摘" " 要:【目的】對75份釀酒葡萄種質(zhì)抗寒性進(jìn)行鑒定和綜合評價(jià),旨在篩選出抗寒性較強(qiáng)的釀酒葡萄種質(zhì)?!痉椒ā恳砸N到新疆天山北麓地區(qū)的34份山歐雜交種和本地栽植的41份種質(zhì)(39份歐亞種、2份歐美雜種)為研究對象,將1年生成熟枝條分別放在-10、-15、-20、-25、-30、-35 ℃下進(jìn)行低溫脅迫處理,以4 ℃為對照,測定其相對電導(dǎo)率(REC)、過氧化物酶(POD)活性、脯氨酸(Pro)含量、可溶性糖(SS)含量和丙二醛(MDA)含量等生理指標(biāo),通過結(jié)合Logistic方程計(jì)算出半致死溫度(LT50),利用隸屬函數(shù)法對其抗寒性進(jìn)行綜合評價(jià),并通過聚類分析法將75份試材進(jìn)行排序,從而篩選出高度抗寒性種質(zhì)和低溫敏感性種質(zhì),進(jìn)一步分析各生理生化指標(biāo)的變化及差異。【結(jié)果】75份種質(zhì)枝條電導(dǎo)率曲線均符合典型的“S”形曲線,LT50在-8.550~-29.153 ℃之間,山歐雜種和歐亞種LT50分別在-15.935~-29.153 ℃和-8.550~-21.003 ℃之間;聚類分析將75份釀酒葡萄種質(zhì)分為高度抗寒性(Ⅰ)、抗寒性(Ⅱ)、中度抗寒性(Ⅲ)和低溫敏感性(Ⅳ),共4級;篩選出北紅、12-5-6、12-16-95、12-10-60、北玫、北冰紅6個(gè)抗寒種質(zhì)以及品麗珠、白艮地、長相思、捏布蓋、酒白和寶石解百納6個(gè)低溫敏感種質(zhì)。隨著處理溫度的下降,12個(gè)品種的REC持續(xù)上升;Pro含量先升后降;SS含量持續(xù)上升;高度抗寒種質(zhì)的POD活性先升后降,MDA含量持續(xù)上升;低溫敏感種質(zhì)POD活性持續(xù)下降,MDA含量先升后降?!窘Y(jié)論】山歐雜種抗寒性強(qiáng)于歐亞種,Ⅰ級的抗寒性最強(qiáng),可將其作為后續(xù)抗寒育種的親本,與具有其他優(yōu)質(zhì)性狀的釀酒葡萄種質(zhì)進(jìn)行雜交,選育抗寒性強(qiáng)的優(yōu)質(zhì)釀酒葡萄新品種,為釀酒葡萄的利用與栽培管理提供了理論依據(jù)。
關(guān)鍵詞:釀酒葡萄;種質(zhì)資源;低溫脅迫;抗寒性;綜合評價(jià)
中圖分類號:S663.1 文獻(xiàn)標(biāo)志碼:A 文章編號:1009-9980(2024)10-1933-14
Identification and comprehensive evaluation of cold resistance of wine grape germplasms in Northern Tianshan Region, Xinjiang
WANG Jijiao1, 2, WANG Shiwei2, PAN Yue1*, LI Yalan2, LI Shude3
(1Xinjiang Academy of Forestry, Urumqi 830000, Xinjiang, China; 2College of Forestry and Landscape Architecture, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, China; 3Xinjiang Niya Wine Co., Manas 832200, Xinjiang, China)
Abstract: 【Objective】 Xinjiang is the largest grape-producing area in China. The main species cultivated there is Vitis vinifera. The buried vine cold-proof cultivation technology is used to ensure safety of overwintering, which would cause destruction of soil surface and consume labor. The study aimed to evaluate the cold resistance of wine grape germplasms in Xinjiang and screen out some cold resistant germplasms for breeding new varieties. 【Methods】 34 accessions of V. amurensis × V. vinifera and 41 accessions of locally planted germplasm were used for the study. The mature annual branches were subjected to low-temperature stress treatments at -10, -15, -20, -25, -30, and -35 ℃, respectively, and 4 ℃ was taken as the control. The relative conductivity (REC), peroxidase (POD) activity, proline (Pro) content, soluble sugar (SS) content, and malondialdehyde (MDA) content were measured, and the half-lethal temperature (LT50) was calculated by combining with the logistic equation. A comprehensive evaluation of cold resistance was carried out using the affiliation function method, and 75 test materials were graded by cluster analysis, and their physiological and biochemical indexes were comparatively analysed. 【Results】 The branch conductivity of the 75 germplasms conformed to the typical “S”-shaped curve, and the fit of the logistic equation for each variety (line) was R2 between 0.764 and 0.996, with the LT50 ranging from -8.550 to -29.153 ℃, and the LT50 of the V. amurensis × V. vinifera and V. vinifera ranging from -15.935 to -29.153 ℃ and -8.550 to -21.003 ℃, respectively; the values of the affiliation function ranged from 0.061 to 0.986 for 75 wine grape germplasms, among them, Beimei, Beihong, Beibinghong, Zuoyouhong, 11-5-36, 11-14-45, 12-3-23, 12-5-6, 12-10-60 and 12-16-95 had a combined rating between 0.8 and 1.0 with high cold resistance; Marselan, Cabernet Sauvignon and 12-16-96 had a combined rating of 0.056, 0.552 and 0.563, respectively, with moderate cold tolerance; Carignan, Cabernet Franc, Baigendi, Sauvignon Blanc, Neuburgske, Jiubai, and Ruby Cabernet had a combined rating between 0.0 and 0.2 with poor resistant to cold. The results differed somewhat from the results of the unifactorial evaluation using LT50 as an indicator, but the overall ordering was similar. The cluster analysis graded 75 wine grape germplasm into highly cold-tolerant (Ⅰ), cold-tolerant (Ⅱ), moderately cold-tolerant (Ⅲ), and low-temperature-sensitive germplasm (Ⅳ), of which the grade Ⅰ included 11 germplasm, all of them were the accessions of V. amurensis × V. vinifera and highly cold-tolerant germplasm; the grade Ⅱ included 27 germplasms, of which 66.667% the the accessions of V. amurensis × V. vinifera, and were cold-resistant germplasm; the grade Ⅲ included 27 germplasms, of which V. vinifera was predominant (21), followed by V. amurensis × V. vinifera (5), which were moderately hardy germplasm; the grade Ⅳ included 10 germplasm, all of them were V. vinifera and were low-temperature sensitive germplasms. Based on the affiliation function method and cluster analysis, it could be concluded that among the V. vinifera, Blue French, Petit Manseng, Erhaobaoxiang, Ecolly, Marselan, Cabernet Sauvignon 169, Cabernet Sauvignon and Saperavi had better cold tolerance; V. amurensis 12-11-5 and 2-5-8 were less cold resistant, but in general the varieties with V. amurensis pedigree were more cold resistant than V. vinifera. Six cold-resistant germplasms were selected: Beihong, 12-5-6, 12-16-95, 12-10-60, Beimei, Beibinghong; Six low temperature sensitive germplasms included Cabernet Franc, Baigendi, Sauvignon Blanc, Neuburgske, Jiubai and Ruby Cabernet were comparatively analysed for physiological and biochemical indices; With the decrease in treatment temperature, the REC of the 12 varieties continued to increase; the Pro content firstly increased and then decreased; the SS content continued to increase; the POD activity of the highly cold-tolerant germplasm firstly increased and then decreased; and the MDA content continued to increase; the POD activity of the low-temperature-sensitive germplasm continued to decrease; and the MDA content firstly increased and then decreased in the trend of change. 【Conclusion】 The cold resistance of accessions of V. amurensis × V. vinifera was stronger than that of V. vinifera, and the cold resistance of grade Ⅰ was the strongest, which could be used as a germplasm resource for the subsequent breeding of cold-resistant variety.
