• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    中國(guó)設(shè)施果樹(shù)栽培裝備研究現(xiàn)狀與展望

    2024-12-31 00:00:00王文明王志強(qiáng)孫永利何麗虹王海波
    果樹(shù)學(xué)報(bào) 2024年12期
    關(guān)鍵詞:裝備栽培

    摘" " 要:果樹(shù)設(shè)施栽培是通過(guò)人為因素改變果樹(shù)生產(chǎn)的外部環(huán)境,從而改變果樹(shù)生產(chǎn)周期,使果品提前或推遲成熟,提高果樹(shù)的生產(chǎn)效益,已成為中國(guó)果業(yè)發(fā)展的新業(yè)態(tài)。重點(diǎn)闡述分析了果樹(shù)設(shè)施栽培中的建筑設(shè)施、監(jiān)測(cè)系統(tǒng)、環(huán)境調(diào)控設(shè)備、生產(chǎn)設(shè)備與機(jī)具等關(guān)鍵裝備的研究應(yīng)用現(xiàn)狀,總結(jié)中國(guó)設(shè)施果樹(shù)栽培裝備研究應(yīng)用中存在的問(wèn)題有:設(shè)施結(jié)構(gòu)簡(jiǎn)陋,缺乏專(zhuān)用覆蓋材料,環(huán)境調(diào)控能力弱,農(nóng)機(jī)生產(chǎn)裝備落后、智能化不足等。指出了中國(guó)設(shè)施果樹(shù)栽培裝備未來(lái)的發(fā)展方向?yàn)椋航ㄖO(shè)施智能化、生態(tài)化,設(shè)施環(huán)境調(diào)控智能化,農(nóng)機(jī)農(nóng)藝高度融合。

    關(guān)鍵詞:設(shè)施果樹(shù);栽培;裝備;環(huán)境控制;中國(guó)

    中圖分類(lèi)號(hào):S66 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1009-9980(2024)12-2567-15

    Research status and prospects of equipments for protected fruit tree cultivation in China

    WANG Wenming1, WANG Zhiqiang2#, SUN Yongli3, HE lihong4*, WANG Haibo2*

    (1Taizhou Vocational College of Science and Technology, Taizhou 318020, Zhejiang, China; 2Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng 125100, Liaoning, China; 3Northeast Agricultural University, Harbin 150030, Heilongjiang, China; 4China Agricultural Machinery Testing Centre, Ministry of Agriculture and Rural Affairs, Beijing 100122, China)

    Abstract: The cultivation of fruit trees in facilities is a new format in the development of China’s fruit industry, which changes the external environment of fruit production through human factors, thus changing the production cycle of fruit crops, making fruit ripening ahead of or behind schedule, and improving the production efficiency of fruit trees. Compared with open-air cultivation and field production, the protected fruit tree cultivation has the outstanding advantages of being unaffected by climatic conditions, high degree of automation, high utilization rate of space per unit area, and continuous production throughout the year. Facility fruit tree cultivation equipment is a key element for realizing the facility cultivation of fruit trees. In recent years, with the continuous progress of science and technology and the deepening of agricultural modernization, significant achievements have been made in the research on and application of facility fruit tree cultivation equipments in China. This article focuses on analyzing the current research and application status of key equipments in fruit tree facility cultivation, including architectural facilities, monitoring systems, environmental control equipment, production equipment and machinery. The issues identified in the research and application of fruit tree facility cultivation equipment in China are summarized as follows: (1) Simplistic facility structures: Fruit tree facility cultivation requires specialized facilities such as greenhouses, large sheds, and irrigation and fertilization systems. However, market supply is limited, and orchards often rely on general agricultural facilities. These facilities are inadequate for meeting the specific needs of fruit trees, leading to poor growth and low yields. Due to economic and technical constraints, fruit growers tend to opt for low-cost and structurally simple large sheds or greenhouses. While these can basically meet growth requirements, they lack insulation, ventilation and shading functions, resulting in significant environmental fluctuations and cramped spaces that are unfavorable for mechanized operations, thereby limiting the production efficiency of facility fruit trees. (2) Lack of specialized covering materials: Fruit tree facility cultivation necessitates specialized covering materials and suitable substrates, but the market offers limited specialized materials. Orchards frequently use ordinary agricultural materials as substitutes, yielding unsatisfactory results. These alternative materials often have poor light transmission and weak weather resistance, and are prone to damage and aging, leading to insufficient illumination and temperature fluctuations. Simultaneously, unsuitable substrates cause poor root development and frequent pest and disease outbreaks in fruit trees. These issues collectively affect the effectiveness of facility cultivation and fruit quality, highlighting the urgency of research and application of specialized materials. (3) Weak environmental control capabilities: Facility fruit tree cultivation requires precise control of environmental factors such as temperature, humidity and lighting to meet the needs of fruit trees at different growth stages. However, due to simplistic facility structures, many orchards lack corresponding environmental control equipment, such as temperature control systems, humidity control systems and light supplementation systems. This results in ineffective environmental control within the facilities, failing to meet the optimal conditions for fruit tree growth, which subsequently affects fruit tree yield and quality. (4) Outdated agricultural machinery and equipment with insufficient intelligence: Facility fruit tree cultivation requires specific agricultural machinery and equipment to adapt to its production environment and operational needs, such as miniaturized agricultural machinery to fit the cramped spatial layout within facilities. However, most fruit tree facilities still use general agricultural machinery and equipment, whose operational accuracy and efficiency fail to meet the requirements of facility fruit tree cultivation. Additionally, the level of automation and intelligence of agricultural machinery and tools is low, with many requiring manual assistance, preventing automated operations and precise control. This increases the production costs of facility fruit tree cultivation and limits production efficiency. The future development directions for fruit tree facility cultivation equipment in China are pointed out as follows: (1) Future architectural facilities will not only provide basic functions like insulation and shading but also integrate smart materials and Internet of Things technology to achieve automated adjustment and ecological cycling. Simultaneously, an ecological cycling system will be constructed within the facilities, such as rainwater collection and reuse, and natural degradation of waste through the synergistic effects between plants and microorganisms. This development direction aims to enhance the adaptability and ecological sustainability of the facilities. (2) Monitoring and control devices will be upgraded to comprehensive intelligent systems that perceive the growth status of fruit trees through the addition of biosensors. The data analysis terminal will employ deep learning and pattern recognition technologies to analyze data in real-time and provide precise guidance for environmental control. Combined with big data and AI, the system can automatically formulate management plans, such as irrigation, fertilization, and pest and disease control, thereby improving the management level and production efficiency of facility fruit tree cultivation. (3) Water and fertilizer integration equipment, combined with high-precision sensors and control systems, will monitor fruit tree growth and soil conditions in real-time, precisely control irrigation and fertilization, and achieve personalized customized management. This will enhance water and fertilizer utilization efficiency, reduce waste, and improve fruit tree quality and yield. Simultaneously, facility agricultural machinery and equipment will incorporate advanced navigation, recognition and communication technologies to achieve automated and intelligent operations, like precise pruning and efficient harvesting. Multiple agricultural machinery and equipment will also share information in real-time and work in coordination to complete complex cultivation tasks. This trend will significantly enhance the efficiency and quality of facility fruit tree cultivation, promoting higher-level development of facility agriculture.

