摘要: 為解決水泵機組設(shè)備布置與泵裝置性能優(yōu)化之間的矛盾,提出寬體豎井設(shè)計方法.基于三維湍流數(shù)值計算方法和熵產(chǎn)理論,比較了寬體豎井進水流道與2個常見的尖錐形豎井進水流道的水力特性.設(shè)計制作寬體豎井進水流道水泵裝置模型,并試驗測試5個葉片角下泵裝置的能量特性、空化特性和飛逸特性.結(jié)果表明:寬體豎井方案與其他2個方案的內(nèi)流場相似,在設(shè)計流量工況下流速均勻度均為95%左右,加權(quán)平均角度均大于89°;不同流量工況下,3種方案水力損失均接近,豎井前段熵產(chǎn)僅占后段的7.470%,豎井前段寬體型線對流道能量耗散無影響;當葉片角為0°時,水泵裝置效率最高達79.19%;5個葉片角的泵裝置臨界空化余量均小于6.0 m;當葉片角為-6°時,揚程為2.36 m的最大飛逸轉(zhuǎn)速為278.6 r/min;寬體豎井的水力特性與常規(guī)豎井相近,具有可同時滿足設(shè)備布置與泵裝置性能需求的特點.
關(guān)鍵詞: 豎井貫流泵站;進水流道;寬體豎井設(shè)計;數(shù)值計算;模型試驗
中圖分類號: S277.9; TV131.4 文獻標志碼: A 文章編號: 1674-8530(2025)01-0009-08
DOI:10.3969/j.issn.1674-8530.22.0186
陳加琦,周正富,施偉,等.前置寬體豎井進水流道水泵裝置特性[J]. 排灌機械工程學報,2025,43(1):9-16.
CHEN Jiaqi,ZHOU Zhengfu,SHI Wei,et al. Characteristics of pump systems designed for inlet channel of anterior wide-body vertical shaft[J]. Journal of drainage and irrigation machinery engineering (JDIME), 2025, 43(1): 9-16. (in Chinese)
Characteristics of pump systems designed for inlet
channel of anterior wide-body vertical shaft
CHEN Jiaqi1, ZHOU Zhengfu1*, SHI Wei2, NI Chun2, LU Jian2, YU Xianlei2, XIAO Zhengyou1
(1. College of Electrical, Energy and Power Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China;2. Xuzhou Branch of South-to-North Water Transfer East Route Project Jiangsu Water Source Co., Ltd., Xuzhou, Jiangsu 221200, China)
Abstract: To address the discrepancy between the spatial arrangement of pump unit equipment and the optimization of pump device performance, a novel design approach utilizing a wide-body vertical shaft was proposed. Utilizing the three-dimensional turbulence numerical calculation method in conjunction with entropy production theory, the hydraulic characteristics between a wide-body vertical shaft inlet channel and two conventional conical vertical shaft inlet channels were compared. A prototype of a wide-body vertical shaft inlet water pump was developed and fabricated, and its energy performance, cavitation behavior, and runaway characteristics across five different blade angles were evaluated. The findings indicate that the internal flow field of the wide-body vertical shaft configuration closely resembles that of the other two configurations, exhibiting a flow velocity uniformity of approximately 95% and a weighted average angle exceeding 89° under the design flow conditions. The hydraulic losses remain consistent across different flow conditions, with entropy production in the front section of the vertical shaft constituting merely 7.470% of that observed in the rear section. Moreover, the broad profile of the front section of the vertical shaft does not influence the energy dissipation within the flow channel. At a blade angle of 0°, the water pump device achieves an efficiency of up to 79.19%. The critical cavita-tion margin for the pump device with five different blade angles is below 6.0 m. At a blade angle of -6°, the maximum runaway speed, with a head of 2.36 m, is 278.6 r/min. The hydraulic characteristics of wide-body vertical shafts closely resemble those of traditional vertical shafts, while also posses-sing the capability to concurrently satisfy the demands of equipment configuration and pump device performance.