Key words: Grapevine; Germplasm resources; Low temperature stress; Cold resistance; Comprehensive evaluation
中國擁有豐富多樣、分布廣泛的葡萄遺傳資源,其中蘊(yùn)藏著大量抗逆性優(yōu)異的種質(zhì)[1]。據(jù)新疆維吾爾自治區(qū)工業(yè)和信息化廳報(bào)道,新疆釀酒葡萄種植面積達(dá)2萬hm2,占全國24.50%,是中國最大的葡萄原酒生產(chǎn)基地[2]。天山北麓產(chǎn)區(qū),地處北緯44°,是釀酒葡萄生產(chǎn)的“黃金地帶”,該產(chǎn)區(qū)以赤霞珠、馬瑟蘭、小味兒多、品麗珠、煙73、貴人香為主栽品種,均為歐亞種葡萄(Vitis vinifera),其品質(zhì)優(yōu)良,但抗寒抗抽干能力較差[3-4]。新疆地區(qū)受大陸性季風(fēng)氣候影響,冬季寒冷干燥,尤其是近年來低溫凍害頻繁發(fā)生,對釀酒葡萄的產(chǎn)量和品質(zhì)造成嚴(yán)重影響,個(gè)別年份甚至出現(xiàn)絕產(chǎn),導(dǎo)致葡萄酒原料供應(yīng)不穩(wěn)定[5]。因此,為確保葡萄安全越冬,生產(chǎn)上普遍采用埋土防寒栽培技術(shù),但此方法不僅會破壞地表,引發(fā)土壤風(fēng)蝕,對生態(tài)環(huán)境保護(hù)不利,同時(shí)也會增加勞動成本,降低市場競爭力。釀酒葡萄品種的抗寒能力很大程度上影響著植株的存活和生長,且不同種群、不同品種(系)的抗寒性也不盡相同[6-7]。近年來,中國的葡萄育種工作者將山葡萄與歐亞種葡萄進(jìn)行種間雜交,培育出了北冰紅、北馨、凌豐紅等抗寒葡萄新品種[8-10]。由此可見,引進(jìn)東北地區(qū)高抗寒葡萄種質(zhì)資源,是拓展新疆釀酒葡萄抗寒性遺傳背景的有效手段,對培育高抗寒性釀酒葡萄新品種具有十分重要的意義。
在開展此項(xiàng)研究工作時(shí),如何準(zhǔn)確地鑒定釀酒葡萄的抗寒性是首要問題。目前,已有相關(guān)研究報(bào)道,相對電導(dǎo)率(REC)、半致死溫度(LT50)、滲透調(diào)節(jié)物質(zhì)含量、抗氧化酶活性等指標(biāo)廣泛應(yīng)用于植物抗寒性評價(jià)[11]。曹建東等[12]通過對葡萄砧木和栽培品種的生理生化指標(biāo)進(jìn)行主成分分析,篩選出REC、丙二醛(MDA)含量、脯氨酸(Pro)含量、可溶性糖(SS)含量、可溶性蛋白質(zhì)含量、萌芽率、產(chǎn)生愈傷組織的比率等指標(biāo)作為評價(jià)葡萄抗寒性的重要指標(biāo),并根據(jù)各指標(biāo)不同低溫處理下的變化趨勢,得出各品種抗寒性強(qiáng)弱。郭艷蘭等[13]根據(jù)Logistic方程擬合計(jì)算出LT50,并結(jié)合隸屬函數(shù)法對葡萄營養(yǎng)系進(jìn)行綜合評價(jià),得出CS-VCR11、CS-VCR19、PN-VCR9、CS-15的抗寒性較強(qiáng),平均隸屬度值與LT50相關(guān)性達(dá)極顯著水平(p<0.01),二者均可作為有效評價(jià)葡萄抗寒性的指標(biāo)。楊豫等[14]對4個(gè)釀酒葡萄生理生化指標(biāo)相關(guān)分析的結(jié)果表明,REC、過氧化氫酶活性和MDA、SS、可溶性蛋白含量與抗寒性呈負(fù)相關(guān),枝條萌芽率、超氧化物歧化酶(SOD)活性、過氧化物酶(POD)活性與抗寒性呈正相關(guān),恢復(fù)生長法、LT50可作為判斷釀酒葡萄枝條抗寒性強(qiáng)弱的單項(xiàng)指標(biāo)。賈金輝等[15]通過測定REC、POD活性、枝條萌發(fā)率、Pro和SS含量評價(jià)了8個(gè)釀酒葡萄品種的抗寒性。
植物抗寒性是數(shù)量性狀,單一指標(biāo)往往難以準(zhǔn)確地反映其抗寒性的程度,通過采用多種分析方法進(jìn)行綜合評價(jià),可以提高其準(zhǔn)確性[16]。任靜等[17]結(jié)合主成分分析法、聚類分析法以及相關(guān)性分析,評價(jià)了河西走廊貴人香葡萄7個(gè)砧穗組合的抗寒性。羅堯幸等[18]利用隸屬函數(shù)法評價(jià)了7個(gè)鮮食葡萄品種的抗寒能力強(qiáng)弱。目前有關(guān)釀酒葡萄抗寒性的研究多集中于歐亞品種,對山葡萄和山歐雜種(系)的研究報(bào)道較少。因此,為進(jìn)一步研究釀酒葡萄種質(zhì)資源的抗寒能力,筆者通過高低溫交變箱模擬低溫環(huán)境,對75份釀酒葡萄種質(zhì)1年生枝條設(shè)置不同溫度處理,測定不同低溫下REC、POD活性、Pro含量、SS含量和MDA含量,利用Logistic方程計(jì)算出LT50,并結(jié)合隸屬函數(shù)法和聚類分析,在短期內(nèi)篩選出抗寒力強(qiáng)的釀酒葡萄種質(zhì)資源,為加快釀酒葡萄抗寒育種、降低育種成本提供理論依據(jù)。
1 材料和方法
1.1 試驗(yàn)地概況
枝條采自新疆昌吉州瑪納斯縣中信國安葡萄酒業(yè)有限公司自建基地資源圃(44°14′15″ N,86°14′54″ E),該基地位于新疆天山北麓瑪納斯河流域,屬于溫帶大陸性干旱半干旱氣候區(qū),具有冬季嚴(yán)寒、夏季酷熱、日照充足、晝夜溫差大、干旱少雨等特點(diǎn)。年日照時(shí)數(shù)2600~2900 h,年均溫度7.2 ℃,年降水量110~200 mm,年蒸發(fā)量1500~2000 mm,極端最高氣溫39.6 ℃,極端最低氣溫-37.4 ℃,無霜期150~204 d。
1.2 試驗(yàn)材料與處理