    Key words: Facility fruit tree; Cultivation; Equipment; Environmental control; China

    設(shè)施栽培,又稱設(shè)施園藝或保護(hù)地栽培,是一種在露地不適于園藝作物生長(zhǎng)的季節(jié)(如寒冷或炎熱季節(jié))或地區(qū),利用特定設(shè)施(如溫室、塑料大棚、小拱棚、養(yǎng)殖棚等)人為地創(chuàng)造適宜園藝作物生長(zhǎng)發(fā)育的小氣候環(huán)境的農(nóng)業(yè)生產(chǎn)方式[1-2]。設(shè)施果樹(shù)栽培,作為現(xiàn)代農(nóng)業(yè)的重要組成部分,對(duì)提高果樹(shù)產(chǎn)量、改善果實(shí)品質(zhì)、滿足市場(chǎng)需求以及推動(dòng)農(nóng)業(yè)產(chǎn)業(yè)結(jié)構(gòu)調(diào)整具有重要的意義[3-5]。栽培裝備是設(shè)施果樹(shù)栽培的關(guān)鍵要素,近年來(lái),隨著科技的不斷進(jìn)步和農(nóng)業(yè)現(xiàn)代化的深入推進(jìn),中國(guó)設(shè)施果樹(shù)栽培裝備的研究與應(yīng)用取得了顯著成果,實(shí)現(xiàn)了從簡(jiǎn)單到復(fù)雜、從單一到多元的轉(zhuǎn)變,涵蓋了溫室大棚、水肥一體化設(shè)備、環(huán)境調(diào)控設(shè)備與農(nóng)機(jī)作業(yè)機(jī)具等多個(gè)方面[6-7]。這些裝備的應(yīng)用不僅改善了果樹(shù)生長(zhǎng)的環(huán)境條件,還實(shí)現(xiàn)了對(duì)果樹(shù)生長(zhǎng)過(guò)程的精準(zhǔn)控制,有效提升了果樹(shù)的產(chǎn)量和品質(zhì)。筆者旨在系統(tǒng)梳理中國(guó)設(shè)施果樹(shù)栽培裝備的研究應(yīng)用現(xiàn)狀,分析其存在的主要問(wèn)題,并探討未來(lái)的發(fā)展趨勢(shì),以期為全面提高中國(guó)設(shè)施果樹(shù)栽培裝備研究應(yīng)用水平提供有益參考。

    1 中國(guó)設(shè)施果樹(shù)栽培裝備研究現(xiàn)狀

    如圖1所示,中國(guó)設(shè)施果樹(shù)栽培裝備按不同功能可由建筑設(shè)施、測(cè)控裝置、環(huán)境調(diào)控設(shè)備和生產(chǎn)設(shè)備與機(jī)具組成[8-10]。建筑設(shè)施是設(shè)施果樹(shù)栽培的關(guān)鍵裝備,其通常由不同結(jié)構(gòu)的大棚、溫室等組成,可以提供保溫、遮陽(yáng)、通風(fēng)、防蟲(chóng)等功能,可幫助果樹(shù)在寒冷的冬季和早春之間生長(zhǎng),保護(hù)果樹(shù)免受惡劣天氣和害蟲(chóng)的侵害。測(cè)控裝置包括安裝在設(shè)施內(nèi)的各種傳感器(如溫度、光照度、CO2濃度、土壤含水率傳感器等)和數(shù)據(jù)分析決策終端,傳感器用于實(shí)時(shí)監(jiān)測(cè)果樹(shù)生長(zhǎng)環(huán)境的各項(xiàng)參數(shù),了解果樹(shù)所處環(huán)境的狀態(tài),智能決策終端通過(guò)對(duì)傳感器采集數(shù)據(jù)的分析,形成相關(guān)決策傳遞給設(shè)施內(nèi)的環(huán)境調(diào)控設(shè)備(補(bǔ)光、增溫、加濕、通風(fēng)、氣體調(diào)控等),使得設(shè)施內(nèi)的環(huán)境更適宜果樹(shù)的生長(zhǎng)。生產(chǎn)設(shè)備與機(jī)具由水肥一體化裝備與農(nóng)機(jī)作業(yè)裝備組成,水肥一體化裝備的功能是通過(guò)自動(dòng)化攪拌裝備將水和肥料混合并準(zhǔn)確地送到果樹(shù)的根部,有效地控制果樹(shù)的水分和營(yíng)養(yǎng)供應(yīng),以滿足果樹(shù)的生長(zhǎng)需求,可以根據(jù)果樹(shù)的生長(zhǎng)階段和需求調(diào)整水肥的比例和供應(yīng)量,提高果樹(shù)的產(chǎn)量和質(zhì)量。農(nóng)機(jī)作業(yè)裝備主要包括割草機(jī)、修枝機(jī)、果實(shí)采摘機(jī)等,其主要功能是代替人工進(jìn)行設(shè)施內(nèi)的相關(guān)生產(chǎn)環(huán)節(jié)作業(yè),提高果樹(shù)生產(chǎn)效率和栽培質(zhì)量。