Key words: vertical shaft flow pump station;inlet channel;wide-body vertical shaft design;numerical calculation;model test
豎井貫流泵站具有效率高、結(jié)構(gòu)簡單、安裝檢修方便等特點,近年來在大型跨流域調(diào)水、城市防洪、水環(huán)境治理等領(lǐng)域應(yīng)用廣泛[1-2].豎井貫流泵站的豎井頭部常設(shè)計為尖錐形[3-4],中部為圓弧形,豎井內(nèi)部空間較狹窄.工程應(yīng)用中發(fā)現(xiàn),豎井過尖的頭部和較窄的中部會導致電動機、齒輪箱、樓梯、檢修通道等布置困難.如果豎井具有寬大的中部(寬體豎井)和適合的頭部,能同時滿足設(shè)備布置與泵裝置性能的需求,將能更好滿足工程要求,因此對豎井中前部位型線研究具有重要工程價值.
圍繞豎井流道優(yōu)化設(shè)計,陳松山等[5-7]在數(shù)值計算和模型裝置試驗基礎(chǔ)上,提出橢圓型線和尖錐形豎井流道.XU等[8]數(shù)值分析了南水北調(diào)邳州泵站進、出水流道,給出了裝置模型試驗研究結(jié)果和進、出流道內(nèi)部流動特性.何鐘寧等[9]設(shè)計7種不同豎井貫流進水流道方案,分別進行數(shù)值計算,并提出豎井流道的優(yōu)化型式.劉君等[10]分別對前置、后置2種豎井貫流泵裝置在設(shè)計流量工況下的基本流態(tài)進行數(shù)值計算,并對計算結(jié)果進行比較分析,發(fā)現(xiàn)前置豎井貫流泵裝置的進水、出水流態(tài)都較好,而后置豎井貫流泵裝置的進水流態(tài)均勻平順,但出水流流態(tài)比較紊亂,水力損失大,裝置效率較低,導葉和豎井是影響出水流態(tài)和裝置效率的關(guān)鍵因素.金康亮等[11]通過數(shù)值模擬方法對比分析了豎井前置、后置2種情況下泵裝置的水力特性,表明在設(shè)計工況下無論前置或后置豎井,泵裝置正向運行效率均高于反向運行.JI等[12-14]數(shù)值計算并比較了前置豎井和后置豎井貫流泵3個不同工況下在水泵葉輪進、出口水壓力6個測點水壓力脈動特性,以及水泵入口速度均勻度和入流角,基于熵產(chǎn)理論分析了豎井貫流泵裝置內(nèi)部的熵產(chǎn)分布和水力損失.KAN等[15]采用雙向流固耦合分析了貫流水泵葉片動應(yīng)力特性,研究得到葉片吸力面和壓力面應(yīng)力分布規(guī)律.石麗建等[16]對雙向豎井貫流泵內(nèi)流特性和水泵裝置特性進行數(shù)值計算和試驗,結(jié)果表明雙向豎井貫流泵裝置在正向、反向運行時,豎井流道內(nèi)部流態(tài)均平穩(wěn)且無大尺度旋渦產(chǎn)生,水泵裝置運行穩(wěn)定.ZHOU等[17]數(shù)值分析了貫流泵動靜轉(zhuǎn)子前后間隙對水泵裝置特性影響,并提出優(yōu)化方案.陳加琦等[18]對中國20余座大型豎井貫流泵站進行統(tǒng)計分析,提出了前置豎井貫流泵裝置規(guī)則化設(shè)計方法.
上述研究主要針對一些豎井貫流泵站提出可行設(shè)計方案,但對前置寬體豎井流道特性的研究較少.文中以某泵站為研究對象,通過數(shù)值計算和水泵裝置模型試驗,研究前置寬體豎井進水流道水泵裝置特性.
1 豎井進水流道數(shù)值計算
1.1 研究對象與方案設(shè)計
某前置豎井進水流道貫流泵站單泵設(shè)計流量10 m3/s,設(shè)計凈揚程1.64 m,最高凈揚程2.36 m,水泵葉輪直徑D=2 100 mm,轉(zhuǎn)速為143 r/min.配套Y5003-8型10 kV高壓異步電動機,電動機功率為355 kW,轉(zhuǎn)速742 r/min,電動機與水泵之間由齒輪減速箱傳動.泵站采用前置豎井進水流道,圓變方擴散出水流道,出水流道出口設(shè)置2道快速閘門.