供試材料為75份釀酒葡萄種質(zhì)(表1),G1~G39為歐亞種,G40~G41為歐美雜種,G42~G75為山歐雜種,其中山歐雜種由中國農(nóng)業(yè)科學(xué)院特產(chǎn)研究所提供后引種于新疆瑪納斯縣,其親本不詳。試驗(yàn)于2023年11月進(jìn)行,每份試材采集6個(gè)粗細(xì)均勻、生長健壯的1年生枝條,采后帶回實(shí)驗(yàn)室,用自來水沖洗去除枝條表面灰塵,再用去離子水沖洗3遍后用吸水紙吸干水分。將枝條剪成10~15 cm的枝段,兩端用保鮮膜封口,每份試材分為7份,每份10段,使用高低溫交變箱(LW-100C)進(jìn)行低溫處理,以4 ℃作為對照,降溫速率為4 ℃·h-1,低溫處理溫度分別為-10、-15、-20、-25、-30和-35 ℃。將分裝好的枝段放入冰箱中,以4 ℃·h-1的速率降溫,到達(dá)目標(biāo)溫度后維持12 h,再以相同速率升溫至4 ℃后取出于室溫下放置2 h,測定其各項(xiàng)生理指標(biāo),每份試材的不同處理均設(shè)置3個(gè)重復(fù)。
1.3 試驗(yàn)方法
1.3.1 相對電導(dǎo)率測定及半致死溫度確定 將不同低溫處理后的枝條剪成3~5 mm厚的薄片,并且避開芽眼位置,用天平稱取薄片1 g,放至15 mL試管中,標(biāo)記后加入10 mL去離子水,在室溫下浸泡12 h,隨后用DDS-307型電導(dǎo)率儀測定浸提液初電導(dǎo)率,然后將樣品置于沸水浴中煮沸15 min,再將浸提液定容至10 mL,待冷卻至室溫時(shí),搖勻,測定浸提液終電導(dǎo)率,計(jì)算相對電導(dǎo)率:
相對電導(dǎo)率/%=(初電導(dǎo)率/終電導(dǎo)率)×100。
(1)
半致死溫度:用REC擬合Logistic方程,可獲得曲線的拐點(diǎn)溫度lna/b,即LT50,并求出方程的擬合度。擬合方程如下:
y=k/(1+ae-bx)。" " " " " " " " " " " " " " " " " " " " " " " (2)
其中,其中k、a、b為常數(shù),y為實(shí)測REC,x為處理溫度。
k=[y22(y1+y3)-2y1y2y3]/(y22-y1y3)。" " " " " " " "(3)
y1、y2、y3分別是等距處理溫度下的REC,在實(shí)際應(yīng)用中,常令y'=ln[(k-y)/y],y'=lna-bx,即REC y轉(zhuǎn)換成y'后,與處理溫度x之間的關(guān)系可以用線性方程表示,故可以按一般的直線相關(guān)法求出a和b。在數(shù)學(xué)上,拐點(diǎn)為d2y/dx2=0時(shí)的x值,即為LT50值。
計(jì)算公式為:LT50=-(lna/b)。" " " " " " " " " " " (4)
1.3.2 生理生化指標(biāo)的測定 采用愈創(chuàng)木酚法測定POD活性[14],采用酸性茚三酮比色法測定Pro含量[14],采用蒽酮比色法測定SS含量[15],采用硫代巴比妥酸法測定MDA含量[15]。
1.3.3 葡萄抗寒性的隸屬函數(shù)法評價(jià) 在綜合各項(xiàng)生理指標(biāo)的基礎(chǔ)上,對75份試材的抗寒性進(jìn)行評價(jià),其計(jì)算公式[16]為:
Uij=(Xij-Xjmin)/(Xjmax-Xjmin) (正相關(guān));" " " " " " (5)
Uij=1-(Xij-Xjmin)/(Xjmax-Xjmin) (負(fù)相關(guān))。" " (6)
式中:Uij表示指標(biāo)的隸屬度值;Xij表示指標(biāo)測定值,其中i代表不同試材,j代表抗寒指標(biāo),Xjmax和Xjmin分別為j指標(biāo)的最大值和最小值。
1.4 數(shù)據(jù)處理
采用Excel 2010對試驗(yàn)數(shù)據(jù)進(jìn)行整理,用SPSS 26.0對數(shù)據(jù)進(jìn)行非線性回歸擬合、相關(guān)性分析,用Origin 2022進(jìn)行聚類分析及作圖。
2 結(jié)果與分析
2.1 Logistic方程的擬合及葡萄枝條低溫半致死溫度的確定
以溫度為自變量x,枝條的相對電導(dǎo)率為因變量y,對供試釀酒葡萄種質(zhì)進(jìn)行Logistic方程擬合回歸分析,并計(jì)算各種質(zhì)的低溫LT50,結(jié)果見表2。各品種(系)的Logistic方程擬合度R2為0.764~0.996,表明所擬合方程具有較高的可靠性,由此計(jì)算的LT50真實(shí)可用。各品種(系)的LT50在-8.550~-29.153 ℃,LT50值越小,說明抗寒性越強(qiáng)。39份歐亞種葡萄品種的LT50在-8.550~-21.003 ℃,2份歐美雜種葡萄品種的LT50在-14.041~-19.707 ℃,34份山歐雜種葡萄品種的LT50在-15.935~-29.153 ℃。
2.2 不同葡萄品種抗寒性隸屬函數(shù)評價(jià)及抗寒指標(biāo)篩選
選用6個(gè)生理指標(biāo)作為枝條抗寒性評價(jià)指標(biāo),通過隸屬函數(shù)法進(jìn)行綜合評價(jià),結(jié)果(表2)表明,75份釀酒葡萄種質(zhì)的隸屬函數(shù)值在0.061~0.986之間,其中北玫、北紅、北冰紅、左優(yōu)紅、11-5-36、11-14-45、12-3-23、12-5-6、12-10-60和12-16-95的綜合評價(jià)值在0.8~1.0之間,抗寒性較強(qiáng);馬瑟蘭、赤霞珠和12-16-96綜合評價(jià)值分別為0.539、0.527和0.503,抗寒性中等;佳麗釀、品麗珠、白艮地、長相思、捏布蓋、酒白和寶石解百納的綜合評價(jià)值介于0.0~0.2,抗寒性較差。