    1.1 建筑設(shè)施

    1.1.1 建筑設(shè)施類(lèi)型與特點(diǎn) 常用的設(shè)施果樹(shù)栽培的建筑設(shè)施主要有日光溫室、塑料大棚和連棟玻璃溫室,其結(jié)構(gòu)特點(diǎn)與材料組成如表1所示。日光溫室是節(jié)能日光溫室的簡(jiǎn)稱,又稱暖棚,由兩側(cè)山墻、維護(hù)后墻體、支撐骨架及覆蓋材料組成[11-12],在中國(guó)北方地區(qū)廣泛應(yīng)用,是一種在室內(nèi)不加熱的溫室,通過(guò)后墻體對(duì)太陽(yáng)能吸收實(shí)現(xiàn)蓄放熱,維持室內(nèi)一定的溫度水平,以滿足作物生長(zhǎng)的需要[13];塑料大棚俗稱冷棚,是一種簡(jiǎn)易實(shí)用的保護(hù)地栽培設(shè)施,利用竹木、鋼材等材料,并覆蓋塑料薄膜,搭成拱形棚,具有建造容易、使用方便、投資較少等優(yōu)點(diǎn),在中國(guó)南方被廣泛應(yīng)用,其有利于果樹(shù)防御自然災(zāi)害,能提早或延遲供應(yīng)鮮果,提高單位面積產(chǎn)量;連棟玻璃溫室是一種以鋼結(jié)構(gòu)為主體,利用玻璃作為覆蓋材料的溫室類(lèi)型,內(nèi)置了采暖、通風(fēng)、灌溉等配套設(shè)備,其采光好、強(qiáng)度高、環(huán)境調(diào)節(jié)能力強(qiáng),在中國(guó)南方經(jīng)濟(jì)發(fā)達(dá)省份已少部分推廣使用,但建造成本較高[14-15]。

    1.1.2 建筑設(shè)施結(jié)構(gòu)研究 在設(shè)施果樹(shù)栽培中,建筑設(shè)施的結(jié)構(gòu)設(shè)計(jì)直接關(guān)系到溫室的穩(wěn)定性、耐久性以及果樹(shù)的生產(chǎn)效率,合理的結(jié)構(gòu)設(shè)計(jì)不僅能有效抵御風(fēng)雪等自然災(zāi)害,還能最大化利用光照資源,為果樹(shù)創(chuàng)造適宜的生長(zhǎng)環(huán)境[16]。中國(guó)農(nóng)業(yè)科學(xué)院果樹(shù)研究所漿果類(lèi)創(chuàng)新團(tuán)隊(duì)設(shè)計(jì)了一種適合國(guó)情的低成本、節(jié)能型日光溫室[17],并在不同地區(qū)進(jìn)行了試驗(yàn)驗(yàn)證,結(jié)果顯示該溫室在保溫、采光及積雪清理方面表現(xiàn)優(yōu)異,對(duì)葡萄等果樹(shù)的生長(zhǎng)質(zhì)量和果實(shí)品質(zhì)有顯著提升。郭利民等[18]設(shè)計(jì)了一種高脊、大跨度、空間寬敞的鋼結(jié)構(gòu)日光溫室,其結(jié)構(gòu)穩(wěn)固性顯著提升,增強(qiáng)了抵抗自然災(zāi)害的能力。陳吉[19]和陸琳等[20]針對(duì)不同地域和氣候條件分別設(shè)計(jì)了果樹(shù)專(zhuān)用大棚和適應(yīng)低緯高原氣候的新型日光溫室。閆冬梅等[21]利用有限元軟件建模分析了不同作物吊掛模式等對(duì)溫室結(jié)構(gòu)內(nèi)力的影響,發(fā)現(xiàn)柱腳鉸接的單管拱架在作物荷載兩點(diǎn)吊掛時(shí)會(huì)出現(xiàn)強(qiáng)烈的局部應(yīng)力集中現(xiàn)象,提出應(yīng)采用前柱腳鉸接、后柱腳固接、后墻立柱為格構(gòu)柱的結(jié)構(gòu)形式,以達(dá)到最小和最大應(yīng)力及最合理的應(yīng)力分布。此外,郄麗娟等[22]設(shè)計(jì)了一種裝配式異質(zhì)復(fù)合墻體日光溫室,使用環(huán)保建材和裝配式鋼骨架,與傳統(tǒng)溫室相比,該溫室墻體熱阻高、傳熱系數(shù)低,且具有更高的放熱效率和升溫速率,室內(nèi)溫度更穩(wěn)定,且結(jié)構(gòu)安全性更好。王蕊等[23]的研究結(jié)果表明,針對(duì)北方土質(zhì)墻體日光溫室,黏土、粉質(zhì)黏土和沙土含水量超26%、16%和14%時(shí)墻體易失穩(wěn),外坡角增至70°加劇風(fēng)險(xiǎn),建議控制含水量,外坡角60°~70°為宜。

    1.1.3 建筑設(shè)施環(huán)境與能耗研究 建筑設(shè)施環(huán)境與能耗的研究是提升設(shè)施果樹(shù)生產(chǎn)效率和實(shí)現(xiàn)綠色發(fā)展的關(guān)鍵,降低能耗、提高能源利用效率,不僅能降低生產(chǎn)成本,還能減輕對(duì)環(huán)境的影響,推動(dòng)設(shè)施果樹(shù)栽培向更加環(huán)保、可持續(xù)的方向發(fā)展[24-26]。趙曉彤等[27]通過(guò)實(shí)時(shí)監(jiān)測(cè)典型日光溫室的環(huán)境因子,分析了溫室的能耗情況,發(fā)現(xiàn)傳熱能耗在冬季夜間占主導(dǎo)地位,其次為冷風(fēng)滲透能量消耗,土壤在日光溫室夜間起到室內(nèi)保溫作用。王超等[28]的研究結(jié)果表明,最冷月和冬至日的日光溫室采暖能耗需求隨緯度升高而增加,冬至日需求量分布不均,關(guān)鍵影響因素為南屋面保溫和換氣次數(shù)。史宇亮等[29]通過(guò)測(cè)試最冷季節(jié)(30 d)溫室內(nèi)氣溫、墻體溫度、室外氣溫及室外太陽(yáng)輻照度等數(shù)據(jù),分析了土墻溫室內(nèi)外溫度分布規(guī)律,結(jié)果表明,墻體表面及淺層溫度隨溫室氣溫周期性變化,深層溫度穩(wěn)定,墻體夜間放熱效率為43%。許紅軍等[30]研究結(jié)果表明,日光溫室墻體可劃分為保溫層、穩(wěn)定層、蓄熱層,各層的厚度與墻體蓄熱材料、保溫材料的熱物性有關(guān),墻體厚度大于30 cm時(shí),溫室內(nèi)溫度波動(dòng)平緩。在溫室結(jié)構(gòu)、保溫性能不變的情況下,溫室蓄熱層厚度及波動(dòng)情況受外界光溫環(huán)境的綜合影響較小。

