(yàn)結(jié)果表明,文中所提出的模型對(duì)于水泵機(jī)組故障診斷具有良好的適配性和工程應(yīng)用價(jià)值.
3 結(jié) 論
1) 提出了一種基于EEMD融合多尺度排列熵和LCTDBO優(yōu)化BP神經(jīng)網(wǎng)絡(luò)的水泵機(jī)組故障診斷模型.仿真試驗(yàn)結(jié)果表明,該模型的故障診斷準(zhǔn)確率達(dá)到了98%.
2) 對(duì)于DBO算法容易陷入局部最優(yōu)解和迭代速度慢等問題,采用多種策略對(duì)DBO算法進(jìn)行優(yōu)化.通過多組單峰和雙峰函數(shù)進(jìn)行驗(yàn)證.結(jié)果表明,該優(yōu)化策略可以很好地解決DBO算法存在的問題.
參考文獻(xiàn)(References)
[1] 裴吉,張猛,武春輝,等. 基于LabVIEW的淮安一站水泵機(jī)組振動(dòng)監(jiān)測(cè)系統(tǒng)設(shè)計(jì)與開發(fā)[J]. 排灌機(jī)械工程學(xué)報(bào), 2023, 41(3): 217-223.
PEI Ji, ZHANG Meng, WU Chunhui,et al. Design and development of vibration monitoring system for Huai′an No.1 Station pump unit based on LabVIEW[J]. Journal of drainage and irrigation machinery engineering, 2023,41(3):217-223.(in Chinese)
[2] 鄧曉琴,瞿衛(wèi)華,陳金保,等.融合IMF能量矩和BiLSTMNN的水電機(jī)組振動(dòng)故障診斷[J].水力發(fā)電學(xué)報(bào),2023,42(10):86-95.
DENG Xiaoqin, QU Weihua, CHEN Jinbao, et al. Vibration fault diagnosis of hydropower unit based on IMF energy moment and BiLSTMNN[J]. Journal of hydroelectric engineering, 2023,42(10):86-95.(in Chinese)
[3] 吳佳,李明宸,唐文妍.基于DTCNN-SVM的工業(yè)循環(huán)水系統(tǒng)供水泵故障診斷[J].振動(dòng)與沖擊,2023,42(13):226-234.
WU Jia, LI Mingchen, TANG Wenyan. Fault diagnosis of water supply pump in industrial circulating water system based on DTCNN-SVM[J]. Journal of vibration and shock, 2023,42(13):226-234.(in Chinese)
[4] 雪增紅,曹瀟,王天周.離心泵機(jī)組振動(dòng)故障診斷與分析[J].排灌機(jī)械工程學(xué)報(bào),2018,36(6):466-471.
XUE Zenghong, CAO Xiao, WANG Tianzhou. Vibration test and analysis of centrifugal pump[J]. Journal of drainage and irrigation machinery engineering, 2018,36(6):466-471.(in Chinese)
[5] MANHERTZ G, BERECZKY A. STFT spectrogram based hybrid evaluation method for rotating machine transient vibration analysis[J]." Mechanical systems and signal processing, 2021,154:107583.
[6] 江遠(yuǎn)東,李新國,楊涵.基于連續(xù)小波變換的表層土壤有機(jī)碳含量的高光譜估算[J].江蘇農(nóng)業(yè)學(xué)報(bào),2023,39(1):118-125.
JIANG Yuandong, LI Xinguo, YANG Han. Hyperspectral estimation of roganic carbon content in surface soils based on continuous wavelet transform[J]. Jiangsu journal of agricultural sciences, 2023,39(1):118-125.(in Chinese)
[7] 宋禮威,張翊勛,陳澤宇,等.基于RBF神經(jīng)網(wǎng)絡(luò)的離心泵地腳螺栓松動(dòng)故障診斷[J].排灌機(jī)械工程學(xué)報(bào),2022,40(10):993-998.
SONG Liwei, ZHANG Yixun, CHEN Zeyu, et al. Fault diagnosis of centrifugal pump anchor bolt loosening based on RBF neural network[J]. Journal of drainage and irrigation machinery engineering, 2022,40(10):993-998.(in Chinese)
[8] LIAN J, LIU Z, WANG H, et al. Adaptive variational mode decomposition method for signal processing based on mode characteristic[J]. Mechanical systems and signal processing, 2018, 107:53-77.
[9] 胥永剛,楊苗蕊,馬朝永.基于改進(jìn)延伸奇異值分解包的滾動(dòng)軸承故障診斷[J].北京工業(yè)大學(xué)學(xué)報(bào),2023,49(7):729-736.
XU Yonggang, YANG Miaorui, MA Chaoyong. Improved extended singular value decomposition packet and its application in fault diagnosis of rolling bearings[J]. Journal of Beijing University of Technology, 2023,49(7):729-736.(in Chinese)
[10] JUNG W, KIM S H, YUN S H, et al. Vibration, acoustic, temperature, and motor current dataset of rotating machine under varying operating conditions for fault diagnosis[J]. Data in brief, 2023,48:109049.
[11] JIA Y, LI G, DONG X, et al. A novel denoising method for vibration signal of hob spindle based on EEMD and grey theory[J]. Measurement, 2021,169: 108490.
[12] 孫苗,吳靜,吳立,等.基于CEEMDAN·MPE-NHT的爆破地震波信號(hào)時(shí)頻分析[J].爆破,2023,40(4):183-191.
SUN Miao, WU Jing, WU Li, et al. Time-frequency analysis of blasting seismic signal based on CEEMDAN·MPE-NHT[J]. Blasting, 2023,40(4):183-191.(in Chinese)
[13] 李一飛,王楠,王桂寶,等.基于DBO-SVM與壓縮采樣匹配追蹤算法的軸承故障診斷[J/OL].軸承,2023:1-8[2024-01-08]. https://link.cnki.net/urlid/41.1148.th.20230908.1606.002.
LI Yifei, WANG Nan, WANG Guibao, et al. Bearing fault diagnosis based on DBO-SVM and compression sampling matching tracking algorithm[J/OL].Bearing,2023:1-8[2024-01-08]. https://link.cnki.net/urlid/41.1148.th.20230908.1606.002.(in Chinese)
[14] DUAN J, GONG Y, LUO Jun, et al. Air-quality prediction based on the ARIMA-CNN-LSTM combination model optimized by dung beetle optimizer[J]. Scientific reports, 2023,13(1):12127.
[15] 崔曉龍.水電機(jī)組軸系振動(dòng)瞬時(shí)特征提取與識(shí)別方法研究[D].武漢:華中科技大學(xué),2021.
(責(zé)任編輯 張文濤)
收稿日期: 2024-01-15; 修回日期: 2024-04-25; 網(wǎng)絡(luò)出版時(shí)間: 2024-07-11
網(wǎng)絡(luò)出版地址: https://link.cnki.net/urlid/32.1814.th.20240705.1827.002
基金項(xiàng)目: 云南省揭榜掛帥科技項(xiàng)目(202204BWO50001);國家自然科學(xué)基金資助項(xiàng)目(52079059)
第一作者簡(jiǎn)介: 呂順利(1979—),男,陜西西安人,講師(149470438@qq.com),主要從事水力機(jī)械優(yōu)化仿真及故障診斷研究.
通信作者簡(jiǎn)介: 曾云(1965—),男,云南昭通人,教授(zengyun001@163.com),主要從事水電機(jī)組運(yùn)行穩(wěn)定性與控制策略研究.