根據(jù)75份種質(zhì)的抗寒性評價(jià)指標(biāo)進(jìn)行聚類分析(圖1),75份種質(zhì)可以分為4個(gè)等級,其中Ⅰ級包括11份種質(zhì),均為山歐雜種,為高度抗寒性種質(zhì);Ⅱ級包括27份種質(zhì),其中山歐雜種占66.667%,為抗寒性種質(zhì);Ⅲ級包括27份種質(zhì),其中歐亞種居多(21份),山歐雜種次之(5份),為中度抗寒性種質(zhì);Ⅳ級包括10份種質(zhì),均為歐亞種,為低溫敏感性種質(zhì)。根據(jù)隸屬函數(shù)法和聚類分析可以得出,歐亞種中法國藍(lán)、小芒森、二號白香、愛格麗、馬瑟蘭、赤霞珠169、赤霞珠和晚紅蜜抗寒性較好,山歐雜種相較于歐亞種抗寒性更佳。
為進(jìn)一步研究不同葡萄品種枝條對不同低溫脅迫生理響應(yīng)的差異,根據(jù)75份釀酒葡萄種質(zhì)抗寒性分類結(jié)果,從中篩選出12個(gè)葡萄品種進(jìn)行抗寒生理生化指標(biāo)差異分析。其中包括:北紅、12-5-6、12-16-95、12-10-60、北紅和北冰紅6個(gè)高度抗寒種質(zhì)和品麗珠、白艮地、長相思、捏布蓋、酒白和寶石解百納6個(gè)低溫敏感種質(zhì),用于各抗寒生理指標(biāo)比較分析。
2.3 低溫處理對不同葡萄枝條相對電導(dǎo)率的影響
隨著低溫處理時(shí)間的延長,葡萄枝條細(xì)胞的膜透性增大,電解質(zhì)滲透隨之增加,REC呈不同程度的“S”形上升趨勢(圖2)。在4~-35 ℃的各低溫梯度中,高度抗寒性和低溫敏感性的種質(zhì)REC增幅明顯不同,長相思和品麗珠的REC增幅較大,分別為75.097%和65.653%;12-10-60和12-5-6的增幅較小,分別為24.994%和36.020%。
高度抗寒種質(zhì)的REC呈現(xiàn)持續(xù)上升趨勢。在4~-20 ℃枝條受寒害程度較小,REC呈緩慢增長趨勢,整體增長幅度在0.368%~8.648%之間;在-25~
-35 ℃時(shí)增長幅度較大,在0.177%~26.270%之間,其中在-25 ℃時(shí),北冰紅REC大于50%,此時(shí)為該品種抗寒能力敏感期。
低溫敏感種質(zhì)的REC呈現(xiàn)慢-快-慢的增長趨勢。在4~-15 ℃處理時(shí),增幅在1.460%~12.486%之間,其中白艮地REC增長幅度最大。在-15~-25 ℃處理時(shí),REC呈快速增長趨勢,其中在-25 ℃處理時(shí),品麗珠、白艮地、酒白的REC大于70%,細(xì)胞膜系統(tǒng)功能受損嚴(yán)重,導(dǎo)致電解質(zhì)大量外滲;而長相思在此溫度下REC為90.013%,細(xì)胞膜已完全破裂,失去滲透調(diào)節(jié)功能。在-25~-35 ℃處理時(shí),除捏布蓋外,其他品種REC均在70%以上,各品種枝條REC的增高趨于平緩。
2.4 低溫處理對不同葡萄枝條生理生化指標(biāo)的影響
2.4.1 過氧化物酶活性 由圖3可知,隨著低溫脅迫的加劇,高度抗寒種質(zhì)枝條POD活性呈先升后降的趨勢,在4~-15 ℃處理時(shí),呈現(xiàn)緩慢升高趨勢;在-15~-20 ℃處理時(shí),12-5-6、12-16-95、12-10-60和北冰紅枝條POD活性快速升高,在-20 ℃時(shí)達(dá)到最大值,分別為0.684、0.624、0.587和0.636 ng·g-1,較對照升高24.720%、24.347%、24.897%和16.963%;其后隨著低溫脅迫加劇,POD活性呈現(xiàn)下降趨勢,而北紅和北玫POD活性在-25 ℃達(dá)到高峰,分別為0.789和0.649 ng·g-1,較對照升高了36.620%和28.827%。
低溫敏感種質(zhì)枝條POD活性呈下降趨勢,品麗珠、白艮地、長相思和捏布蓋枝條POD活性在4~
-15 ℃下降較快,其后趨于平緩;而寶石解百納和酒白枝條POD活性在4~-10 ℃處理下迅速下降,降幅最大,分別達(dá)到58.718%和40.784%。
2.4.2 脯氨酸含量 由圖4可知,隨著處理溫度的降低,12個(gè)葡萄品種枝條的Pro含量(w,后同)呈現(xiàn)先升后降的趨勢,但峰值存在差異。高度抗寒種質(zhì)北紅在-20~-25 ℃和-25~-30 ℃增幅最大,分別達(dá)到43.164%和43.661%,在-30 ℃達(dá)到最大值,為64.895 ng·g-1,表明該溫度對北紅枝條的脅迫程度較大,枝條為維持細(xì)胞滲透平衡,從而加快了Pro的積累;其他品種均在-15~-25 ℃增幅較大,在-25 ℃達(dá)到高峰,其后Pro含量下降并趨于平緩。低溫敏感種質(zhì)枝條Pro含量在4~-10 ℃增幅最大,其范圍在28.551~74.057 ng·g-1之間。品麗珠、白艮地和長相思枝條Pro含量在-15 ℃達(dá)到最大值后開始降低,而捏布蓋、酒白和寶石解百納枝條Pro含量在-10 ℃達(dá)到最高,抗寒能力相對較低。
2.4.3 可溶性糖含量 SS作為滲透調(diào)節(jié)物質(zhì),可增加細(xì)胞液濃度,提高滲透壓,從而使組織細(xì)胞免受冰凍傷害。隨著低溫脅迫的加劇,12份葡萄種質(zhì)枝條SS含量呈增加趨勢(圖5)。高度抗寒種質(zhì)枝條SS含量在-20~-30 ℃快速增加,較對照增加65.172%~110.122%,在-30~-35 ℃時(shí)其含量仍處于上升趨勢,說明細(xì)胞仍在合成糖類物質(zhì),增加胞液濃度。低溫敏感種質(zhì)枝條SS含量在4~-15 ℃增加幅度較大,說明其對低溫更為敏感,通過提高滲透壓以抵抗低溫。其中品麗珠枝條SS含量在-10~-15 ℃時(shí)達(dá)到最高,較對照增加89.302%;白艮地和長相思枝條SS含量在4~-10 ℃增幅最高,分別較對照增加了96.380%和98.738%,寶石解百納枝條SS含量增幅較小,較對照增加了65.755%。此結(jié)果與LT50結(jié)果一致。