    1.1.4 建筑設(shè)施覆蓋材料研究 設(shè)施果樹(shù)栽培中,建筑設(shè)施的覆蓋材料選擇多樣,主要包括塑料薄膜(如PVC、PE、PO膜)、玻璃、遮陽(yáng)網(wǎng)、無(wú)紡布、草苫(或草簾)以及水簾等[31-33]。其中,塑料薄膜因其成本低、透光保溫性能優(yōu)良且安裝維護(hù)簡(jiǎn)便,得到廣泛應(yīng)用。玻璃則以其出色的透光隔熱性著稱,但成本相對(duì)較高。遮陽(yáng)網(wǎng)和無(wú)紡布等半透明材料,能夠有效調(diào)節(jié)設(shè)施內(nèi)的光照和溫度,滿足特定栽培需求。草苫和草簾等不透明材料,則主要用于保溫,確保果樹(shù)在寒冷季節(jié)的正常生長(zhǎng)。此外,水簾在夏季用于降溫,以保持設(shè)施內(nèi)的適宜溫度。在選擇這些覆蓋材料時(shí),應(yīng)綜合考慮作物生長(zhǎng)需求、當(dāng)?shù)貧夂驐l件、成本效益以及環(huán)保因素,以實(shí)現(xiàn)最佳栽培效果。王偉等[34]通過(guò)CFD方法對(duì)比發(fā)現(xiàn),雙膜拱棚在夏季能減少高溫積聚,冬季則保持較高平均溫度,特別適合壽光地區(qū)氣候。魏巍等[35]的研究顯示,雙膜日光溫室能顯著提高淺層土壤溫度,且室內(nèi)熱環(huán)境更穩(wěn)定。楊小鋒等[36]則提出了覆蓋PE薄膜較之白色防蟲(chóng)網(wǎng)和露地處理,可提高棚內(nèi)溫度,調(diào)節(jié)設(shè)施溫差和光環(huán)境,防止害蟲(chóng)侵入,顯著改善果實(shí)品質(zhì),提高果實(shí)產(chǎn)品安全性,促進(jìn)杧果植株生長(zhǎng)。楊定偉等[37]和程麗等[38]的研究則分別揭示了裝配式礫石和土模塊溫室的優(yōu)異保溫蓄熱性能,以及雙層薄膜覆蓋和復(fù)合材料后墻體對(duì)保溫性能的提升作用。

    1.2 監(jiān)測(cè)系統(tǒng)

    設(shè)施果樹(shù)栽培通過(guò)監(jiān)測(cè)系統(tǒng)的應(yīng)用,果農(nóng)可更加準(zhǔn)確地掌握果樹(shù)生長(zhǎng)環(huán)境的變化,精確調(diào)節(jié)灌溉和養(yǎng)分供應(yīng),提高果樹(shù)的生長(zhǎng)效率和產(chǎn)量,并減少資源的浪費(fèi)[39],其工作原理如圖2所示。監(jiān)測(cè)系統(tǒng)一般包括光照傳感器、溫濕度傳感器、CO2氣體濃度傳感器、土壤水分養(yǎng)分檢測(cè)裝置等[40-41]。李振東[42]設(shè)計(jì)了涉及物聯(lián)網(wǎng)、ZigBee、ARM,以及4G通信技術(shù)的智能葡萄大棚監(jiān)測(cè)系統(tǒng),通過(guò)信息采集器對(duì)溫室環(huán)境信息數(shù)據(jù)進(jìn)行采集,然后通過(guò)無(wú)線傳感網(wǎng)絡(luò)將數(shù)據(jù)傳遞到協(xié)調(diào)器上,以ARM作為核心處理器替代傳統(tǒng)單片機(jī)進(jìn)行數(shù)據(jù)處理,最后通過(guò)4G網(wǎng)絡(luò)通信技術(shù)將數(shù)據(jù)傳送到云管理,從而實(shí)現(xiàn)管理人員對(duì)葡萄大棚的實(shí)時(shí)監(jiān)測(cè)與控制。陳春玲等[43]基于北方果樹(shù)栽培日光溫室環(huán)境,提出一種基于無(wú)線傳感器的數(shù)據(jù)融合方法,以提高實(shí)時(shí)數(shù)據(jù)精度,通過(guò)格拉布斯判定準(zhǔn)則剔除粗大誤差,再結(jié)合自適應(yīng)加權(quán)平均算法進(jìn)行數(shù)據(jù)融合,試驗(yàn)結(jié)果顯示,該方法能有效提高數(shù)據(jù)精度,為溫室環(huán)境監(jiān)測(cè)和控制提供更精準(zhǔn)的基礎(chǔ)數(shù)據(jù)。孫昌權(quán)等[44]設(shè)計(jì)開(kāi)發(fā)了一種設(shè)施草莓智慧生產(chǎn)管控系統(tǒng),包括生長(zhǎng)環(huán)境信息感知系統(tǒng)和設(shè)施內(nèi)的環(huán)境調(diào)控系統(tǒng)2個(gè)部分,該系統(tǒng)結(jié)合多傳感器數(shù)據(jù)融合算法和專(zhuān)家決策控制系統(tǒng)模型,提高環(huán)境參數(shù)采集的準(zhǔn)確性和真實(shí)性,保證草莓各生長(zhǎng)階段對(duì)生長(zhǎng)環(huán)境和水肥需求的精準(zhǔn)控制。

    1.3 環(huán)境調(diào)控設(shè)備

    環(huán)境調(diào)控設(shè)備包括溫濕度控制裝置(如溫控器、加熱設(shè)備、卷膜器、加濕裝置等)、光照調(diào)控設(shè)備(如光溫室自動(dòng)卷簾機(jī)、LED補(bǔ)光燈等)、CO2發(fā)生裝置和通風(fēng)裝置(風(fēng)道、排風(fēng)設(shè)備)等組成,環(huán)境調(diào)控設(shè)備的應(yīng)用可有效優(yōu)化果樹(shù)的生長(zhǎng)環(huán)境,提高生產(chǎn)效率,提高產(chǎn)量和果品質(zhì)量[45-46]。

