摘要:內(nèi)生真菌的次級(jí)代謝產(chǎn)物是近年天然產(chǎn)物的研究熱點(diǎn)。籃狀菌屬(Talaromyces sp.)是一種重要的內(nèi)生真菌,是青霉屬(Penicillium)的有性型屬菌種。Talaromyces sp.屬分布廣泛,其次級(jí)代謝產(chǎn)物包括生物堿類、多肽類、酯類和聚酮類等,其中一些具有抑菌、抗炎和抗腫瘤等活性。Talaromyces sp.屬?gòu)V泛應(yīng)用于食品和農(nóng)業(yè)的生產(chǎn),并在害蟲(chóng)的生物防治中也具有重要作用。因此,Talaromyces sp.屬在醫(yī)藥、食品和農(nóng)業(yè)等方面具有重要的研究?jī)r(jià)值和應(yīng)用潛力。本文共收錄了338種籃狀菌屬的次級(jí)代謝產(chǎn)物,包括38種生物堿、116種酯類、47種異香豆素類、69種聚酮類、16種醌類和52種甾體類及萜類化合物,這些數(shù)據(jù)能夠?yàn)橐院骉alaromyces sp.屬的研究提供一定的參考價(jià)值,為醫(yī)學(xué)、農(nóng)業(yè)和環(huán)境等方面做出貢獻(xiàn)。
關(guān)鍵詞:籃狀菌屬;次級(jí)代謝產(chǎn)物;化學(xué)結(jié)構(gòu);生物活性
中圖分類號(hào):R932 文獻(xiàn)標(biāo)志碼:A
Research progress on the structure and activity of secondary metabolites of Talaromyces sp.
An Ting1,2, Tan Hui1,2, Guo Rong1, Ma Xiaoli1, and Wen Huaixiu1
(1 Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of" Sciences/Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Xining 810008; 2 University of Chinese Academy of Sciences, Beijing 100049)
Abstract The secondary metabolites of endophytic fungi have been the focus of natural product research in recent years. Talaromyces sp. is an important endophytic fungus, a sexual species of Penicillium. Talaromyces sp. is widely distributed, and its secondary metabolites include alkaloids, peptides, esters, and polyketides, some of which have diverse biological activities, such as antibacterial, anti-inflammatory, and antitumor activities. Talaromyces sp. is widely used in food and agricultural production and also plays an important role in the biological control of pests. Therefore, Talaromyces sp. has important research value and application potential in medicine, food, and agriculture. In this paper, 338 secondary metabolites of cyanobacterium were reviewed, including 38 alkaloids, 116 esters, 47 isocoumarins, 69 polyketides, 16 quinones, 52 steroids, and terpenoids. The data in this paper could provide some reference value for future research on Talaromyces sp. and its contributions to medicine, agriculture, and the environment.
Key words Talaromyces sp.; Secondary metabolites; Chemical structure; Biological activity
1 籃狀菌屬簡(jiǎn)介
籃狀菌(Talaromyces sp.)是青霉屬(Penicillium)的有性型屬菌種[1],該屬是在1955年由Benjamin[2]命名建立的,可以用于分類一些青霉屬菌種的異形體?;@狀菌名字主要來(lái)源于希臘語(yǔ)中的“籃子(basket)”,描述了其由子囊孢子形成的結(jié)構(gòu),即裸子囊[3]。Talaromyces sp. 屬分布廣泛,可從土壤、植物、海綿和食物中分離得到[1,4]?;@狀菌 (Talaromyces sp.)的次級(jí)代謝物包括生物堿類、多肽類、酯類、聚酮類和萜類等,其中一些化合物具有抗炎、抗腫瘤和抗菌等生物活性[1,4-6],例如一些異香豆素類基于其抗炎和α-糖苷酶抑制特性,能夠治療阿爾茲海默癥等疾病[7]。Talaromyces sp.屬中的部分菌株耐熱,部分可以合成糖類、制備手性構(gòu)建塊和生物轉(zhuǎn)化的酶,在害蟲(chóng)的生物防治中也具有重要作用;并且有的菌株還可廣泛應(yīng)用于食品和農(nóng)業(yè)生產(chǎn)[5,8],例如T. pinophilus strain EMOO 13-3能夠降解農(nóng)業(yè)廢物[9]。Talaromyces sp.屬中的T. marneffei具有致病性,會(huì)引發(fā)塔爾芳香菌病,這是一種被忽視的熱帶病,并且艾滋病患者更容易感染T. marneffei真菌,而目前全球極度缺乏對(duì)于這種疾病的診斷和治療方法,主要的治療手段是使用抗真菌藥物,包括兩性霉素(AmB)、依曲康唑、伏立康唑和泊沙康唑,所以研究T. marneffei的生長(zhǎng)生物學(xué)和宿主-病原體相互作用機(jī)制是非常重要的,以提高對(duì)易感人群的診斷和治療[10]。
2 籃狀菌屬的化學(xué)成分及活性研究
2.1 生物堿類
生物堿類是籃狀菌屬真菌中主要的次級(jí)代謝產(chǎn)物,其結(jié)構(gòu)復(fù)雜多樣,以含氮雜環(huán)類衍生物為主,生物堿還具有抗菌、抗腫瘤等豐富的生物活性[4,11-12]。下面將按活性進(jìn)行分類闡述,共總結(jié)了38種化合物(圖1~2)。
Suzuki等[13]從內(nèi)生真菌T. convolutus中分離出的4種新化合物talaroconvolutins A~D(1~4)和已知化合物ZG-1494R(5),其中化合物2、3和5對(duì)煙曲霉、黑曲霉、白念珠菌和新型隱球菌有抑制作用。Miao等[14]的研究表明,從狼毒屬植物內(nèi)生真菌T. verruculosus中分離得到的1種吲哚類生物堿化合物(6),該化合物對(duì)細(xì)菌和真菌都具有體外抑菌活性。Yang等[15]從藻類內(nèi)生真菌Talaromyces sp. cf-16的發(fā)酵液中分離得到2種新的天然生物堿2-[(S)-hydroxy(phenyl)methyl]-3-methylquinazolin-4(3H)-one(7)和2-[(R)-hydroxy(phenyl)methyl]-3-methylquinazolin-4(3H)-one(8),以及7種已知化合物roquefortine C(9)、Z-roquefortine C(10)、 viridicatol(11)、penitrem A(12)、penijanthine A(13)、paspaline(14)和3-deoxo-4b-deoxypaxilline(15),其中化合物10、11、12和13對(duì)金黃色葡萄球菌有抑制作用。Chen等[16]從紅樹(shù)林內(nèi)生真菌Talaromyces sp. HZ-YX1中獲得了化合物talaramide A(16),該化合物對(duì)分枝桿菌蛋白激酶G活性的抑制作用。
Ngokpol等[17]從海洋真菌T. minioluteus(Penicillium minioluteum)中分離出7種化合物,包括4種新的倍半萜烯類生物堿minioluteumides A~D(17~20)和3種已知化合物purpuride(21), berkedrimane B(22)和purpuride B(23),其中化合物17、20和22對(duì)HepG2癌細(xì)胞具有較弱的細(xì)胞毒活性。