2.4.4 丙二醛含量 低溫處理對不同葡萄枝條MDA含量的影響見圖6。在不同低溫脅迫條件下,12個(gè)葡萄品種枝條的MDA含量均高于對照。高度抗寒種質(zhì)呈現(xiàn)上升趨勢,在不同低溫處理下增長幅度相近,在4~-15 ℃處理時(shí)枝條MDA含量均較低且穩(wěn)定,變化量最小,說明其細(xì)胞內(nèi)抗氧化酶活性較高,可抑制自由基對膜脂的傷害,細(xì)胞膜受傷害最小,抗寒性強(qiáng)。在-15~-35 ℃處理時(shí),枝條MDA含量隨溫度的降低,增長幅度較大。低溫敏感種質(zhì)枝條MDA含量呈現(xiàn)先升后降的趨勢,品麗珠、白艮地和長相思枝條MDA含量(b)在-20 ℃時(shí)達(dá)到最高,分別為8.952、8.872和8.451 μmol·g-1,表明達(dá)到此溫度時(shí),枝條細(xì)胞膜脂過氧化程度高,受凍害嚴(yán)重;捏布蓋、酒白和寶石解百納枝條MDA含量在-15 ℃時(shí)達(dá)到最高,在-10 ℃時(shí)較對照增幅最大,分別為58.739%、64.850%和75.185%。
3 討 論
3.1 釀酒葡萄種質(zhì)抗寒性綜合評價(jià)
REC是衡量細(xì)胞內(nèi)不溶性物質(zhì)是否向外擴(kuò)散,也是衡量細(xì)胞質(zhì)膜是否受損的一種生理癥狀[22]。本研究結(jié)果表明,釀酒葡萄枝條REC曲線隨溫度下降呈“S”形上升趨勢;基于REC建立Logistic曲線回歸方程,可準(zhǔn)確計(jì)算出LT50。相關(guān)研究表明,LT50是反映植物抗寒性的重要指標(biāo)之一,已被廣泛應(yīng)用于抗寒性評價(jià)及相關(guān)研究[23]。張倩等[24]對5個(gè)葡萄種群的半致死溫度與抗寒性的研究表明,不同葡萄種群抗寒性差異很大,其抗寒性強(qiáng)弱排序依次為:美洲種>山歐雜種>法美雜種>歐美雜種>歐亞種。逯愷凡等[25]在北京地區(qū)通過調(diào)查136份葡萄種質(zhì)的自然越冬情況,發(fā)現(xiàn)山葡萄及雜種的自然越冬能力最強(qiáng),歐美雜種次之,歐亞種最差。本研究中山歐雜種葡萄品種的LT50為-15.054~-29.153 ℃,歐亞種葡萄品種的LT50為-8.550~-21.003 ℃,表明山歐雜種>歐亞種。
植物的生理過程受多種因素影響,采用隸屬函數(shù)法對多個(gè)指標(biāo)進(jìn)行綜合評價(jià),可以克服只利用少數(shù)指標(biāo)進(jìn)行評價(jià)的局限性,以揭示釀酒葡萄種質(zhì)間對低溫響應(yīng)的實(shí)質(zhì),從而提高抗寒性鑒定的準(zhǔn)確性[26-27]。在本研究中,測定不同低溫梯度釀酒葡萄種質(zhì)的REC、LT50、POD活性,以及Pro、SS和MDA含量,利用隸屬函數(shù)法綜合評價(jià)抗寒性,得到了抗寒性排序;同時(shí)利用聚類分析將75份釀酒葡萄種質(zhì)劃分為高度抗寒性(Ⅰ)、抗寒性(Ⅱ)、中度抗寒性(Ⅲ)和低溫敏感性(Ⅳ)4個(gè)等級,并且得出抗寒性較好的歐亞種,與沈甜等[28]和陳勇等[29]報(bào)道的歐亞種抗寒性結(jié)果基本一致。
3.2 高度抗寒種質(zhì)和低溫敏感種質(zhì)抗寒生理指標(biāo)分析
根據(jù)隸屬函數(shù)法和聚類分析法篩選出6個(gè)高度抗寒種質(zhì)和6個(gè)低溫敏感性種質(zhì)進(jìn)行REC、POD活性,以及Pro、SS和MDA含量的進(jìn)一步分析,以此揭示葡萄枝條對低溫脅迫做出的響應(yīng)。在低溫脅迫下,植株細(xì)胞膜透性增加,從而引起了大量的電解質(zhì)滲透,抗寒性強(qiáng)的植株,其膜透性的改變相對較小[30]。本研究中,高度抗寒性種質(zhì)和低溫敏感性種質(zhì)枝條REC隨溫度的降低而呈現(xiàn)上升趨勢,其變化幅度有所差異;高度抗寒性種質(zhì)總體增幅相較于低溫敏感性種質(zhì)較緩,在-20~-35 ℃增幅較大達(dá)到最大值,表明在該溫度期間枝條受傷害程度最大;低溫敏感性種質(zhì)隨著溫度降低增幅較大,受傷害程度大,抗寒性較差。
POD是植物抗氧化酶系統(tǒng)的關(guān)鍵酶類,能高效地分解細(xì)胞中過剩的自由基,POD活性越高,抵御逆境的能力越強(qiáng)[31]。本研究中高度抗寒性種質(zhì)POD活性呈現(xiàn)先升后降的趨勢,這是由于枝條在低溫初始階段,枝條會啟動自我保護(hù)反應(yīng),以此減緩受損程度和速率,使POD活性增強(qiáng);然而,隨著低溫脅迫的加劇,植物體內(nèi)大量自由基積累,超過了其自身防御體系統(tǒng)的清除能力范圍,導(dǎo)致保護(hù)性酶系統(tǒng)遭到破壞,最終使POD活性急劇下降。低溫敏感性種質(zhì)由于抵御低溫的能力較弱,呈現(xiàn)出持續(xù)下降趨勢,這一研究結(jié)果與施明等[32]、楊豫等[14]的結(jié)果一致。