根據(jù)豎井進水流道特征尺寸的規(guī)則化設(shè)計[18],結(jié)合土建工程布置,確定豎井進水流道主要控制尺寸分別為進水流道寬度B=5 500 mm,豎井最大寬度b=3 300 mm,豎井壁厚δ=300 mm,豎井段長度l=9 297 mm,豎井末端處(喇叭口)流道寬度(高度)Bt=2 500 mm,豎井末端處(喇叭口)至葉輪中心距離Lt=2 000 mm,流道進口高度Hj=2 500 mm.
豎井段流道上、下蓋板傾斜角α,β主要由流道進口高度Hj和豎井末端處(喇叭口)流道寬度(高度)Bt連接確定,文中取α=5.5°,β=5.9°.
在上述主要控制尺寸不變情況下,為了對比分析,按常見豎井流道型式設(shè)計了雙偏心圓弧型(方案Ⅰ)和雙偏心圓弧加頭部修圓型(方案Ⅱ).方案Ⅰ和方案Ⅱ豎井頭部寬度較窄,不利于電動機和樓梯、檢修巡視通道布置.在保證靠近水泵豎井后段部分型線相同情況下,增大豎井最寬部位的長度,豎井頭部改為近似橢圓形狀,即將豎井設(shè)計為寬體式豎井(方案Ⅲ),如圖1所示.
1.2 計算模型
1.2.1 三維實體模型與網(wǎng)格剖分
泵站正常運行工況范圍內(nèi),水泵葉片擾動波對豎井進水流道內(nèi)流影響較小,因此數(shù)值模擬物理區(qū)域不包含水泵,僅包括進水池、前置豎井進水流道(至水泵進口)和延長段.利用三維實體造型軟件PTC Croe對3種方案建構(gòu)豎井貫流進水流道三維模型,如圖2所示.
在前處理軟件Gambit中,先對實體進行分塊,再根據(jù)每小塊實體的形狀和復(fù)雜程度,結(jié)合網(wǎng)格尺寸和單元數(shù)量限制,分別選用四面體網(wǎng)格、五面體網(wǎng)格和六面體網(wǎng)格對三維模型進行混合網(wǎng)格剖分,如圖3所示.通過網(wǎng)格無關(guān)性分析,當網(wǎng)格數(shù)為125萬時,經(jīng)檢查網(wǎng)格質(zhì)量良好,滿足數(shù)值模擬要求.
1.2.2 控制方程
泵站進水流道內(nèi)為不可壓縮湍流流動,基于Boussinesq渦團黏性假設(shè),連續(xù)方程和RANS方程的張量形式[19]分別為
(ρui)xi=0,(1)
(ρujui)xj=-p*xi+μeffuixj+ujxixj,(2)
式中:ρ為流體密度;ui為雷諾時均速度;xi為坐標系坐標軸;p*為包括湍動能k的靜壓力,即p*=p+2/3ρk;μeff為有效黏性系數(shù),等于分子黏性系數(shù)μ與Boussinesq渦團黏性系數(shù)μt之和,即μeff=μ+μt.
湍流模型采用標準k-ε模型,湍動能k和耗散率ε的輸運方程分別為
xjρujk-μ+μtσkkxj=ρ(Pk-ε),(3)
xjρujε-μ+μtσεεxj=ρεk(Cε1Pk-Cε2ε),(4)
式中:Pk為湍動能生成項;Cε1,Cε2,σk,σε為系數(shù).
1.2.3 邊界條件
進口邊界設(shè)在泵站進水池進口斷面上,假設(shè)流速垂直該斷面,并給定質(zhì)量流量.
出口邊界設(shè)在進水流道錐形管向外延伸直管末端,采用無回流的壓力出口邊界,且φi/n=0,其中φi為不同的因變量,n為出口斷面外法線.
假設(shè)泵站前池、進水池水面波動不大,設(shè)自由水面為對稱邊界面,近壁面區(qū)采用壁面函數(shù).
1.3 計算方案對比分析
1.3.1 熵產(chǎn)與水力損失評價指標
為了分析豎井進水流道能量耗散分布特性,將進水流道分為中前段和后段,引入前后熵產(chǎn)比RS表示兩部分能量耗散比例關(guān)系,前后熵產(chǎn)比RS定義為
RS=S中前S后×100%,(5)
式中:S中前,S后分別為豎井進水流道中前段和后段的熵產(chǎn).