Chu等[18]從嗜熱真菌T. thermophilus YM 1-3中分離出的2個(gè)異戊烯基化吲哚類生物堿talathermophilins A和B(24和25),這些化合物具有殺線蟲(chóng)活性。
Guo等[19]從嗜熱真菌T. thermophilus YM 3-4中獲得了6種吲哚類生物堿,talathermophilins A~E(24~28)和cyclo(glycyltryptophyl)(29)。Frisvad等[20]從真菌T. atroroseus中分離得到化合物PP-R(30)。Palem等[21]從內(nèi)生真菌T. radicus中分離得到vincristine(31)和vinblastine(32)。Vinale等[22]從草莓樹(shù)(Arbutus unedo)的內(nèi)生真菌T. pinophilus中分離得到herquline B(33)。Zhang等[23]從南海沉積物樣品中分離出的1種海洋真菌T. mangshanicus BTBU20211089中鑒定出5個(gè)新化合物,即talaromanloid A(34)、10-hydroxy-8-demethyltalaromydine(35)、11-hydroxy-8-demethyltalaromydine(36)、ditalaromylectones A和B(37和38)。
2.2 酯類
酯類是由氧酸與醇或苯酚等羥基化合物反應(yīng)生成的化合物,籃狀菌屬的次生代謝物中主要含有酯類化合物,包括大環(huán)內(nèi)酯類、聚酯類、芳香族內(nèi)酯類和苯酞類等,有的酯類具有細(xì)胞毒活性[4,11-12]。下面將按活性進(jìn)行分類闡述,共總結(jié)了116種化合物(圖3~8)。
Huang等[24]從尖藻共生真菌T. amestolkiae種分離出2種新化合物amestolkins A和B(39和40),它們對(duì)BV-2小膠質(zhì)細(xì)胞具有抗炎作用。Li等[25]從內(nèi)生真菌T. adpressus中分離得到了7個(gè)新型α-吡喃酮加合物talarolactones A~G(41~47),化合物45和46對(duì)NO產(chǎn)物具有顯著的抑制活性,IC50分別為(2.3±0.1)和(3.7±0.3) μmol/L 。
He等[26]從濕地土源真菌T. flavus BYD07-13中分離得到兩個(gè)新的香豆素talacoumarins A和B(48和49),這兩種化合物具有抗Aβ42聚集、細(xì)胞毒活性和抗菌活性。Zhai等[27]從青蔥(Allium fistulosum L.)的內(nèi)生真菌T. pinophilus AF-02中分離得到3種新的酞類衍生物talaromycolides A~C(50~52)和5種已知化合物rubralide C(53)、sclerotinin A(54)、alternariol(55)、penicillide(56)和berkedienolactone(57),其中化合物50對(duì)產(chǎn)氣莢膜梭菌和枯草芽胞桿菌具有抑制活性,化合物51對(duì)巨型芽胞桿菌和大腸埃希菌具有抑菌活性,化合物52對(duì)產(chǎn)氣莢膜假單胞菌具有抑制活性。Cai等[28]從紅樹(shù)林內(nèi)生真菌T. stipitatus SK-4的發(fā)酵產(chǎn)物中分離得到talaromyone A(58)、talaromyone B(59)、penicillide(60)、purpactin A(61)和tenellicacid A(62),其中化合物59對(duì)枯草芽胞桿菌具有較好的抑制活性。Pandit等[29]從T. purpureogenus CFRM-02中分離得到pentalsamonin(63),該化合物對(duì)枯草芽胞桿菌、金黃色葡萄球菌和大腸埃希菌等具有抑制活性。Lv等[30]從紅樹(shù)林源真菌T. WHUF0362中分離得到5個(gè)新的depsidone衍生物talaronins A~E(64~68),其中化合物68對(duì)幽門(mén)螺桿菌具有較強(qiáng)的抑菌活性,最小抑菌濃度(MIC)在2.42~36.04 μmol/L之間。
Dethoup等[31]從內(nèi)生真菌T. bacillisporus中分離得到2種新的低聚苯乙酮二聚體bacillisporins D和 E(69和70)以及已知化合物duclauxin(71),化合物71對(duì)3種人腫瘤細(xì)胞系MCF-7, NCI-H-460和SF-268具有抑制作用,而化合物70具有較弱的抑制活性。Dong等[32]從T. wortmannii中分離得到4種新的22元大環(huán)內(nèi)酯wortmannilactones A~D(71~74),這些化合物對(duì)HCT-5, HCT115和A-549等人類癌細(xì)胞具有抑制活性。Li等[33]從紅樹(shù)林內(nèi)生真菌T. flavus中分離到4種新的去甲半萜過(guò)氧化物talaperoxides A~D(75~78)和1個(gè)已知類似物steperoxidde B(79),其中化合物76、78和79對(duì)人癌細(xì)胞具有細(xì)胞毒性。Kumar等[34]從內(nèi)生真菌Talaromyces sp.中分離得到1種新的內(nèi)酯(3S, 4aR, 7S)-7,8-dihydroxy-3-methyl-3,4,10,5,6,7-hexahydro-1H-isochromen-1-one(80),該化合物對(duì)一系列人類癌細(xì)胞系(HCT-116, A-549, HEP-1, THP-1和PC-3)具有細(xì)胞毒性,能誘導(dǎo)HL-60細(xì)胞凋亡。2014年,He等[35]從濕地土壤源性真菌T. flavus BYD07-13的發(fā)酵產(chǎn)物中分離到6個(gè)新的聚酯talapolyesters A~F(81~86)和11個(gè)已知聚酯15G256v(87)、15G256v-me(88)、15G256π(89)、15G256β-2(90)、15G256α-2(91)、15G256α-2-me(92)、15G256ι(93)、15G256β(94)、15G256α(95)、15G256α-1(96)和15G256ω(97),其中化合物93、94、95、96和97對(duì)HL-60、SMMC-7721、A-549、MCF-7和SW480腫瘤細(xì)胞都具有細(xì)胞毒性。Nonaka等[36]從Talaromyces sp. FKA-65中分離得到1個(gè)新的青霉素酸衍生物coculnol(98),該化合物對(duì)A/PR/8/34(H1N1)有抑制作用,IC50值為283 μg/mL,對(duì)MDCK細(xì)胞有弱細(xì)胞毒性,IC50值為781 μg/mL。Küppers等[37]從地中海海綿Axinella cannabina分離出來(lái)的T. rugulosus中得到了9種內(nèi)酯類衍生物,包括7種(3S)-間苯二酚衍生物,(3S)-cis-resorcylide(99)、(3S,7S)-7-hydroxyresorcylide(100)、(3S,7R)-7-hydroxyresorcylide(101)、(3S,7S)-7-methoxy-resorcylide(102)、(3S,7R)-7-methoxy-resorcylide(103)、(3S,7S)-7-O-n-Butylresorcylide(104)、(3S,7R)-7-O-n-Butylresorcylide(105);2種丁烯內(nèi)酯二聚體talarodilactones A和B(106和107),這2種化合物對(duì)L5178Y小鼠淋巴瘤細(xì)胞系具有較強(qiáng)的細(xì)胞毒性,IC50值分別為3.9和1.3 μmol/L。Yuan等[38]從內(nèi)生真菌Talaromyces sp. MH551540中分離得到talaromycin A(108)和clearanol A(109),它們對(duì)MDA-MB-231細(xì)胞具有選擇性細(xì)胞毒性。