SS和Pro對調(diào)節(jié)植物細(xì)胞中滲透壓具有重要影響,低溫脅迫下可以通過提高SS含量來提高滲透勢,從而避免細(xì)胞的過度脫水,降低原生質(zhì)體的凍結(jié)溫度[33]。已有研究表明,Pro含量越高,抗寒性越強(qiáng),但當(dāng)超過植物自身滲透調(diào)節(jié)能力極限時(shí),植物的滲透調(diào)節(jié)就會失效[34]。植物中SS含量較高的品種通常表現(xiàn)出更強(qiáng)的抗寒性,并且其峰值出現(xiàn)也較晚[35]。本研究表明,隨著低溫脅迫加劇,高度抗寒性種質(zhì)SS含量呈先慢后快的上升趨勢,在-20~-30 ℃增幅最大,而低溫敏感性種質(zhì)呈先快后慢的上升趨勢,在4~-10 ℃增幅最大。這一結(jié)果表明,低溫處理下,SS一方面對釀酒葡萄種質(zhì)產(chǎn)生了明顯的滲透調(diào)控效應(yīng),另一方面通過為還原糖的氧化分解提供能量,進(jìn)而促進(jìn)了其細(xì)胞內(nèi)含量的增加。高度抗寒性種質(zhì)和低溫敏感性種質(zhì)枝條Pro含量隨溫度的降低而呈現(xiàn)先上升后下降趨勢,表明在低溫脅迫條件下,Pro參與提高細(xì)胞液的濃度,同時(shí)降低細(xì)胞冰點(diǎn),從而增強(qiáng)抗寒性。-25 ℃處理下,高度抗寒性種質(zhì)Pro含量較高,降幅小,表現(xiàn)出較強(qiáng)抗寒性;而低溫敏感性種質(zhì)Pro含量均下降,表明超過自身滲透調(diào)節(jié)極限。
MDA是逆境脅迫下細(xì)胞膜中多不飽和脂肪酸分解的產(chǎn)物,其含量越高,植物受到傷害的程度越嚴(yán)重[36]。在本研究中,隨著脅迫溫度降低,釀酒葡萄種質(zhì)枝條膜脂過氧化作用加劇,細(xì)胞內(nèi)MDA含量逐漸上升,表明低溫脅迫使得高度抗寒性種質(zhì)和低溫敏感性種質(zhì)的細(xì)胞膜都受到了不同程度的氧化損傷;其中高度抗寒性種質(zhì)在4~-20 ℃枝條MDA含量變幅較小,受膜脂過氧化作用損傷較輕,而在-20~-30 ℃處理時(shí)變幅最大,細(xì)胞膜脂質(zhì)過氧化程度的加劇。低溫敏感性種質(zhì)在-20 ℃時(shí)均呈下降趨勢,由此推測-35 ℃低溫未達(dá)到高度抗寒性種質(zhì)抵御外界低溫的最低限度,因此MDA含量未出現(xiàn)下降趨勢。本研究中通過測定不同低溫處理下釀酒葡萄1年生枝條的生理生化指標(biāo),以評價(jià)釀酒葡萄的抗寒性,鑒于植物的抗寒性受多種因素影響,下一步計(jì)劃連續(xù)多年測定生理生化指標(biāo),并進(jìn)行田間觀測一致性驗(yàn)證,從而為釀酒葡萄抗寒性研究提供理論依據(jù)。
4 結(jié) 論
筆者測定75份釀酒葡萄種質(zhì)在不同低溫脅迫下REC、POD活性,以及Pro、SS和MDA含量5個(gè)指標(biāo),結(jié)合Logistic方程計(jì)算出LT50。并利用隸屬函數(shù)法與聚類分析法對75份釀酒葡萄種質(zhì)抗寒性進(jìn)行綜合評價(jià),以此得出山歐雜種>歐亞種葡萄,并將75份釀酒葡萄種質(zhì)資源抗寒性分為4個(gè)等級,即高度抗寒性、抗寒性、中度抗寒性和低溫敏感性種質(zhì)。同時(shí)篩選出高度抗寒性種質(zhì)和低溫敏感性種質(zhì),高度抗寒性種質(zhì)抗寒能力強(qiáng)弱順序依次為北紅gt;12-5-6>12-16-95>12-10-60>北玫>北冰紅,低溫敏感性種質(zhì)抗寒能力強(qiáng)弱順序依次為品麗珠>白艮地>長相思>捏布蓋>酒白>寶石解百納。
參考文獻(xiàn) References:
[1] 左倩倩,鄭婷,紀(jì)薇,房經(jīng)貴. 中國地方葡萄品種分布及收集利用現(xiàn)狀[J]. 中外葡萄與葡萄酒,2019(5):76-80.
ZUO Qianqian,ZHENG Ting,JI Wei,F(xiàn)ANG Jinggui. The present situation of distribution and collection and utilization of grape varieties in China[J]. Sino-Overseas Grapevine amp; Wine,2019(5):76-80.
[2] 趙曉麗,葉偉,張晶晶,李巖. 基于SWOT分析的新疆葡萄酒文化旅游發(fā)展研究[J]. 農(nóng)村經(jīng)濟(jì)與科技,2024,35(1):109-111.
ZHAO Xiaoli,YE Wei,ZHANG Jingjing,LI Yan. Based on SWOT analysis research on the development of wine culture tourism in Xinjiang[J]. Rural Economy and Science-Technology,2024,35(1):109-111.
[3] 吳鐸思,王薇,杜林峰. 小葡萄釀出大產(chǎn)業(yè)[N]. 工人日報(bào),2023-05-23(7).
WU Duosi,WANG Wei,DU Linfeng. Small grapes make big industries[N]. Workers' Daily,2023-05-23(7).
[4] 謝發(fā)兵. 瑪納斯縣葡萄酒產(chǎn)業(yè)發(fā)展的思考[J]. 新疆林業(yè),2023(5):32-33.
XIE Fabing. Reflections on the development of the wine industry in Manas County[J]. Forestry of Xinjiang,2023(5):32-33.
[5] 師瓊. 新疆釀酒葡萄基地建設(shè)現(xiàn)狀與發(fā)展建議[J]. 新疆林業(yè),2019(5):23-26.
SHI Qiong. The current situation and development suggestions of the construction of wine grape base in Xinjiang[J]. Forestry of Xinjiang,2019(5):23-26.