總熵產(chǎn)S為直接耗散熵產(chǎn)Sa、湍動耗散熵產(chǎn)St和壁面摩擦熵產(chǎn)Sw三部分之和[20],即
S=Sa+St+Sw.(6)
表1為各方案的總熵產(chǎn)S、熵產(chǎn)比RS以及采用質(zhì)量流量加權(quán)的豎井進水流道水力損失Δh,可以看出:豎井中前段的熵產(chǎn)只占后段的約7.470%左右,進水流道的能量耗散主要集中在豎井后段,表明豎井中前段的型線設(shè)計對能量耗散影響較小,后段的型線設(shè)計影響很大;3個方案的總熵產(chǎn)和水力損失非常相近,在設(shè)計流量工況下總熵產(chǎn)約為0.437 J/K,水力損失約為8.5 cm;寬體豎井與尖錐形豎井總能量耗散無明顯差異,能量特性相似,則工程設(shè)計中采用空間較寬敞的寬體豎井具有可行性.
1.3.2 水泵進口斷面流態(tài)評價指標
除上述的熵產(chǎn)與水力損失外,水泵進口(進水流道出口)斷面的軸向速度分布均勻度Vzu和流速加權(quán)平均角度 θ也是評價進水流道性能優(yōu)劣的重要指標[21],其計算公式分別為
Vzu=1-1va∑ni=1ΔAi(vai-va)2A×100%,(7)
θ=∑vaiΔAi90°-arctan(vti/vai)∑vaiΔAi,(8)
式中:va為泵進口斷面軸向流速算術(shù)平均值;vai為泵進口斷面上第i個單元的軸向速度;vti為泵進口斷面上第i個單元的切向流速;ΔAi 為泵進口斷面上第i個單元的面積;A為泵進口斷面總面積.
表2為根據(jù)由式(7)和式(8)計算得到的流速分布均勻度Vzu和平均角度θ.
由表2可以看出,3個方案Vzu和 θ均比較接近,均勻度都達到94.00%以上,平均角度 θ達到89°以上.水泵吸水條件良好,進一步論證了寬體豎井與尖錐形豎井在出口流態(tài)方面沒有明顯差異,豎井中前段設(shè)計為寬體形式可行且合理.
1.3.3 進水流道內(nèi)部流動特性
為了進一步論證寬體豎井流道可行性,沿圖1的流道中心線截取斷面.圖4為在設(shè)計流量工況下流道中心斷面速度云圖.
由圖4可以看出:3個方案速度均沿流動方向逐漸減小,至水泵進口斷面,流速分布形態(tài)相同;方案Ⅲ除在豎井前端的鈍頭部分低速區(qū)較方案Ⅰ和方案Ⅱ稍大外,其他無明顯差異.
2 水泵裝置模型特性試驗
2.1 試驗系統(tǒng)與試驗裝置
原型泵葉輪直徑Dp=2 100 mm,模型泵葉輪直徑Dm=300 mm,幾何比尺λ=Dp/Dm=7.0.按照幾何相似準則將寬體豎井進水流道和出水流道按幾何比尺縮小.模型進、出水流道均以鋼板焊接制作,模型泵選用TJ04-ZL-07水力模型.模型按歐拉相似準則設(shè)計,即原型泵和模型泵的nD值相等.原型泵轉(zhuǎn)速np=143 r/min,則模型泵轉(zhuǎn)速nm=(npDp)/Dm=1 001 r/min.
試驗在揚州大學流體動力工程實驗室高精度泵站試驗臺上進行,模型水泵試驗裝置與試驗系統(tǒng)如圖5所示.模型水泵試驗裝置中的測功扭矩儀和皮帶輪傳動裝置安裝在豎井內(nèi),通過三角皮帶傳遞調(diào)速直流電動機動力.扭矩儀安裝在模型水泵與皮帶輪傳動裝置之間,扭矩儀與模型水泵以及扭矩儀與皮帶輪傳動裝置之間采用彈性柱銷式聯(lián)軸器直聯(lián),確保扭矩儀只傳遞扭矩.
2.2 水泵裝置特性參數(shù)測量
采用0.1級EJA系列壓差(壓力)傳感器測量斷面壓力.水泵裝置揚程Hm為圖6中斷面2-2和斷面1-1的總水頭差,即
Hm=z2+p2ρg-z1+p1ρg+u222g-u212g,(9)
式中:z,p,u分別為測壓點位置水頭、壓力和斷面平均速度;下標1,2分別表示真空罐和出水箱測點.