    1.3.1 溫濕度控制裝置 在設(shè)施果樹(shù)栽培中,溫濕度控制裝置通過(guò)溫濕度傳感器收集數(shù)據(jù),依據(jù)預(yù)設(shè)范圍自動(dòng)調(diào)節(jié)風(fēng)機(jī)、卷膜器和加濕器等,維持最佳生長(zhǎng)環(huán)境。張明秋[47]采用先進(jìn)的隨機(jī)森林算法,設(shè)計(jì)了人工光源設(shè)施內(nèi)的溫濕度控制系統(tǒng)。該系統(tǒng)通過(guò)多變量解耦內(nèi)??刂品椒ǎ瑢?shí)現(xiàn)了對(duì)溫濕度的精準(zhǔn)控制,試驗(yàn)證明其性能穩(wěn)定且滿足生產(chǎn)需求。李亨[48]通過(guò)對(duì)比多種控制方法,發(fā)現(xiàn)模糊解耦控制在設(shè)施內(nèi)溫濕度調(diào)控方面表現(xiàn)最佳。劉云驥等[49]研發(fā)了日光溫室正壓式濕簾風(fēng)機(jī)降溫系統(tǒng),并優(yōu)化了結(jié)構(gòu)參數(shù),該系統(tǒng)在夏季能顯著降低溫度,提供均勻的溫濕度環(huán)境。宋財(cái)柱等[50]則利用L-M算法的BP神經(jīng)網(wǎng)絡(luò)模型,成功建立了溫室內(nèi)空氣溫濕度的預(yù)測(cè)模型,為溫室內(nèi)的環(huán)境調(diào)控提供了有力支持。陳辛格等[51]針對(duì)中高緯度地區(qū)溫室冬季面臨的問(wèn)題,提出了結(jié)合窄槽式集熱器與固體除濕劑的調(diào)控系統(tǒng),顯著改善了作物生長(zhǎng)環(huán)境。薛曉萍等[52]研究結(jié)果表明,自然通風(fēng)降濕能力弱,溫室內(nèi)濕度呈現(xiàn)明顯的下高上低垂直分布,高風(fēng)速降濕能力強(qiáng),溫室北側(cè)濕度高于南側(cè),偏東風(fēng)降濕效率高,北風(fēng)效果差。

    1.3.2 自動(dòng)卷簾機(jī) 自動(dòng)卷簾機(jī)能自動(dòng)卷放保溫覆蓋物,調(diào)節(jié)棚內(nèi)光照、溫度和濕度,提高勞動(dòng)效率,減小勞動(dòng)強(qiáng)度,是設(shè)施果樹(shù)栽培不可或缺的裝備[53]。劉洋等[54]設(shè)計(jì)了一種錐形滾筒式翻越卷放裝置,該裝置由卷被軸、搖桿、主機(jī)、輔助翻越機(jī)構(gòu)組成,通過(guò)繩索傳動(dòng)實(shí)現(xiàn)保溫被的翻越卷放,有效解決了保溫被卷起后的問(wèn)題。吳若丁等[55]研發(fā)了一種新型日光溫室雙穩(wěn)態(tài)折疊結(jié)構(gòu)保溫設(shè)施,通過(guò)充氣或抽氣進(jìn)行狀態(tài)切換,免除了卷簾機(jī)的使用。張國(guó)祥等[56]設(shè)計(jì)的協(xié)調(diào)鋪卷裝置,能實(shí)現(xiàn)多種覆蓋物的協(xié)調(diào)鋪卷,展現(xiàn)出較好的控制精度和穩(wěn)定性。裴雪等[57]設(shè)計(jì)了基于溫光耦合的卷簾機(jī)精準(zhǔn)控制系統(tǒng),該系統(tǒng)采用光照與溫度傳感器實(shí)時(shí)監(jiān)測(cè),結(jié)合溫光耦合模型決策,通過(guò)中間繼電器及紅外限位開(kāi)關(guān)控制卷簾機(jī),提高其控制精度與使用安全性。董亮等[58]設(shè)計(jì)了一款自動(dòng)接縫的日光溫室卷簾裝置,實(shí)現(xiàn)中間覆蓋材料同步卷放,可折疊且與卷簾軸同步運(yùn)行,保持恒定角度避免碰撞。

    1.3.3 CO2發(fā)生裝置 CO2發(fā)生裝置一般安裝在設(shè)施中央部,利用化學(xué)反應(yīng)產(chǎn)生CO2,通過(guò)排氣管將產(chǎn)生的CO2均勻釋放至整個(gè)空間,促進(jìn)果樹(shù)光合作用,提高果樹(shù)產(chǎn)量與果實(shí)品質(zhì)[59-60]。辛敏[61]設(shè)計(jì)的零濃度差CO2施肥系統(tǒng),能夠?qū)⑹覂?nèi)CO2濃度有效補(bǔ)充至室外相同水平,不僅降低了成本,還提高了CO2的利用率。馬凱等[62]設(shè)計(jì)了日光溫室CO2施肥系統(tǒng),試驗(yàn)結(jié)果表明,日光溫室的施肥區(qū)CO2濃度提高12.4%,油桃光合速率提高48.2%,品質(zhì)顯著改善,增施CO2氣肥可有效提高油桃光合速率及品質(zhì)。

    1.3.4 通風(fēng)裝置 通風(fēng)裝置是設(shè)施果樹(shù)栽培的重要設(shè)備,主要由進(jìn)風(fēng)口、出風(fēng)口、風(fēng)機(jī)及控制系統(tǒng)等組成,其通過(guò)風(fēng)機(jī)驅(qū)動(dòng)空氣流動(dòng),實(shí)現(xiàn)溫室與外界的空氣交換,有效降低室內(nèi)溫度,減少病蟲(chóng)害發(fā)生,一些先進(jìn)的通風(fēng)裝置還集成了降溫、加濕等功能,進(jìn)一步提升了設(shè)施果樹(shù)栽培的效率和果實(shí)品質(zhì)[63-67]。胡萬(wàn)玲等[68]研究不同的送/回風(fēng)方式對(duì)日光溫室的影響,發(fā)現(xiàn)下送上回的通風(fēng)方式效果最佳。萬(wàn)敏等[69]研究發(fā)現(xiàn)開(kāi)啟后墻通風(fēng)口及調(diào)整其位置能提高降溫效率、降低作物蒸騰速率。鄭若琳等[70]則通過(guò)數(shù)值模擬揭示,通風(fēng)形式顯著影響溫室內(nèi)氣流與溫濕度分布,上下通風(fēng)口同時(shí)開(kāi)啟在炎熱天氣下效果最佳,有效降低室內(nèi)溫濕度,而下通風(fēng)口單獨(dú)使用則會(huì)導(dǎo)致分布不均。