Kimura等[39]從Talaromyces sp.培養(yǎng)物中分離到2個(gè)新的氮唑啉類化合物Kasanosins A和B(110和111),它們能夠選擇性地抑制真核DNA聚合酶b和k的活性,化合物110的抑制作用強(qiáng)于化合物111。Dong等[40]從土壤真菌T. wortmannii中分離得到4種新的四烯內(nèi)酯wortmannilactones E~H(112~115),這4種化合物對(duì)組織蛋白酶B具有抑制劑活性。Kawaguchi等[41]從T. pinophilus FKI-3864發(fā)酵液中分離得到dinapinones AB1和AB2(116和117)、dinapinones AC1和AC2(118和119)、dinapinones AD1和AD2(120和121)、dinapinones AE1和AE2(122和123),其中化合物117對(duì)完整哺乳動(dòng)物細(xì)胞合成三酰甘油具有較強(qiáng)的抑制作用。Kaifuchi等[42]從真菌Talaromyces sp. FKI-6713中分離得到1種新的烏克里酯類似物ukulactone C(124),該化合物對(duì)NADH-富馬酸還原酶具有抑制活性。Ding等[43]從真菌T. wortmannii LGT-4 中分離得到secovironolide(125)、 wortmannin(126)、11-desacetoxywortmannin-17β-ol(127)、11-desacetoxywortmannin(128)和deacetylisowortmin(129),其中化合物126和127對(duì)單胺氧化酶具有微弱的抑制作用。Zhao等[44]從雷公藤內(nèi)生真菌T. wortmannii LGT-4培養(yǎng)物中分離得到wortmannines F和G(130和131),具有較強(qiáng)的磷酸肌醇-3-激酶-α(PI3K-α)抑制活性。
Tomikawa等[45]從Talaromyces sp. 3656-A1種分離得到一種新的化合物rasfonin(132)。Wang等[46]在Azole類抗真菌抗生素增效劑篩選過(guò)程中,從Talaromyces sp. FKI-0076B中分離得到另一種鄰苯二甲酸酯類化合物vermistatin(133)。Dethoup等[47]從T. thailandiasis中分離得到2種vermistatin的類似物penisimplicisin(134)和hydroxydihydrovermistati(135)。Li等[48]從云南紅豆杉(Taxus yunnanensis)內(nèi)生真菌Talaromyces sp. T1BF中分離得到3個(gè)氮唑啉類化合物,其中1個(gè)為新化合物kasanosin C(136),還有2個(gè)已知化合物entonaemin A(137)和(+)-mitorubrin(138)。Frisvad等[20]從真菌T. atroroseus中分離得到化合物glauconic acid(139)。He等[49]從濕地土源真菌T. flavus BYD07-13中分離得到2個(gè)新的聚酯talapolyesters G 和H(140和141)。Kumla等[50]從真菌T. trachyspermus(KUFA0021)中分離得到2個(gè)新的化合物spiculisporic acid E(142)和3-acetyl ergosterol 5,8-endoperoxide(143)。Fu等[51]從紅樹(shù)林植物Acanthus ilicifolius葉片中提取的T. wortmannii LGT-4中分離得到deacetylisowortmins A和B(129和144)。Yang等[52]從內(nèi)生真菌T. marneffei的培養(yǎng)物種分離得到talaromarnine A 和B(145和146)。El-Elimat等[53]從T. amestolkiae中分離得到2種新的化合物7-chloropestalasin A(147)和entthailandolide B(148),4種已知化合物pestalasin A(149)、 3-hydroxymethyl-6,8-dimethoxycoumarin(150)、graphislactone A(151)和berkeleyacetal C(152)。Ningsih等[54]從土壤真菌T. thailandensis PSU-SPSF05中分離得到1個(gè)新的vermistatin衍生物talarostatin(153)。Yang等[55]從海洋真菌T. minioluteus CS-113中分離得到1個(gè)新的drimane倍半萜內(nèi)酯11-hydroxyminioluteumide B(154)。
2.3 異香豆素類
異香豆素是一類特殊含氧雜環(huán)類化合物,具有苯環(huán)和α-吡酮環(huán)的結(jié)構(gòu),具有多種生物活性[11,56]。下面將按活性進(jìn)行分類闡述,共總結(jié)了47種化合物(圖9~10)。
Chen等[57]從紅樹(shù)林內(nèi)生真菌T. amestolkiae YX1中分離得到6個(gè)新的異香豆素(155~158和168~169)和9個(gè)已知的異香豆素類似物(159~167),其中化合物156、160、162、164具有抑制α-葡萄糖苷酶活性,IC50值分別為89.4、17.2、36.4和38.1 μmol/L。Cai等[58]從紅樹(shù)衍生真菌T. flavus(Eurotiales: Trichocomaceae)TGGP35中分離得到6個(gè)新的異香豆素衍生物talaromarins A~F(170~175)和17個(gè)已知的類似物(176~192),這些化合物均無(wú)抑菌和抗植物病原菌活性,但化合物175~180、186~188和190~191具有抗氧化活性,化合物169、187、190和192對(duì)α-葡萄糖苷酶表現(xiàn)出較強(qiáng)的抑制活性。
Miao等[14]從狼毒(Stellera chamaejasme L.)根際真菌T. verruculosus種分離得到1種二氫異香豆素(-)-8-hydroxy-3-(4-hydroxypentyl)-3,4-dihydroisocoumarin(193),該化合物對(duì)金黃色葡萄球菌(Staphylococcus aureus)和大腸埃希菌(Escherichia coli)具有顯著的抑菌活性。
Dethoup等[47]從T. thailandiasis中分離得到2種異香豆素類化合物thailandolides A和B(194和195),以及含有thailandolides B的芳香片段的O-甲基化衍生物3-Methyl-6-hydroxy-8-methoxy-3,4-dihydroisocoumarin(196)。Küppers等[37]從地中海海綿Axinella cannabina分離出來(lái)的T. rugulosus中得到了2種新的二氫異香豆素talumarin A(197)和化合物(198),以及1種已知的類似物aspergillumarin A(199)。El-Elimat等[53]從T. samestolkiae中分離得到1種新的二氫異香豆素4-hydroxyaspergillumarin A(200)和2種已知的二氫異香豆素aspergillumarins A and B(199和201)。
2.4 聚酮類
聚酮類化合物是一類結(jié)構(gòu)多樣、來(lái)源廣泛、種類繁多的一類天然產(chǎn)物。聚酮類化合物是由短鏈的?;鶈卧?jīng)聚酮合酶(polyketide synthase , PKS)催化一系列Claisen縮合反應(yīng)生成的[11,59]。下面將按活性進(jìn)行分類闡述,共總結(jié)了69種化合物(圖11~14):
Komai等[60]從T. flavus IFM52668中分離得到1個(gè)新的funicone衍生物9,14-epoxy-11-deoxyfunicone(202)和1個(gè)已知化合物funicone(203),其中化合物202對(duì)黑曲霉(Aspergillus. niger)的抑制作用較弱,化合物203對(duì)人致病性絲狀真菌煙曲霉(Aspergillus fumigatus)具有典型的抑制作用。Liu等[61]從Kandelia candel的內(nèi)生真菌Talaromyces sp. ZH-154中分離得到2個(gè)新的聚酮7-epiaustdiol(204)和8-O-methylepiaustdiol(205),以及1個(gè)已知的氧雜蒽酮norlichexanthone(206),其中化合物204對(duì)銅綠假單胞菌具有顯著的抑制活性,MIC值為6.25 μg/mL。Wu等[62]從海洋真菌Talaromyces sp. LF458的培養(yǎng)液和菌絲體中分離得到3個(gè)新的化合物talaroxanthenone(207)、talaromycesoneA和B(208和209),其中化合物207和208具有抗菌活性,化合物207對(duì)乙酰膽堿酯酶(AchE)和磷酸二酯酶(PDE-4B2)有抑制作用,IC50值分別為1.61和