[6] GU B,ZHANG B,DING L,LI P Y,SHEN L,ZHANG J X. Physiological change and transcriptome analysis of Chinese wild Vitis amurensis and Vitis vinifera in response to cold stress[J]. Plant Molecular Biology Reporter,2020,38(3):478-490.
[7] WANG Z L,WANG Y,WU D,HUI M,HAN X,XUE T T,YAO F,GAO F F,CAO X,LI H,WANG H. Identification and regionalization of cold resistance of wine grape germplasms (V. vinifera)[J]. Agriculture,2021,11(11):1117.
[8] 宋潤剛. 釀酒葡萄新品種‘北冰紅’[J]. 北方果樹,2008(5):68.
SONG Rungang. A new ice-red brewing grape cultivar ‘Beibinghong’[J]. Northern Fruits,2008(5):68.
[9] 范培格,李紹華. 釀酒葡萄新品種北馨[J]. 中國果業(yè)信息,2015,32(3):65.
FAN Peige,LI Shaohua. A new ice-red brewing grape cultivar ‘Beixin’[J]. China Fruit News,2015,32(3):65.
[10] 林洪. 優(yōu)質(zhì)抗寒葡萄新品種‘凌豐紅’[J]. 北方果樹,2022(1):41.
LIN Hong. A new high-quality cold-resistant grape cultivar ‘Lingfenghong’[J]. Northern Fruits,2022(1):41.
[11] WANG Z L,WU D,HUI M,WANG Y,HAN X,YAO F,CAO X,LI Y H,LI H,WANG H. Screening of cold hardiness-related indexes and establishment of a comprehensive evaluation method for grapevines (V. vinifera)[J]. Frontiers in Plant Science,2022,13:1014330.
[12] 曹建東,陳佰鴻,王利軍,毛娟,趙鑫. 葡萄抗寒性生理指標(biāo)篩選及其評價(jià)[J]. 西北植物學(xué)報(bào),2010,30(11):2232-2239.
CAO Jiandong,CHEN Baihong,WANG Lijun,MAO Juan,ZHAO Xin. Cold resistance indexes identification and comprehensive evaluation of grape varieties[J]. Acta Botanica Boreali-Occidentalia Sinica,2010,30(11):2232-2239.
[13] 郭艷蘭,牟德生,趙連鑫,王鑫,馬宗桓,張兆銘,張利年. 六個(gè)葡萄砧木品種(系)的抗寒性評價(jià)[J]. 中外葡萄與葡萄酒,2022(3):38-43.
GUO Yanlan,MU Desheng,ZHAO Lianxin,WANG Xin,MA Zonghuan,ZHANG Zhaoming,ZHANG Linian. Analysis of cold resistance of six wine grape rootstock varieties[J]. Sino-Overseas Grapevine amp; Wine,2022(3):38-43.
[14] 楊豫,張曉煜,陳仁偉,丁琦,馮蕊,李芳紅,范錦龍. 賀蘭山東麓4個(gè)釀酒葡萄品種枝條抗寒性鑒定[J]. 干旱區(qū)資源與環(huán)境,2021,35(3):183-189.
YANG Yu,ZHANG Xiaoyu,CHEN Renwei,DING Qi,F(xiàn)ENG Rui,LI Fanghong,F(xiàn)AN Jinlong. Evaluation on cold resistance of four wine grape varieties at the eastern foothills of Helan Mountain[J]. Journal of Arid Land Resources and Environment,2021,35(3):183-189.
[15] 賈金輝,徐凌,劉慧純,蔡智軍,田曉玲,張海濤. 8個(gè)釀酒葡萄品種的抗寒性比較[J]. 中國果樹,2021(7):39-44.
JIA Jinhui,XU Ling,LIU Huichun,CAI Zhijun,TIAN Xiaoling,ZHANG Haitao. Comparison of cold resistance of eight wine grape varieties[J]. China Fruits,2021(7):39-44.
[16] 丁思悅,王雨婷,趙佳琪,王文,惠竹梅. 葡萄種質(zhì)抗寒性鑒定及綜合評價(jià)[J]. 西北農(nóng)林科技大學(xué)學(xué)報(bào)(自然科學(xué)版),2024,52(6):106-120.
DING Siyue,WANG Yuting,ZHAO Jiaqi,WANG Wen,XI Zhumei. Identification and comprehensive evaluation of cold resistance among grape germplasm[J]. Journal of Northwest A amp; F University (Natural Science Edition),2024,52(6):106-120.
[17] 任靜,郝燕,白耀棟,朱燕芳,張思成. 河西走廊‘貴人香’7個(gè)葡萄砧穗組合抗寒性的綜合評價(jià)[J]. 甘肅農(nóng)業(yè)大學(xué)學(xué)報(bào),2019,54(4):60-68.
REN Jing,HAO Yan,BAI Yaodong,ZHU Yanfang,ZHANG Sicheng. Comprehensive evaluation on cold resistance of seven grape rootstock-scion combinations of Italian Riesling in Hexi Corridor[J]. Journal of Gansu Agricultural University,2019,54(4):60-68.
[18] 羅堯幸,郭榮榮,李雪雪,劉榕晨,王躍進(jìn),紀(jì)薇. 基于隸屬函數(shù)法評價(jià)7個(gè)鮮食葡萄品種的抗寒性[J]. 貴州農(nóng)業(yè)科學(xué),2018,46(6):38-44.
LUO Yaoxing,GUO Rongrong,LI Xuexue,LIU Rongchen,WANG Yuejin,JI Wei. Cold resistance of seven table grape varieties evaluated by subordinate function method[J]. Guizhou Agricultural Sciences,2018,46(6):38-44.
[19] 李合生. 植物生理生化實(shí)驗(yàn)原理和技術(shù)[M]. 北京:高等教育出版社,2000.
LI Hesheng. Principles and techniques of plant physiological biochemical experiment[M]. Beijing:Higher Education Press,2000.
[20] 鄒琦. 植物生理學(xué)實(shí)驗(yàn)指導(dǎo)[M]. 北京:中國農(nóng)業(yè)出版社,2000.
ZOU Qi. Plant physiology lab instruction[M]. Beijing:China Agriculture Press,2000.
[21] LU S J,HE J Q,YI S H,YI L,LI C H. YANG S G,YIN J M. Establishment and application of a comprehensive assessment system for cold resistance in Denphal-group Dendrobium cultivars[J]. European Journal of Horticultural Science,2021(3):86.
[22] CHEN L J,XIANG H Z,MIAO Y,ZHANG L,GUO Z F,ZHAO X H,LIN J W,LI T L. An overview of cold resistance in plants[J]. Journal of Agronomy and Crop Science,2014,200(4):237-245.
[23] 劉興祿,王紅平,孫文泰,董鐵,牛軍強(qiáng),馬明. 5個(gè)砧木蘋果枝條的抗寒性評價(jià)[J]. 果樹學(xué)報(bào),2021,38(8):1264-1274.