    1.4 生產(chǎn)設(shè)備與機(jī)具

    1.4.1 水肥一體化裝備 設(shè)施果樹(shù)栽培可通過(guò)水肥一體化裝備,將水與肥料混合后,經(jīng)過(guò)精確的灌溉系統(tǒng),將水分和養(yǎng)分均勻地輸送到果樹(shù)的根部,為果樹(shù)精確供應(yīng)水肥,優(yōu)化果樹(shù)的生長(zhǎng)環(huán)境[71-73]。水肥一體化裝備一般由儲(chǔ)水裝置、肥料儲(chǔ)存與混合裝置、灌溉系統(tǒng)和控制系統(tǒng)組成,如圖3所示。儲(chǔ)水裝置儲(chǔ)存各種水源以確保灌溉連續(xù),肥料儲(chǔ)存裝置混合適合果樹(shù)吸收的營(yíng)養(yǎng)液,灌溉系統(tǒng)將水肥溶液均勻送至果樹(shù)根部,實(shí)現(xiàn)節(jié)水、節(jié)肥、高效灌溉;控制系統(tǒng)監(jiān)控管理整個(gè)裝備,根據(jù)果樹(shù)生長(zhǎng)、環(huán)境條件和用戶需求,自動(dòng)調(diào)整水肥混合比例、灌溉時(shí)間和頻率,確保果樹(shù)獲得最佳水肥供應(yīng)[74]。黃卿宜等[75]研究水肥一體化條件下設(shè)施甜瓜施肥灌溉制度,試驗(yàn)結(jié)果表明,增加施肥量能顯著提升甜瓜株高和莖粗,高灌水下限可促使作物早熟,提高市場(chǎng)價(jià)值。李增源等[76]設(shè)計(jì)了設(shè)施葡萄智能化水肥管理系統(tǒng),其基于NB-IoT網(wǎng)絡(luò)傳輸?shù)墓虘B(tài)電阻傳感器設(shè)備對(duì)設(shè)施葡萄根系土壤水分進(jìn)行實(shí)時(shí)監(jiān)測(cè),建立基于土壤水分張力的設(shè)施葡萄灌溉決策指標(biāo),并依托水肥一體化設(shè)備實(shí)現(xiàn)自動(dòng)灌溉。

    1.4.2 農(nóng)機(jī)作業(yè)裝備 設(shè)施果樹(shù)栽培的農(nóng)機(jī)作業(yè)裝備包括微耕機(jī)、割草機(jī)、修枝機(jī)、植保機(jī)、采摘機(jī)等[77-79],其性能參數(shù)如表2所示。微耕機(jī)是小型土壤耕作機(jī)械,適用于狹小空間,能進(jìn)行旋耕、松土、開(kāi)溝等作業(yè),可根據(jù)需求更換刀具和附件;割草機(jī)以電動(dòng)遙控式為主,高效除草,保持果園整潔;修枝機(jī)則根據(jù)果樹(shù)需求修剪枝條,保持樹(shù)形和通風(fēng),有手動(dòng)、電動(dòng)、氣動(dòng)等類(lèi)型;植保機(jī)用于病蟲(chóng)害防治,噴灑化學(xué)藥劑,電動(dòng)植保機(jī)噴霧均勻且高效;采摘機(jī)則能自動(dòng)采摘成熟度和大小合適的果實(shí),提高采摘效率,有振動(dòng)式、吸入式等多種類(lèi)型,這些機(jī)械大大提高了設(shè)施果樹(shù)的生產(chǎn)效率[80-82]。姬麗雯等[83]研究設(shè)計(jì)了一種應(yīng)用于日光溫室的草莓采摘機(jī)器人,該機(jī)器人使用激光雷達(dá)構(gòu)建地圖與定位,雙目深度相機(jī)識(shí)別成熟草莓,并由6自由度機(jī)械臂進(jìn)行抓取和放置,能實(shí)現(xiàn)自主路徑規(guī)劃,行走過(guò)程中識(shí)別成熟草莓并完成采摘。

    2 國(guó)外設(shè)施果樹(shù)栽培裝備研究現(xiàn)狀

    國(guó)外設(shè)施果樹(shù)栽培裝備的研究起步較早,呈現(xiàn)高度集成化、智能化與綠色化的發(fā)展趨勢(shì),以荷蘭、日本、澳大利亞、美國(guó)、以色列等發(fā)達(dá)國(guó)家的成果顯著[84-87],這些國(guó)家多采用現(xiàn)代化的大型連棟大棚及日光溫室作為主要栽培設(shè)施,并結(jié)合先進(jìn)的保溫、通風(fēng)、遮陽(yáng)及加溫系統(tǒng),能夠精準(zhǔn)調(diào)控環(huán)境參數(shù),為果樹(shù)生長(zhǎng)創(chuàng)造最適條件[88-91]。

    美國(guó)新建造的果樹(shù)栽培溫室單體面積均在1 hm2以上,并大量采用無(wú)土栽培技術(shù)[92];荷蘭的設(shè)施果樹(shù)栽培連棟玻璃溫室如圖4所示,溫室以文洛式結(jié)構(gòu)設(shè)計(jì),具有超大空間和跨度,便于中大型農(nóng)業(yè)機(jī)械進(jìn)入作業(yè),采用中空鋁合金骨架代替?zhèn)鹘y(tǒng)溫室的單層鐵材質(zhì)天溝,不僅減少了設(shè)施溫室的支撐結(jié)構(gòu),也降低了支撐結(jié)構(gòu)的遮光面積,提升了采光及保溫效果,設(shè)施頂部覆蓋高透光漫反射玻璃,透光率在90%以上,為果樹(shù)提供了充足的光照條件。同時(shí)溫室內(nèi)配備先進(jìn)的環(huán)境調(diào)控系統(tǒng)和智能化管理系統(tǒng),能夠精確控制溫室的環(huán)境參數(shù),為果樹(shù)提供最佳的生長(zhǎng)環(huán)境[93-95]。