7.25 μmol/L。Zhao等[63]從南極海綿源真菌Talaromyces sp. HDN1820200中分離到6個(gè)新的非甾體衍生物talarodrides A~F(210~215),其中化合物210和211對(duì)奇異變形桿菌(Proteus mirabilis)和副溶血性弧菌(Vibrio parahemolyticus)有選擇性的抑制作用,MIC值為3.13~12.5 μmol/L。Yang等[55]從海洋真菌T. minioluteus CS-113中分離得到3個(gè)新的葡萄糖苷類聚酮talaminiosides A~C(216~218),一對(duì)外消旋芳香聚酮(±)-talaminone A(219~220), 2個(gè)新的氮唑酮類聚酮(+)-5-chloromitorubrinic acid(221)和7-epi-purpurquinone C(222),其中化合物216~218對(duì)交替稻瘟病菌QDAU-26、gloeosporioides QDAU-22、asiarium QDAU-27和F. graminearum QDAU-4具有抑制活性,MIC值在4~32 μmol/L之間,化合物222對(duì)上述真菌具有較強(qiáng)的抑制活性,MIC值為1~4 μmol/L。
Liu等[61]從Kandelia candel的內(nèi)生真菌Talaromyces sp. ZH-154中分離得到1個(gè)已知的氧雜蒽酮secalonic acid A(223),該化合物對(duì)KB和KBv200細(xì)胞株具有細(xì)胞毒活性,IC50值分別為0.63和1.05 μmol/L。Zang等[64]從真菌T. stipitatus中分離到5個(gè)新的聚酮衍生的寡酚烯酮二聚體9a-epi-bacillisporin E(224)和 bacillisporins F~H(225~227),以及1個(gè)已知化合物bacillisporin A(228),其中化合物227對(duì)HeLa細(xì)胞具有抑制活性和適度的細(xì)胞毒性。
Matsunaga等[65]從Talaromyces sp.的培養(yǎng)液中分離到2個(gè)新的三環(huán)多酮化合物vanitaracin A和B(229和230),以及其他3個(gè)新化合物3,5-dihydroxy-2-(2-(2-hydroxy-6-methylphenyl)-2-oxoethyl)-4-methylbenzaldehyde(231), 7-hydroxy-5-methyl-2-(2-oxobutyl)-4H-chromen-4-one(232)和2,7-dihydroxy-5-methyl-2-(2-oxobutyl)chroman-4-one(233),其中化合物229具有較強(qiáng)的抗HBV活性,IC50值為10.5 μmol/L。Liu等[66]從T. wortmanninii中分離得到3個(gè)新的聚酮wortmannilactones I1~I(xiàn)3(234~236),這些化合物對(duì)NADH-富馬酸還原酶具有選擇性抑制活性,這些化合物對(duì)NFRD的IC50值分別為8.8、11和13 μmol/L。Ren等[64]從鹽堿地來(lái)源的內(nèi)生真菌T. aculeatus中獲得了6個(gè)新的聚酮類化合物talaraculones A~F(237~242)和5個(gè)已知類似物pinazaphilone B, pinophilin, sch 725680,(-)-mitorubrin, 和(-)-mitorubrinol(243~247),其中化合物237和238對(duì)α-葡萄糖苷酶的抑制活性強(qiáng)于陽(yáng)性對(duì)照阿卡波糖(IC50 = 101.5 μmol/L),IC50值分別為78.6和22.9 μmol/L。Silva等[67]從亞馬遜內(nèi)生真菌T. stipitatus DgCr2 2.1b中分離得到1個(gè)新的paecillin D(248),以及5種已知的聚酮類化合物secalonic acid A(249)、blennolide G(250)、versixanthone A(251)、 penicillixanthone A(252)和paecillin B(253),其中化合物248和251對(duì)酵母有活性,MIC值分別為15.6和31.3 μmol/L。
Arai等[68]從T. flavus FKI-0076中分離得到1個(gè)新的聚酮類化合物actofunicone(254)和1個(gè)已知化合物deoxyfunicone(255)。Koolen等[69]從亞馬遜熱帶雨林藥用植物杜鵑(Duguetia stelechantha)的內(nèi)生真菌Talaromyces sp.中分離得到1個(gè)新的山酮二聚體talaroxanthone(256)。Bara等[70]從T. wortmanii中分離得到1個(gè)新的wortmannin衍生物wortmannin B(257),2個(gè)已知的wortmannin衍生物amino adduct 3a(258)和wortmannin-diol(VIII)(259),以及2個(gè)已知化合物wortmannin(260)和wortmin(261)。Frisvad等[20]從真菌T. atroroseus中分離得到化合物Monascorubramine(262)和Monascorubrin(263)。Vinale等[22]從草莓樹(shù)(Arbutus unedo)的內(nèi)生真菌T. pinophilus中分離得到3-O-methylfunicone(264)。Cao等[71]從海洋真菌Talaromyces sp. CX11中鑒定出3個(gè)新的螺旋環(huán)多酮類化合物talaromyacins A~C(265~267)。Lv等[30]從紅樹(shù)林源真菌T. WHUF0362中分離得到3個(gè)新的xanthone衍生物talaronins F~H(268~270)。
2.5 醌類
醌類化合物是一類重要的天然產(chǎn)物和藥物,主要分布于植物、真菌和細(xì)菌中,是細(xì)胞呼吸和光合作用電子傳遞鏈中的重要組成部分,具有保肝 、 抗炎、 抗菌等生物活性[12,72-74]。下面將按活性進(jìn)行分類闡述,共總結(jié)了16種化合物(圖15)。
Liu等[61]從Kandelia candel的內(nèi)生真菌Talaromyces sp. ZH-154中分離得到2個(gè)蒽醌化合物skyrin(271)和emodin(272),這兩個(gè)化合物具有中等的細(xì)胞毒活性,化合物272的生物活性高于化合物271,化合物271對(duì)KB和KBv200細(xì)胞株的IC50值分別為20.38和16.06μmol/L,化合物272對(duì)KB和KBv200細(xì)胞株的IC50值分別為12.43和15.72 μmol/L。Xie等[75]從內(nèi)生真菌Talaromyces sp.固態(tài)發(fā)酵提取物中分離到1個(gè)新的不對(duì)稱二聚體蒽醌3-demethyl-3-(2-hydroxypropyl)-skyrin(273),以及5個(gè)已知化合物skyrin(271)、oxyskyrin(274)、emodin(272)和 1,3,6-trihydroxy-8-methylanthraquinone(275),其中化合物271、273和274對(duì)MCF-7細(xì)胞系具有中等的細(xì)胞毒活性。
Bara等[70]從T. wortmanii中分離得到1個(gè)新的蒽醌類化合物biemodin(276)和5個(gè)已知的化合物emodic acid(277)、skyrin(271)、oxyskyrin(274)和rugulosins A and B(278和279),其中276對(duì)革蘭陽(yáng)性菌,特別是對(duì)MRSA也有很強(qiáng)的活性。同年,Bara等[76]又從該菌中分離得到2種新的蒽醌類化合物talaromannins A 和 B(280和281),這兩種化合物在金黃色葡萄球菌的可比濃度范圍內(nèi)顯示中等MIC,MIC值為4~8 μg/mL,其中化合物280代表最活躍的同源物。
Noinart等[77]從海綿提取的真菌T. stipitatus KUFA 0207中分離得到了1個(gè)新的雙蒽醌衍生物2,20-bis-(7-methyl-1,4,5-trihydroxy-anthracene-9,10-dione)(282)和5個(gè)已知化合物emodin(272)、 questinol(283)、citreorosein(284)、" fallacinol(285)和rheoemodin(286),其中化合物283和284具有顯著的抗肥胖活性,它們分別降低了gt;60%和gt;90%的染色脂質(zhì),IC50值分別為0.95和0.17 μmol/L。
2.6 甾體類和萜類
甾體類和萜類化合物廣泛存在于自然界中。甾體類化合物具有環(huán)戊烷駢多氫菲的環(huán)系結(jié)構(gòu),具有抗炎、抗毒和抗休克等生物活性[78]。萜類化合物是以異戊二烯為基本單位的一類化合物,主要來(lái)源于動(dòng)植物,具有抗腫瘤和抗氧化等生物活性[79]。下面將按活性進(jìn)行分類闡述,共總結(jié)了52種化合物(圖16~18)。