水泵裝置流量采用0.2級的DN400 L-mag電磁流量計測量,流量計水平布置,其前后直管段長度均大于10倍管徑.模型水泵裝置軸轉(zhuǎn)矩和轉(zhuǎn)速采用0.1級的500 N·m JC1A測功扭矩儀測量,水泵軸功率Pm根據(jù)式(10)計算,即
Pm=2πnm(Mm-M0m)60,(10)
式中:Mm為泵軸輸入軸轉(zhuǎn)矩;M0m為泵空載轉(zhuǎn)矩.
水泵裝置效率ηm試驗值按式(11)計算,即
ηm=ρgQmHmPm×100%,(11)
式中:Qm為流量.
2.3 試驗結(jié)果與分析
2.3.1 能量特性試驗
水泵裝置能量特性共測試5個葉片安放角度(α=-6°,-4°,-2°,0°,2°),每個角度下測量不少于20個工況點,滿足試驗規(guī)范要求.數(shù)據(jù)采集系統(tǒng)在各工況點自動采樣10次并作平均,以消除水流脈動的影響.圖7a為模型泵裝置能量性能曲線,按水泵相似率換算至原型泵裝置,其中效率不修正,原型水泵裝置能量特性如圖7b所示.
試驗結(jié)果表明,5個葉片安放角度(-6°,-4°,-2°,0°,2°)下的揚程-流量曲線、軸功率-流量曲線規(guī)律明顯,同一角度下?lián)P程、軸功率隨流量增大而減小,5種葉片角度下泵裝置最高效率分別為79.07%,76.65%,79.19%,77.63%和76.49%.寬體豎井貫流水泵裝置效率較高,與其他同樣使用TJ04-ZL-07水力模型泵的常規(guī)豎井貫流水泵裝置相比,能量特性幾乎無差異.
2.3.2 空化特性試驗
在按照等空化余量原則確定的額定試驗轉(zhuǎn)速1 001 r/min運行條件下,分別測得5個不同葉片安放角度(α=-6°,-4°,-2°,0°,2°)下的臨界空化余量(即裝置效率下降1%時),并換算為原型泵裝置的臨界空化余量NPSHC,如圖8所示.
由圖8可以看出,臨界空化余量曲線呈具有極小值開口向上的形狀,泵站在較大運行范圍內(nèi)5個不同葉片角度的臨界空化余量均小于6.0 m.
2.3.3 飛逸特性試驗
測試5個葉片安放角度下水泵裝置的倒泄流量和轉(zhuǎn)速,并換算為單位轉(zhuǎn)速n′1和單位流量Q′1,如圖9所示.可以看出,單位轉(zhuǎn)速n′1隨葉片角度增大而減小,而單位流量Q′1隨葉片角度增大而減小.根據(jù)水泵試驗理論,模型泵裝置與原型泵裝置的單位轉(zhuǎn)速n′1和單位流量Q′1相等,據(jù)此可算出,在葉片角-6°,最大凈揚程2.36 m時,出現(xiàn)最大飛逸轉(zhuǎn)速,nmax=278.6 r/min,為水泵機組額定轉(zhuǎn)速的1.91倍,小于2倍額定轉(zhuǎn)速,故機組在最不利的飛逸狀態(tài)下仍是安全的.
3 結(jié) 論
1) 前置寬體豎井進水流道與2個常規(guī)前置豎井進水流道的內(nèi)流場流速分布形態(tài)相似,均平穩(wěn)順暢,無明顯不良流態(tài).3種方案下水泵進口斷面的流速均勻度均達到94%以上,加權(quán)平均角度均大于89°,水泵吸水條件良好.總熵產(chǎn)、前后熵產(chǎn)比和水力損失也無明顯差異.計算結(jié)果表明,在豎井后段設(shè)計合理情況下,將豎井中前段設(shè)計成寬體形式對流道總能量耗散和水泵進口流態(tài)無不良影響.
2) 模型泵裝置試驗表明,按寬體化原則設(shè)計的前置豎井進水流道貫流泵裝置效率高,空化特性良好,飛逸特性滿足安全設(shè)計要求,與常規(guī)設(shè)計的前置豎井進水流道貫流泵裝置無差異.