    日本的設(shè)施葡萄栽培大棚如圖5所示,大棚多采用堅(jiān)固耐用的鋼架結(jié)構(gòu)作為支撐,覆蓋材料則選用透光性好、耐用的聚乙烯長(zhǎng)壽無(wú)滴膜等;大棚設(shè)計(jì)充分考慮采光、保溫和通風(fēng)需求,通常坐北朝南、東西延長(zhǎng),確保葡萄能夠充分接受光照;大棚尺寸適中,一般脊高在4.5~5 m之間,長(zhǎng)度在80~120 m之間,既方便管理又適宜機(jī)械化,大棚內(nèi)配備了傳感器及水肥一體化系統(tǒng),以實(shí)現(xiàn)葡萄生長(zhǎng)環(huán)境的實(shí)時(shí)監(jiān)測(cè)和精準(zhǔn)控制。

    美國(guó)、荷蘭、以色列等發(fā)達(dá)國(guó)家,通過(guò)將工業(yè)的先進(jìn)技術(shù)融入到農(nóng)業(yè)生產(chǎn)中,較早地提出了“工廠化農(nóng)業(yè)”的理念,這些國(guó)家已研發(fā)了系列的設(shè)施果樹(shù)生產(chǎn)配套裝備,如小型微耕機(jī)、除草機(jī)、修枝機(jī)及采摘機(jī)器人等,實(shí)現(xiàn)了從土壤耕整、樹(shù)體修剪到果實(shí)采摘的設(shè)施生產(chǎn)全程機(jī)械化作業(yè),提高了設(shè)施果樹(shù)的栽培效率[96-97]。此外,荷蘭還研制出大型溫室清洗裝置,專(zhuān)門(mén)用于清除溫室屋面的灰塵,以此提高溫室的透光效果,進(jìn)一步優(yōu)化農(nóng)業(yè)生產(chǎn)條件。

    3 中國(guó)設(shè)施果樹(shù)栽培裝備發(fā)展面臨的問(wèn)題

    3.1 設(shè)施結(jié)構(gòu)簡(jiǎn)陋

    設(shè)施果樹(shù)栽培需要一系列專(zhuān)用的設(shè)施來(lái)支持,包括溫室、大棚、灌溉系統(tǒng)、施肥系統(tǒng)等。然而,目前市場(chǎng)上針對(duì)設(shè)施果樹(shù)栽培的專(zhuān)用設(shè)施并不多[98-100]。同時(shí)受經(jīng)濟(jì)條件和技術(shù)水平限制,許多果農(nóng)往往選擇結(jié)構(gòu)簡(jiǎn)單、材料廉價(jià)的簡(jiǎn)易大棚或溫室栽培果樹(shù),據(jù)統(tǒng)計(jì),中國(guó)簡(jiǎn)易設(shè)施面積約占設(shè)施總面積的2/3[9],這些簡(jiǎn)易設(shè)施結(jié)構(gòu)規(guī)格不一,雖然能夠在一定程度上滿足果樹(shù)生長(zhǎng)的基本需求,但往往缺乏必要的保溫、通風(fēng)和遮陽(yáng)等功能,導(dǎo)致設(shè)施內(nèi)環(huán)境波動(dòng)大,不利于果樹(shù)的穩(wěn)定生長(zhǎng);同時(shí)這種設(shè)施跨度小、高度矮,內(nèi)部空間不足,無(wú)法進(jìn)行機(jī)械化作業(yè),限制了設(shè)施果樹(shù)生產(chǎn)效率的提高[101]。

    3.2 設(shè)施環(huán)境調(diào)控能力弱

    設(shè)施果樹(shù)栽培需要對(duì)溫度、濕度、光照等環(huán)境因子進(jìn)行精準(zhǔn)調(diào)控,以滿足果樹(shù)不同生長(zhǎng)階段的需求。然而,由于設(shè)施結(jié)構(gòu)簡(jiǎn)陋,缺乏相應(yīng)自動(dòng)化環(huán)境調(diào)控設(shè)備,如溫濕度控制系統(tǒng)、補(bǔ)光系統(tǒng)、通風(fēng)系統(tǒng)等,這導(dǎo)致設(shè)施內(nèi)環(huán)境無(wú)法得到有效調(diào)控,難以滿足果樹(shù)生長(zhǎng)的最佳條件[102]。

    3.3 缺乏專(zhuān)用覆蓋材料

    設(shè)施果樹(shù)栽培需要使用一些專(zhuān)用的覆蓋材料(耐候性強(qiáng)、透光性好),然而市場(chǎng)上的專(zhuān)用設(shè)施覆蓋材料不多,很多只能使用普通的農(nóng)業(yè)材料進(jìn)行替代[103]。傳統(tǒng)的覆蓋材料(如草苫、保溫被等)存在透光性能差、易損壞、保溫效果不好等缺陷,難以滿足設(shè)施果樹(shù)對(duì)光、溫的精細(xì)調(diào)控需求。這不僅增大了環(huán)境調(diào)控難度,還限制了果樹(shù)的正常生長(zhǎng),進(jìn)而影響了果品的產(chǎn)量與品質(zhì)。

    3.4 設(shè)施生產(chǎn)機(jī)械化程度低、智能化程度不足

    目前,中國(guó)設(shè)施果樹(shù)栽培的機(jī)械化程度較低,綜合機(jī)械化率不足40%,很多生產(chǎn)環(huán)節(jié)仍以人力為主[77,104]。設(shè)施果樹(shù)栽培因其特殊的種植模式和狹小的空間布局,急需小型化、靈活性強(qiáng)的專(zhuān)用農(nóng)機(jī)具,然而當(dāng)前市場(chǎng)上針對(duì)設(shè)施果樹(shù)栽培的專(zhuān)用小型農(nóng)機(jī)種類(lèi)有限,且功能相對(duì)單一,難以滿足多樣化、精細(xì)化的生產(chǎn)需求。同時(shí)農(nóng)機(jī)自動(dòng)化、智能化水平較低,很多需要人力輔助作業(yè),這都增加了設(shè)施果樹(shù)的生產(chǎn)成本,限制了生產(chǎn)效率。

    4 設(shè)施果樹(shù)栽培裝備未來(lái)的發(fā)展方向

    4.1 建筑設(shè)施智能化、生態(tài)化

    未來(lái)的建筑設(shè)施不僅提供基礎(chǔ)的保溫、遮陽(yáng)等功能,還將結(jié)合智能材料、物聯(lián)網(wǎng)技術(shù),實(shí)現(xiàn)自動(dòng)化調(diào)節(jié)和生態(tài)循環(huán)[105]。例如,溫室可采用智能玻璃或智能棚膜,根據(jù)光照度自動(dòng)調(diào)節(jié)透光度;同時(shí),設(shè)施內(nèi)部將構(gòu)建生態(tài)循環(huán)系統(tǒng),如雨水收集、再利用,以及通過(guò)植物和微生物的協(xié)同作用實(shí)現(xiàn)廢棄物的自然降解。這種發(fā)展方向旨在提高設(shè)施的自適應(yīng)性和生態(tài)可持續(xù)性。