Chen等[80]從紅樹(shù)林內(nèi)生真菌T. amestolkiae YX1分離得到4個(gè)雜萜amestolkolides A~D(287~290),以及3個(gè)已知化合物purpurogenolide E(291)、chrodrimanin B(292)和chrodrimanin A(293),其中化合物288有較強(qiáng)的體外抗炎活性,IC50值為(1.6±0.1) μmol/L。Chen等[81]從T. minioluteus發(fā)酵液中獲得了1種新的螺旋體烷倍半萜talaminoid A(294)和兩種驅(qū)動(dòng)型倍半萜talaminoids B和C(295和296),以及4種已知化合物purpuride、berkedrimanes B 、minioluteumide B 和1α-hydroxyconfertifolin(297~300),化合物294、297和298對(duì)LPS誘導(dǎo)的BV-2細(xì)胞產(chǎn)生NO有顯著抑制作用,IC50值在4.97~7.81 μmol/L之間,此外,它們對(duì)促炎細(xì)胞因子如TNF-α、IL-6具有顯著的抑制活性。Zhang等[82]從海南三亞亞龍灣土壤真菌T. adpressus中分離得到了1個(gè)甾體類化合物talasterone A(301),這是1種罕見(jiàn)的6/6/5三環(huán)13(14→8)abo -8,14-二麥角甾體,該化合物具有顯著的抗炎活性,在RAW264.7細(xì)胞中對(duì)LPS刺激的炎癥表現(xiàn)出明顯的抑制作用,IC50值為(8.73±0.66) μmol/L,化合物301可以通過(guò)抑制NF-κB通路來(lái)減少促炎細(xì)胞因子的產(chǎn)生。
Li等[33]從紅樹(shù)林內(nèi)生真菌T. flavus的發(fā)酵產(chǎn)物中分離出4種新的倍半萜過(guò)氧化物talaperoxid A~D(302~305),其中化合物303和305對(duì)人癌細(xì)胞MCF-7、MDA-MB-435、HepG2、HeLa和PC-3具有細(xì)胞毒性,IC50值在0.70~2.78 μmol/L之間。Wang等[83]從T. purpureogenus的發(fā)酵產(chǎn)物中分離到新的二萜類化合物roussoellol C(306),該化合物對(duì)MCF-7癌細(xì)胞有抑制作用,IC50值為6.5 μmol/L。Hong等[84]從海洋源真菌Talaromyces sp. HM6-1-1中分離到一個(gè)新的美萜類化合物taladrimanin A(307),該化合物對(duì)MGC803和MKN28胃癌細(xì)胞具有抗腫瘤活性,對(duì)金黃色葡萄球菌6538P表現(xiàn)出選擇性抗菌活性,對(duì)副溶血性弧菌和大腸埃希菌表現(xiàn)出較低的抗菌活性。
聶影影等[85]從1株來(lái)自普哥濱珊瑚的內(nèi)生真菌Talaromyces sp.中分離得到1個(gè)沒(méi)藥烷型倍半萜(R)-()-hydroxysydonic acid(308),該化合物對(duì)白色假絲酵母Canidia albicans和耐甲氧基青霉素的金黃色葡萄球菌methicillin-resistant Staphylococcus aureus(MRSA)具有一定的抑制作用,MIC值分別為0.075和0.2 mmol/L,
對(duì)副溶血弧菌Vibrio parahemolyticus的抑制活性較弱,在0.2 mmol/L濃度下的抑制率為17%。
Hayashi等[86]從Talaromyces sp. YO-2菌株中分離出1個(gè)新的雜萜類化合物chrodrimanin C(309)以及已知化合物chrodrimanins A和B(310和311),其中化合物311具有殺蟲(chóng)活性。同年,Hayashi等[87]又從同一菌株中分離到4個(gè)新的雜萜類化合物chrodrimanins D~G(312~315)和1個(gè)已知化合物chrodrimanin H(316),其中化合物312、313和314對(duì)蠶具有殺蟲(chóng)活性。Cao等[88]從海洋真菌Talaromyces sp. CX11中分離得到talaromyolides A~D(317~320)和talaromytin(321),其中化合物320對(duì)偽狂犬病毒(PRV)具有較強(qiáng)的抗病毒活性,CC50值為3.35 μmol/L。Zhao等[89]從丹參內(nèi)生真菌T. pinophilus中分離得到1個(gè)新的fusicoccane二萜pinophicin A(322)。Zhang等[90]從長(zhǎng)柄參內(nèi)生真菌T. stipitatus中分離得到5個(gè)新的甾醇衍生物(22E,24R)-7α-methoxy-5α,6α-epoxyergosta-8(14),22-diene-3β,15β-diol(323), (22E,24R)-5α,6α-epoxyergosta-8(14), 22-diene-3β,7β,15α-triol(324), (22E,24R)-3β,5α-dihydroxy-14β,15β-epoxyergosta-7,22-diene-6-one(325), (22E,24R)-6α-methoxy-7α,15β-dihydroxyergosta-4,8(14),22-triene-3-one(326)和(25S)-ergosta-7,24(28)-diene-3β,4α,6α,26-tetraol(327),這些化合物的抗增殖作用主要是通過(guò)誘導(dǎo)細(xì)胞凋亡介導(dǎo)的。
Li等[91]從云南紅豆杉(Taxus yunnanensis)內(nèi)生真菌Talaromyces sp. T1BF中分離得到1個(gè)已知的甾體類化合物α,6α-環(huán)氧-24(R)-甲基膽甾-7,22-二烯-3β(328)。Kumla等[50]從真菌T. trachyspermus(KUFA0021)中分離得到1個(gè)新的甾體類化合物3-acetyl ergosterol 5,8-endoperoxide(329)。He等[92]從濕地土壤真菌T. flavus BYD07-13中分離得到1種新的nardosinane型倍半萜類化合物talaflavuterpenoid A(330)。Kaur等[93]從藥用植物水飛薊[Silybum marianum (L.)Gaertn.]的內(nèi)生真菌T. minioluteus(G413)中分離鑒定了4個(gè)萜類化合物talarolutins A~D(331~334)。Dewapriya等[94]從澳大利亞海洋被膜相關(guān)真菌Talaromyces sp.(CMB TU011)中分離得到1個(gè)二萜sordarin(335)。Noinart等[77]從海綿提取的真菌T. stipitatus KUFA 0207中分離得到了1個(gè)新化合物talarosterone(336)和1個(gè)已知的甾體類化合物cyathisteron(337)。Zhang等[95]從海洋源真菌T. stollii HBU-115的水稻培養(yǎng)物中獲得了一個(gè)新的睡茄內(nèi)酯talasteroid(338)。
3 總結(jié)與展望
籃狀菌屬真菌來(lái)源廣泛、種類繁多,次級(jí)代謝產(chǎn)物豐富,在醫(yī)藥、食品和農(nóng)業(yè)等方面具有重要的研究?jī)r(jià)值和應(yīng)用潛力。本文對(duì)2000—2023年已報(bào)道的Talaromyces屬次級(jí)代謝產(chǎn)物及生物活性進(jìn)行了綜述,為后續(xù)的研究提供一定的參考基礎(chǔ),共收錄了338種化合物,包括38種生物堿、116種酯類、47種異香豆素類、79種聚酮類、16種醌類和52種甾體類及萜類化合物。數(shù)據(jù)表現(xiàn)出了Talaromyces屬次級(jí)代謝產(chǎn)物的化學(xué)多樣性和生物活性多樣性,如抗炎、抗腫瘤、抑菌或抑制α-葡萄糖苷酶、富馬酸NADH還原酶等活性。籃狀菌屬的次級(jí)代謝產(chǎn)物已經(jīng)具有一定的發(fā)展,例如從Talaromyces屬中分離得到異香豆素類化合物表現(xiàn)出抗乙酰膽堿酶的活性并能夠治療阿爾茲海默癥,而甾體類和萜類化合物表現(xiàn)出顯著的生物活性多樣性,且該類別抗炎活性比較高[8]。然而目前還沒(méi)有成功研發(fā)出可以應(yīng)用在臨床上的藥物,并且對(duì)于菌株分離、真菌培養(yǎng)、化合物分離的科學(xué)技術(shù)和方法還需要不斷地優(yōu)化,以研究出具有藥用價(jià)值的藥物,為醫(yī)學(xué)、農(nóng)業(yè)和環(huán)境等方面做出貢獻(xiàn)。
參 考 文 獻(xiàn)
翟明明. 兩種特色共生菌次生代謝產(chǎn)物研究[D]. 蘭州: 蘭州大學(xué), 2016.