3) 根據(jù)數(shù)值模擬和泵裝置模型試驗結(jié)果,豎井進水流道的中前段設(shè)計成寬體形式是可行的,此設(shè)計有利于設(shè)備布置,且對泵裝置水力性能無不良影響,在工程應(yīng)用中能同時滿足設(shè)備布置與泵裝置性能的需求.
參考文獻(References)
[1] 金燕,劉超,湯方平,等. 貫流泵裝置研究進展和應(yīng)用[J]. 水泵技術(shù),2009(4):9-11.
JIN Yan,LIU Chao,TANG Fangping, et al. Research progress and application of tubular pump unit[J]. Pump technology,2009(4):9-11. (in Chinese)
[2] 張仁田. 不同型式貫流式水泵特點及在南水北調(diào)工程的應(yīng)用[J]. 中國水利,2005(4):42-44.
ZHANG Rentian. Features of various tubular pumps and its application in South-to-North Water Diversion Project[J]. China water resources,2005(4):42-44. (in Chinese)
[3] 謝偉東,蔣小欣,劉銘峰,等.豎井式貫流泵裝置設(shè)計[J].排灌機械,2005,23(1):10-12.
XIE Weidong,JIANG Xiaoxin,LIU Mingfeng,et al. The design of shaft tubular pump unit[J]. Drainage and irrigation machinery,2005,23(1):10-12. (in Chinese)
[4] 關(guān)醒凡,商明華,謝偉東,等.不同型式貫流泵裝置模型特性試驗研究[J]. 水泵技術(shù),2010(4):5-8.
GUAN Xingfan,SHANG Minghua,XIE Weidong,et al. Experiment study on characteristics in dfferent shaft tubular model pump sets[J]. Pump technology,2010(4):5-8. (in Chinese)
[5] 陳松山,葛強,嚴登豐,等.大型泵站豎井貫流泵裝置能量特性試驗[J].中國農(nóng)村水利水電,2006(3):54-56.
CHEN Songshan,GE Qiang,YAN Dengfeng,et al. Experimental study on energy characteristic for large-scale shaft tubular pump[J]. China rural water and hydro-power,2006(3):54-56. (in Chinese)
[6] 陳松山,葛強,嚴登豐,等.泵站豎井進水流道數(shù)值模擬與裝置特性試驗[J].農(nóng)業(yè)機械學報,2006,37(10):58-61.
CHEN Songshan,GE Qiang,YAN Dengfeng,et al. Numerical simulation of turbulent flow inside inlet duct and experiment on characteristic performances in shaft tubular model pump set[J]. Transactions of the CSAM, 2006,37(10):58-61. (in Chinese)
[7] 陳松山,顏紅勤,周正富,等. 泵站前置豎井進水流道三維湍流數(shù)值模擬與模型試驗[J].農(nóng)業(yè)工程學報,2014,30(2):63-71.
CHEN Songshan,YAN Hongqin,ZHOU Zhengfu,et al. Three-dimensional turbulent numerical simulation and model test of front-shaft tubular inlet conduit of pumping station [J].Transactions of the CSAE,2014,30(2):63-71. (in Chinese)
[8] XU L, LU W, LU L, et al. Flow patterns and boundary conditions for inlet and outlet conduits of large pump system with low head[J]. Applied mathematics mecha-nics, 2014,35(6):675-688.
[9] 何鐘寧,陳松山,周正富,等.大型泵站豎井進水流道水力優(yōu)化設(shè)計研究[J].灌溉排水學報,2010,29(6):97-99.
HE Zhongning, CHEN Songshan, ZHOU Zhengfu, et al. Hydraulic optimization of turbulent flow inside inlet duct in large shaft tubular pumping stations[J]. Journal of irrigation and drainage,2010,29(6):97-99. (in Chinese)
[10] 劉君,鄭源,周大慶,等.前、后置豎井貫流泵裝置基本流態(tài)分析[J].農(nóng)業(yè)機械學報,2010,41(S1):32-38.
LIU Jun,ZHENG Yuan,ZHOU Daqing,et al. Analysis of basic flow pattern in shaft front-positioned and shaft rear-positioned tubular pump systems[J]. Transactions of the CSAM,2010,41(S1):32-38.(in Chinese)
[11] 金康亮,陳曄,湯方平,等.豎井位置對雙向貫流泵裝置水力特性的影響[J].水力發(fā)電學報,2021,40(9):67-77.