LIU Xinglu,WANG Hongping,SUN Wentai,DONG Tie,NIU Junqiang,MA Ming. Cold resistance evaluation of the shoots of 5 apple rootstocks[J]. Journal of Fruit Science,2021,38(8):1264-1274.
[24] 張倩,劉崇懷,郭大龍,姜建福,樊秀彩,張穎. 5個(gè)葡萄種群的低溫半致死溫度與其抗寒適應(yīng)性的關(guān)系[J]. 西北農(nóng)林科技大學(xué)學(xué)報(bào)(自然科學(xué)版),2013,41(5):149-154.
ZHANG Qian,LIU Chonghuai,GUO Dalong,JIANG Jianfu,F(xiàn)AN Xiucai,ZHANG Ying. Relationship between LT50 and cold adaptability of five grape varieties[J]. Journal of Northwest A amp; F University (Natural Science Edition),2013,41(5):149-154.
[25] 逯愷凡,方梓莊,盧江,朱磊,張雅麗. 136份葡萄種質(zhì)資源在北京地區(qū)自然越冬情況調(diào)查[J]. 中外葡萄與葡萄酒,2019(6):1-11.
LU Kaifan,F(xiàn)ANG Zizhuang,LU Jiang,ZHU Lei,ZHANG Yali. Investigation of 136 grape germplasms overwintering without burying in Beijing[J]. Sino-Overseas Grapevine amp; Wine,2019(6):1-11.
[26] 王涵雅,李欣,毛娟,馬宗桓,陳佰鴻. 15種1年生鮮食葡萄枝條的抗寒性評價(jià)[J]. 甘肅農(nóng)業(yè)大學(xué)學(xué)報(bào),2023,58(5):95-105.
WANG Hanya,LI Xin,MAO Juan,MA Zonghuan,CHEN Baihong. Evaluation on cold resistance of annual branches of 15 table-grape varieties[J]. Journal of Gansu Agricultural University,2023,58(5):95-105.
[27] 張曉婷,莊赟,董嘉輝,周碧燕. 荔枝種質(zhì)資源抗寒性綜合評價(jià)[J]. 果樹學(xué)報(bào),2024,41(3):403-425.
ZHANG Xiaoting,ZHUANG Yun,DONG Jiahui,ZHOU Biyan. Comprehensive evaluation of cold tolerance in Litchi germplasm resources[J]. Journal of Fruit Science,2024,41(3):403-425.
[28] 沈甜,牛銳敏,黃小晶,許澤華,陳衛(wèi)平. 釀酒葡萄抗寒性評價(jià)及分類[J]. 中外葡萄與葡萄酒,2021(1):1-7.
SHEN Tian,NIU Ruimin,HUANG Xiaojing,XU Zehua,CHEN Weiping. Evaluation and classification of cold resistance of wine grapes[J]. Sino-Overseas Grapevine amp; Wine,2021(1):1-7.
[29] 陳勇,董新平,史應(yīng)武. 新天資源圃葡萄葉片抗寒性調(diào)查[J]. 中外葡萄與葡萄酒,2004(4):29-30.
CHEN Yong,DONG Xinping,SHI Yingwu. Investigation of cold resistance of grape leaves in Xintian Resource Garden[J]. Sino-overseas Grapevine amp; Wine,2004(4):29-30.
[30] QI W L,WANG F,MA L,QI Z,LIU S Q,CHEN C,WU J Y,WANG P,YANG C R,WU Y,SUN W C. Physiological and biochemical mechanisms and cytology of cold tolerance in Brassica napus[J]. Frontiers in Plant Science,2020,11:1241.
[31] 劉瑞琳,苗陽,張?jiān)瞥?,陳建華,董煜天,董勝君. 引種野杏無性系及家系的抗寒性[J]. 經(jīng)濟(jì)林研究,2023,41(2):137-149.
LIU Ruilin,MIAO Yang,ZHANG Yuncheng,CHEN Jianhua,DONG Yutian,DONG Shengjun. Cold resistance of introduced Prunus armeniaca var. ansu clones and families[J]. Non-Wood Forest Research,2023,41(2):137-149.
[32] 施明,謝軍,徐美隆,王佳. 賀蘭山東麓8個(gè)釀酒葡萄品種抗寒性比較[J]. 江蘇農(nóng)業(yè)科學(xué),2017,45(5):137-140.
SHI Ming,XIE Jun,XU Meilong,WANG Jia. Comparison of cold resistance of eight wine-making grape varieties at the eastern foot of Helan Mountain[J]. Jiangsu Agricultural Sciences,2017,45(5):137-140.
[33] KEUNEN E,PESHEV D,VANGRONSVELD J,VAN DEN ENDE W,CUYPERS A. Plant sugars are crucial players in the oxidative challenge during abiotic stress:extending the traditional concept[J]. Plant,Cell amp; Environment,2013,36(7):1242-1255.
[34] 陳衛(wèi)東,張玉霞,夏全超,滕澤,孫昊,張慶昕,杜曉艷. 冷凍脅迫下磷肥對紫花苜蓿根頸含水量及氨基酸代謝的影響[J]. 中國草地學(xué)報(bào),2022,44(1):58-63.
CHEN Weidong,ZHANG Yuxia,XIA Quanchao,TENG Ze,SUN Hao,ZHANG Qingxin,DU Xiaoyan. Effects of phosphate fertilizer on root crown water content and amino acid metabolism of alfalfa under freezing stress[J]. Chinese Journal of Grassland,2022,44(1):58-63.
[35] 金龍飛,楊蒙迪,周麗霞,馮美利,曹紅星. 9個(gè)油棕品種抗寒性的生理生化鑒定[J]. 江蘇農(nóng)業(yè)科學(xué),2021,49(8):132-136.
JIN Longfei,YANG Mengdi,ZHOU Lixia,F(xiàn)ENG Meili,CAO Hongxing. Physiological and biochemical identification of cold resistance of 9 oil palm varieties[J]. Jiangsu Agricultural Sciences,2021,49(8):132-136.
[36] 包俊宏,包敖民,楊榮,李今普,王寶俠,鄭東生,何炎紅. 寒地蘋果龍豐、岳艷及其兩個(gè)雜交優(yōu)系抗寒性綜合評價(jià)[J]. 果樹學(xué)報(bào),2024,41(2):241-251.
BAO Junhong,BAO Aomin,YANG Rong,LI Jinpu,WANG Baoxia,ZHENG Dongsheng,HE Yanhong. Comprehensive evaluation of cold resistance of apple Longfeng,Yueyan and their two hybrid strains in cold region[J]. Journal of Fruit Science,2024,41(2):241-251.