Benjamin C R. Ascocarps of Aspergillus and Penicillium[J]. Mycologia, 1955, 47(5): 669-687.
Pitt J. Penicillium: Penicillium and Talaromyces: introduction[M/OL]//Batt C A, Tortorello M L. eds. Encyclopedia of food microbiology (second edition), Academic Press. 2014. doi: 10.1016/B978-0-12-384730-0.00248-2.
Lan D H, Wu B. Chemistry and bioactivities of secondary metabolites from the genus Talaromyces[J]. Chem Biodivers, 2020, 17(8): 2000229.
Zhai M M, Li J, Jiang C X, et al. The bioactive secondary metabolites from Talaromyces species[J]. Natur Prod amp; Bioprosp, 2016, 6(1): 1-24.
Nicoletti R, Salvatore M, Andolfi A. Secondary metabolites of mangrove-associated strains of Talaromyces[J]. Mar Drugs, 2018, 16(1): 12.
Noor A O, Almasri D M, Bagalagel A A, et al. Naturally occurring isocoumarins derivatives from endophytic fungi: Sources, isolation, structural characterization, biosynthesis, and biological activities[J]. Molecules, 2020, 25(2): 395.
Nicoletti R, Bellavita R, Falanga A. The outstanding chemodiversity of marine-derived Talaromyces[J]. Biomolecules, 2023, 13(7): 1021.
El-Naggar N E, Haroun S A, Oweis E A, et al. Identification of newly isolated Talaromyces pinophilus and statistical optimization of β-glucosidase production under solid-state fermentation[J]. Prep Biochem Biotech, 2015, 45(7): 712-729.
Wang F, Han R H, Chen S. An overlooked and underrated endemic mycosis-talaromycosis and the pathogenic fungus Talaromyces marneffei[J]. Clin Microbiol rev, 2023, 36(1): e0005122.
Lei L R, Gong" L Q, Jin M Y, et al. Research advances in the structures and biological activities of secondary metabolites from Talaromyces[J]. Front Microbiol, 2022, 13: 984801.
陳仲巍, 林鳳嬌, 陳彬彬, 等. 籃狀菌屬微生物次級(jí)代謝產(chǎn)物研究進(jìn)展[J]. 生物資源, 2022, 44(4): 362-369.
Suzuki S, Hosoe T, Nozawa K, et al. Antifungal substances against pathogenic fungi, talaroconvolutins, from Talaromyces convolutus[J]. J Nat Prod, 2000, 63(6): 768-772.
Miao F, Yang R, Chen D D, et al. Isolation, identification and antimicrobial activities of two secondary metabolites of Talaromyces verruculosus[J]. Molecules, 2012, 17(12): 14091-14098.
Yang H B, Li F, Ji N Y. Alkaloids from an algicolous strain of Talaromyces sp.[J]. Chin J Oceanol Limn, 2016, 34(02): 367-371.
Chen S H, He L Q, Chen D N, et al. Talaramide A, an unusual alkaloid from the mangrove endophytic fungus Talaromyces sp.(HZ-YX1)as an inhibitor of mycobacterial PknG[J]. New J Chem, 2017, 41(11): 4273-4276.
Ngokpol S, Suwakulsiri W, Sureram S, et al. Drimane Sesquiterpene-Conjugated Amino Acids from a Marine Isolate of the Fungus Talaromyces minioluteus(Penicillium Minioluteum)[J]. Mar Drugs, 2015, 13(6): 3567-3580.
Chu Y S, Niu X M, Wang Y L, et al. Isolation of putative biosynthetic intermediates of prenylated indole alkaloids from a thermophilic fungus Talaromyces thermophilus[J]. Org Lett, 2010, 12(19): 4356-4359.
Guo J P, Tan J L, Wang Y L, et al. Isolation of talathermophilins from the thermophilic fungus Talaromyces thermophilus YM3-4[J]. J Nat Prod, 2011, 74(10): 2278-2281.
Frisvad J C, Yilmaz N, Thrane U, et al. Talaromyces atroroseus, a new species efficiently producing industrially relevant red pigments[J]. PLoS One, 2013, 8(12): e84102.
Palem P P, Kuriakose G C, Jayabaskaran C. An endophytic fungus, Talaromyces radicus, isolated from Catharanthus roseus, produces vincristine and vinblastine, which induce apoptotic cell death[J]. PLoS One, 2015, 10(12): e0144476.
Vinale F, Nicoletti R, Lacatena F, et al. Secondary metabolites from the endophytic fungus Talaromyces pinophilus[J]. Nat Prod Res, 2017, 31(15): 1778-1785.
Zhang K, Zhang X, Lin R, et al. New secondary metabolites from the marine-derived fungus Talaromyces mangshanicus BTBU20211089[J]. Mar Drugs, 2022, 20(2): 79.
Huang L J, Li X A, Jin M Y, et al. Two previously undescribed phthalides from Talaromyces amestolkiae, a symbiotic fungus of Syngnathus acus[J]. J Asian Nat Prod Res, 2023, 25(2): 147-155.
Li Q, Zheng M J, Li F L, et al. Talarolactones A-G, α-pyrone dimers with anti-inflammatory activities from Talaromyces adpressus, and their biosynthetic pathways[J]. Org Lett, 2023, 25(10): 1616-1621.
He J W, Qin D P, Gao H, et al. Two new coumarins from Talaromyces flavus[J]. Molecules, 2014, 19(12): 20880-20887.
Zhai M M, Niu H T, Li J, et al. Talaromycolides A-C, novel phenyl-substituted phthalides isolated from the green Chinese onion-derived fungus Talaromyces pinophilus AF-02[J]. J Agric Food Chem, 2015, 63(43): 9558-9564.
Cai R L, Chen S H, Long Y H, et al. Depsidones from Talaromyces stipitatus SK-4, an endophytic fungus of the mangrove plant Acanthus ilicifolius[J]. Phytochem Lett, 2017, 20: 196-199.
Pandit S G, Puttananjaih M H, Harohally N V, et al. Functional attributes of a new molecule-2-hydroxymethyl-benzoic acid 2'-hydroxy-tetradecyl ester isolated from Talaromyces purpureogenus CFRM02[J]. Food Chem, 2018, 255: 89-96.
Lv H W, Su H B, Xue Y X, et al. Polyketides with potential bioactivities from the mangrove-derived fungus Talaromyces sp. WHUF0362[J]. Mar Life Sci Tech, 2023, 5(2): 232-241.