JIN Kangliang,CHEN Ye,TANG Fangping,et al. Influen-ce of shaft location on hydraulic characteristics of bidirectional tubular pump systems [J]. Journal of hydroelectric engineering,2021,40(9):67-77. (in Chinese)
[12] JI D, LU W, XU L, et al. Comparison of the hydraulic performance and pressure pulsation characteristics of shaft tubular pump device under multiple working conditions[J]. Journal of marine science engineering,2022,10(6):750.
[13] JI D, LU W, XU L, et al. Study on the comparison of the hydraulic performance and pressure pulsation characteristics of a shaft front-positioned and a shaft rear-positioned tubular pump devices[J]. Journal of marine science engineering,2021,9(1):8.
[14] JI D, LU W, XU L, et al. Study on the energy loss characteristics of shaft tubular pump device under stall conditions based on the entropy production method[J]. Journal of marine science engineering,2023,11(8):1512.
[15] KAN K, ZHENG Y, FU S, et al. Dynamic stress of impeller blade of shaft extension tubular pump device based on bidirectional fluid-structure interaction[J]. Journal of mechanical science technology,2017,31:1561-1568.
[16] 石麗建,劉新泉,湯方平,等. 雙向豎井貫流泵裝置優(yōu)化設(shè)計與試驗[J].農(nóng)業(yè)機械學報,2016,47(12):85-91.
SHI Lijian,LIU Xinquan,TANG Fangping,et al. Design optimization and experimental analysis of bidirectional shaft tubular pump device[J]. Transactions of the CSAM,2016,47(12):85-91. (in Chinese)
[17] ZHOU Y, ZHANG H, CHEN B. Influence of double-inlet design on the flow-head characteristics of axial-flow pump[J]. Journal of hydrodynamics,2021,33(4):763-772.
[18] 陳加琦,朱泉榮,蘇志敏,等.基于特征尺寸規(guī)則化的豎井貫流泵裝置研究[J].水力發(fā)電學報,2019,38(2):101-111.
CHEN Jiaqi, ZHU Quanrong, SU Zhimin, et al. Shaft tubular pump units based on regularized design [J]. Journal of hydroelectric engineering,2019,38(2):101-111. (in Chinese)
[19] 趙文軍,劉木秀,王鐵力,等. 沙集泵站改造葉輪選型及流道改形研究[J]. 流體機械,2024,52(7):88-97.
ZHAO Wenjun,LIU Muxiu,WANG Tieli,et al. Study on impeller selection and channel modification of Shaji Pump Station[J].Fluid machinery,2024,52(7):88 - 97." (in Chinese)
[20] 溫小明,林通,曾曉亮,等. 設(shè)計工況下離心泵作液力透平內(nèi)部流動耗散特性研究[J].化工設(shè)備與管道,2024,61(6):59-68.
WEN Xiaoming, LIN Tong, ZENG Xiaoliang, et al. Analysis of the flow loss characteristics of the centrifugal pump as turbine(PAT) under the design operation conditions [J]. Process equipment amp; piping,2024,61(6):59-68. (in Chinese)
[21] 蘇永紅,尹久,張杰. 葉片數(shù)對離心泵內(nèi)部能量流動損失的影響[J]. 機電工程,2024,41(6):1050 -1057.
SU Yonghong, YIN Jiu, ZHANG Jie. Effect of blade number on internal energy flow loss of centrifugal pump[J]. Journal of mechanical amp; electrical engineering, 2024,41(6):1050 -1057. (in Chinese)
(責任編輯 陳建華)
收稿日期: 2022-08-07; 修回日期: 2022-12-16; 網(wǎng)絡(luò)出版時間: 2025-01-06
網(wǎng)絡(luò)出版地址: https://link.cnki.net/urlid/32.1814.TH.20250106.1329.002
基金項目: 國家自然科學基金資助項目(51076136); 江蘇省水利科技重點項目(2009053)
第一作者簡介: 陳加琦(1994—),男,江蘇高郵人,博士(625849155@qq.com),主要從事流體機械內(nèi)部流場數(shù)值模擬與試驗研究.
通信作者簡介: 周正富(1974—),男,江蘇揚州人,講師(1259698355@qq.com),主要從事泵站工程研究.