Dethoup T, Manoch L, Kijjoa A, et al. Bacillisporins D and E, new oxyphenalenone dimers from Talaromyces bacillisporus[J]. Planta Med, 2006, 72(10): 957-960.
Dong Y S, Yang J S, Zhang H, et al. Wortmannilactones A-D, 22-membered triene macrolides from Talaromyces wortmannii[J]. J Nat Prod, 2006, 69(1): 128-130.
Li H X, Huang H B, Shao C L, et al. Cytotoxic norsesquiterpene peroxides from the endophytic fungus Talaromyces flavus isolated from the mangrove plant Sonneratia apetala[J]. J Nat Prod, 2011, 74(5): 1230-1235.
Kumar M, Qadri M, Sharma P R, et al. Tubulin inhibitors from an endophytic fungus isolated from Cedrus deodara[J]. J Nat Prod, 2013, 76(2): 194-199.
He J W, Mu Z Q, Gao H, et al. New polyesters from Talaromyces flavus[J]. Tetrahedron, 2014, 70(29): 4425-4430.
Nonaka K, Chiba T, Suga T, et al. Coculnol, a new penicillic acid produced by a coculture of Fusarium solani FKI-6853 and Talaromyces sp. FKA-65[J]. J Antibiot, 2015, 68(8): 530-532.
Küppers L, Ebrahim W, El-Neketi M, et al. Lactones from the sponge-derived fungus Talaromyces rugulosus[J]. Mar Drugs, 2017, 15(11): 359.
Yuan W H, Teng M T, Sun S S, et al. Active metabolites from endolichenic fungus Talaromyces sp.[J]. Chem Biodivers, 2018, 15(11): e1800371.
Kimura T, Nishida M, Kuramochi K, et al. Novel azaphilones, kasanosins A and B, which are specific inhibitors of eukaryotic DNA polymerases beta and lambda from Talaromyces sp.[J]. Bioorg Med Chem, 2008, 16(8): 4594-4599.
Dong Y S, Lin J, Lu X H, et al. Cathepsin B inhibitory tetraene lactones from the fungus Talaromyces wortmannii [J]. Helv Chim Acta, 2009, 92(3): 567-574.
Kawaguchi M, Uchida R, Ohte S, et al. New dinapinone derivatives, potent inhibitors of triacylglycerol synthesis in mammalian cells, produced by Talaromyces pinophilus FKI-3864[J]. J Antibiot, 2013, 66(3): 179-189.
Kaifuchi S, Mori M, Nonaka K, et al. Ukulactone C, a new NADH-fumarate reductase inhibitor produced by Talaromyces sp. FKI-6713[J]. J Gen Appl Microbiol, 2015, 61(2): 57-62.
Ding H E, Yang Z D, Sheng L, et al. Secovironolide, a novel furanosteroid scaffold with a five-membered B ring from the endophytic fungus Talaromyces wortmannii LGT-4[J]. Tetrahedron Lett, 2015, 56(48): 6754-6757.
Zhao J W, Yang Z D, Zhou S Y, et al. Wortmannine F and G, two new pyranones from Talaromyces wortmannii LGT-4, the endophytic fungus of Tripterygium wilfordii[J]. Phytochem Lett, 2019, 29: 115-118.
Tomikawa T, Shin-Ya K, Furihata K, et al. Rasfonin, a new apoptosis inducer in ras-dependent cells from Talaromyces sp.[J]. J Antibiot, 2000, 53(8): 848-850.
王海燕, 荒井雅吉, 供田洋, 等. 微生物來(lái)源的Azole類抗真菌活性增強(qiáng)劑——FKI-0076A、B和C的研究[J]. 中國(guó)抗生素雜志, 2001, 26(2): 89-93.
Dethoup T, Manoch L, Kijjoa A, et al. Merodrimanes and other constituents from Talaromyces thailandiasis[J]. J Nat Prod, 2007, 70(7): 1200-1202.
Li L Q, Yang Y G, Zeng Y, et al. A new azaphilone, kasanosin C, from an endophytic Talaromyces sp. T1BF[J]. Molecules, 2010, 15(6): 3993-3997.
He J W, Gao H, Liu X Z, et al. Two new polyesters from wetland soil-derived fungus Talaromyces flavus[J]. China J Chin Mater Med, 2015, 40(17): 3347-3351.
Kumla D, Dethoup T, Buttachon S, et al. Spiculisporic acid E, a new spiculisporic acid derivative and ergosterol derivatives from the marine-sponge associated fungus Talaromyces trachyspermus(KUFA 0021)[J]. Nat Prod Commun, 2014, 9(8): 1147-1150.
Fu G C, Yang Z D, Zhou S Y, et al. Two new compounds, deacetylisowortmins A and B, isolated from an endophytic Fungus, Talaromyces wortmannii LGT-4[J]. Nat Prod Res, 2016, 30(14): 1623-1627.
Yang Z D, Zhang X D, Yang X, et al. A norbisabolane and an arabitol benzoate from Talaromyces marneffei, an endophytic fungus of Epilobium angustifolium[J]. Fitoterapia, 2021, 153: 104948.
El-Elimat T, Figueroa M, Raja H A, et al. Coumarins, dihydroisocoumarins, a dibenzo-α-pyrone, a meroterpenoid, and a merodrimane from Talaromyces amestolkiae[J]. Tetrahedron Lett, 2021, 72: 153067.
Ningsih B N S, Rukachaisirikul V, Phongpaichit S, et al. Talarostatin, a vermistatin derivative from the soil-derived fungus Talaromyces thailandensis PSU-SPSF059[J]. Nat Prod Res, 2023: 1-8.
Yang S Q, Song Q, Li X M, et al. Antimicrobial polyketides and sesquiterpene lactones from the deep-sea cold-seep-derived fungus Talaromyces minioluteus CS-113 triggered by the histone deacetylase inhibitor SAHA[J]. Org Biomol Chem, 2023, 21(12): 2575-2585.
安雪嬋. DMSO與SOCl2介導(dǎo)下4-甲硫基異香豆素骨架構(gòu)建的新方法[D]. 天津: 天津大學(xué), 2022.
Chen S H, Liu Y Y, Liu Z M, et al. Isocoumarins and benzofurans from the mangrove endophytic fungus Talaromyces amestolkiae possess α-glucosidase inhibitory and antibacterial activities[J]. RSC Adv, 2016, 6(31): 26412-26420.
Cai J, Zhu X C, Zeng W N, et al. Talaromarins A-F: Six new isocoumarins from mangrove-derived fungus Talaromyces flavus TGGP35[J]. Mar Drugs, 2022, 20(6): 361.
龐子萱, 吳季恒, 嚴(yán)豪, 等. 聚酮類化合物研究進(jìn)展[J]. 食品與發(fā)酵工業(yè), 2022, 48(6): 316-326.
Komai S, Hosoe T, Itabashi T, et al. In A new funicone derivative isolated from Talaromyces flavus IFM52668. Mycotoxin, 2004, 54(1): 15-19.
Liu F, Cai X L, Yang H, et al. The bioactive metabolites of the mangrove endophytic fungus Talaromyces sp. ZH-154 isolated from Kandelia candel(L.)Druce[J]. Planta Med, 2010, 76(2): 185-189.
Wu B, Ohlendorf B, Oesker V, et al. Acetylcholinesterase inhibitors from a marine fungus Talaromyces sp. strain LF458[J]. Mar Biol, 2015, 17(1): 110-119.
Zhao Y, Sun C X, Huang L Y, et al. Talarodrides A~F, nonadrides from the antarctic sponge-derived fungus Talaromyces sp. HDN1820200[J]. J Nat Prod, 2021, 84(12): 3011-3019.
Zang Y, Genta-Jouve G, Escargueil A E, et al. Antimicrobial oligophenalenone dimers from the soil fungus Talaromyces stipitatus[J]. J Nat Prod, 2016, 79(12): 2991-2996.
Matsunaga H, Kamisuki S, Kaneko M, et al. Isolation and structure of vanitaracin A, a novel anti-hepatitis B virus compound from Talaromyces sp.[J]. Bioorg Med Chem Lett, 2015, 25(19): 4325-4328.
Liu W C, Yang F, Zhang R, et al. Production of polyketides with anthelmintic activity by the fungus Talaromyces wortmannii using one strain-many compounds(OSMAC)method[J]. Phytochem Lett, 2016, 18: 157-161.
Silva P, Souza M, Bianco E, et al. Antifungal polyketides and other compounds from amazonian endophytic Talaromyces fungi[J]. J Braz Chem Soc, 2017, 29(3): 622-630.
Arai M, Tomoda H, Okuda T, et al. Funicone-related compounds, potentiators of antifungal miconazole activity, produced by Talaromyces flavus FKI-0076[J]. J Antibiot, 2002, 55(2): 172-180.
Koolen H H F, Menezes L S, Souza M P, et al. Talaroxanthone, a novel xanthone dimer from the endophytic fungus Talaromyces sp. associated with Duguetia stelechantha(Diels)R. E. Fries[J]. J Braz Chem Soc, 2013, 24: 880-883.
Bara R, Aly A H, Pretsch A, et al. Antibiotically active metabolites from Talaromyces wortmannii, an endophyte of Aloe vera[J]. J Antibiot, 2013, 66(8): 491-493.
Cao X, Ge Y C, Lan D H, et al. Spirocyclic polyketides from the marine fungus Talaromyces sp. CX11[J]. Fitoterapia, 2023, 164: 105359.
Kumagai Y, Nakajima H, Midorikawa K, et al. Inhibition of nitric oxide formation by neuronal nitric oxide synthase by quinones: Nitric oxide synthase as a quinone reductase[J]. Chem Res Toxicol, 1998, 11(6): 608-613.
王馨瑤. 可見(jiàn)光誘導(dǎo)醌類化合物無(wú)金屬芐基化反應(yīng)研究[D]. 大連: 大連理工大學(xué), 2023.
胡觀明. 蒽醌類化合物的合成及對(duì)腫瘤細(xì)胞的細(xì)胞毒活性的研究[D]. 蘭州: 蘭州大學(xué), 2014.
Xie X S, Fang X W, Huang R, et al. A new dimeric anthraquinone from endophytic Talaromyces sp. YE3016[J]. Nat Prod Res, 2016, 30(15): 1706-1711.
Bara R, Zerfass I, Aly A H, et al. Atropisomeric dihydroanthracenones as inhibitors of multiresistant Staphylococcus aureus[J]. J Med Chem, 2013, 56(8): 3257-3272.
Noinart J, Buttachon S, Dethoup T, et al. A new ergosterol analog, a new bis-anthraquinone and anti-obesity activity of anthraquinones from the marine sponge-associated fungus Talaromyces stipitatus KUFA 0207[J]. Mar Drugs, 2017, 15(5): 139.
顧云蘭. 甾類及相關(guān)化合物的結(jié)構(gòu)與生物活性關(guān)系研究[D]. 蘇州: 蘇州大學(xué), 2006.
王巖. 優(yōu)化甲羥戊酸途徑提高萜類化合物在大腸埃希菌中的生物合成[D]. 蘇州: 蘇州大學(xué), 2022.
Chen S H, Ding M, Liu W Y, et al. Anti-inflammatory meroterpenoids from the mangrove endophytic fungus Talaromyces amestolkiae YX1[J]. Phytochemistry, 2018, 146: 8-15.
Chen C M, Sun W G, Liu X R, et al. Anti-inflammatory spiroaxane and drimane sesquiterpenoids from Talaromyces minioluteus(Penicillium minioluteum)[J]. Bioorg Med Chem, 2019, 91: 103166.
Zhang M, Li Q, Li S J, et al. An unprecedented ergostane with a 6/6/5 tricyclic 13(14→8)abeo-8,14-seco skeleton from Talaromyces adpressus[J]. Bioorg Chem, 2022, 127: 105943.
Wang W J, Wan X, Liu J J, et al. Two new terpenoids from Talaromyces purpurogenus[J]. Mar Drugs, 2018, 16(5): 150.
Hong X, Guan X Q, Lai Q L, et al. Characterization of a bioactive meroterpenoid isolated from the marine-derived fungus Talaromyces sp.[J]. Appl. Microbiol, 2022, 106(8): 2927-2935.
聶影影, 劉亞月, 楊文聰, 等. 來(lái)自普哥濱珊瑚的一株Talaromyces sp.真菌的活性次生代謝產(chǎn)物[J]. 菌物學(xué)報(bào), 2019, 38(4): 585-593.
Hayashi H, Oka Y, Kai K, et al. A new meroterpenoid, chrodrimanin C, from YO-2 of Talaromyces sp.[J]. Biosci Biotech Bioch, 2012, 76(4): 745-748.
Hayashi H, Oka Y, Kai K, et al. New chrodrimanin congeners, chrodrimanins D-H, from YO-2 of Talaromyces sp.[J]. Biosci Biotech Bioch, 2012, 76(9): 1765-1768.
Cao X, Shi Y T, Wu X D, et al. Talaromyolides A-D and talaromytin: Polycyclic meroterpenoids from the fungus Talaromyces sp. CX11[J]. Org Lett, 2019, 21(16): 6539-6542.
Zhao W T, Shi X, Xian P J, et al. A new fusicoccane diterpene and a new polyene from the plant endophytic fungus Talaromyces pinophilus and their antimicrobial activities[J]. Nat Prod Res, 2021, 35(1): 124-130.
Zhang M, Deng Y F, Liu F, et al. Five undescribed steroids from Talaromyces stipitatus and their cytotoxic activities against hepatoma cell lines[J]. Phytochemistry, 2021, 189: 112816.
李良群, 楊艷光, 曾英, 等. 云南紅豆杉內(nèi)生真菌Talaromyces sp.T1BF的化學(xué)成分研究[J]. 廣西植物, 2011, 31(5): 699-701.
He J W, Liang H X, Gao H, et al. Talaflavuterpenoid A, a new nardosinane-type sesquiterpene from Talaromyces flavus[J]." J Asian Nat Prod Res, 2014, 16(10): 1029-1034.
Kaur A, Raja H A, Swenson D C, et al. Talarolutins A-D: Meroterpenoids from an endophytic fungal isolate of Talaromyces minioluteus[J]. Phytochemistry, 2016, 126: 4-10.
Dewapriya P, Prasad P, Damodar R, et al. Talarolide A, a cyclic heptapeptide hydroxamate from an Australian marine tunicate-associated fungus, Talaromyces sp.(CMB-TU011)[J]. Org Lett, 2017, 19(8): 2046-2049.
Zhang Y H, Zhao Y J, Qi L, et al. Talasteroid, a new withanolide from the marine-derived fungus Talaromyces stollii[J]. Nat Prod Res, 2023, 37(19): 3283-3289.
文章編號(hào):1001-8689(2024)09-0961-25
收稿日期:2023-11-07
基金項(xiàng)目:青海省自然科學(xué)基金面上項(xiàng)目(No. 2023-ZJ-927M)
作者簡(jiǎn)介:安婷,女,生于1998年,碩士,主要研究中藏藥藥效物質(zhì)基礎(chǔ)及質(zhì)量標(biāo)準(zhǔn)化,E-mail: anting@nwipb.cas.cn
*通信作者,E-mail: whx@nwipb.cas.cn