    4.2 設(shè)施環(huán)境調(diào)控智能化

    首先測(cè)控裝置將進(jìn)化為全面感知果樹(shù)生長(zhǎng)狀態(tài)的智能系統(tǒng),除了現(xiàn)有的溫度、光照等傳感器,還將引入更多類(lèi)型的生物傳感器,如葉片氣孔導(dǎo)度、果實(shí)可溶性固形物含量、果實(shí)香氣成分等,以全方位地監(jiān)測(cè)果樹(shù)生長(zhǎng)。數(shù)據(jù)分析決策終端將運(yùn)用更先進(jìn)的算法,如深度學(xué)習(xí)、模式識(shí)別等,對(duì)感知數(shù)據(jù)進(jìn)行實(shí)時(shí)分析,為環(huán)境調(diào)控提供精準(zhǔn)指導(dǎo),通過(guò)大數(shù)據(jù)和人工智能技術(shù)的結(jié)合,管理系統(tǒng)能自動(dòng)制定和調(diào)整灌溉、施肥、病蟲(chóng)害防治等方案,以滿足果樹(shù)生長(zhǎng)的各種需求。這種全面感知與智能決策的發(fā)展趨勢(shì),將極大地提高設(shè)施果樹(shù)栽培的管理水平和生產(chǎn)效益[106]。

    4.3 農(nóng)機(jī)農(nóng)藝高度融合

    在未來(lái)設(shè)施果樹(shù)栽培中,農(nóng)機(jī)與農(nóng)藝將高度融合[107-109]。首先,結(jié)合果樹(shù)生長(zhǎng)特性,采用標(biāo)準(zhǔn)的設(shè)施果樹(shù)栽培模式,包括科學(xué)地確定株行距、培養(yǎng)適宜的樹(shù)形,拓寬設(shè)施內(nèi)機(jī)耕道路,平整土地,以適應(yīng)機(jī)械化作業(yè)的需求。其次,一系列智能農(nóng)機(jī)將被廣泛應(yīng)用,設(shè)施內(nèi)的智能農(nóng)機(jī)裝備將結(jié)合先進(jìn)的導(dǎo)航、識(shí)別和通信技術(shù),實(shí)現(xiàn)自動(dòng)化和智能化的作業(yè),如修剪機(jī)器人能夠自動(dòng)識(shí)別樹(shù)枝的生長(zhǎng)情況和修剪需求,進(jìn)行精準(zhǔn)的修剪操作;采摘機(jī)器人則能通過(guò)視覺(jué)識(shí)別和機(jī)械手臂的精確控制,實(shí)現(xiàn)無(wú)損、高效的果實(shí)采摘。再次,多臺(tái)農(nóng)機(jī)裝備之間還將實(shí)現(xiàn)實(shí)時(shí)的信息共享和協(xié)同作業(yè),通過(guò)先進(jìn)的通信技術(shù)和協(xié)同算法,共同完成復(fù)雜的果樹(shù)栽培任務(wù)。農(nóng)機(jī)農(nóng)藝高度融合將極大地提升設(shè)施果樹(shù)栽培的作業(yè)效率和生產(chǎn)質(zhì)量,推動(dòng)其向更高水平發(fā)展[110-111]。

    參考文獻(xiàn) References:

    [1] 許奇志,鄧朝軍,蔣際謀,陳秀萍. 避雨設(shè)施葡萄對(duì)套種枇杷生長(zhǎng)與結(jié)果的影響[J]. 果樹(shù)學(xué)報(bào),2023,40(10):2149-2159.

    XU Qizhi,DENG Chaojun,JIANG Jimou,CHEN Xiuping. Effects of grapes in shelter facilities on tree growth and fruiting of interplanted loquat[J]. Journal of Fruit Science,2023,40(10):2149-2159.

    [2] 李都岳,吳延軍. 補(bǔ)光對(duì)設(shè)施栽培櫻桃果實(shí)成熟和糖分積累的影響[J]. 果樹(shù)學(xué)報(bào),2023,40(10):2183-2194.

    LI Duyue,WU Yanjun. Effects of supplementary light on ripening and sugar accumulation of cherry under protected cultivation[J]. Journal of Fruit Science,2023,40(10):2183-2194.

    [3] 劉鳳之,王海波,李莉,宣景宏. 我國(guó)設(shè)施果樹(shù)產(chǎn)業(yè)現(xiàn)狀、存在問(wèn)題與發(fā)展對(duì)策[J]. 中國(guó)果樹(shù),2021(11):1-4.

    LIU Fengzhi,WANG Haibo,LI Li,XUAN Jinghong. Current situation,issue and suggestion of the protected fruit industry in China[J]. China Fruits,2021(11):1-4.

    [4] 王海波,周澤宇,楊振鋒,曹玉芬,張彩霞,程存剛,周宗山,王文輝,胡成志,馮學(xué)杰,呂鑫,曹永生. 我國(guó)果業(yè)高質(zhì)量發(fā)展的制約因素探析[J]. 中國(guó)果樹(shù),2023(7):1-9.

    WANG Haibo,ZHOU Zeyu,YANG Zhenfeng,CAO Yufen,ZHANG Caixia,CHENG Cungang,ZHOU Zongshan,WANG Wenhui,HU Chengzhi,F(xiàn)ENG Xuejie,Lü Xin,CAO Yongsheng. Constraints on the high-quality development of Chinese fruit industry[J]. China Fruits,2023(7):1-9.

    [5] 楊玉香. 中國(guó)北方設(shè)施果樹(shù)產(chǎn)業(yè)現(xiàn)狀與發(fā)展對(duì)策[J]. 落葉果樹(shù),2024,56(3):63-65.

    YANG Yuxiang. Current situation and development strategies of facility fruit tree industry in Northern China[J]. Deciduous Fruits,2024,56(3):63-65.

    [6] 戚行江,梁森苗,陳海豹,俞浙萍,孫鸝,鄭錫良,張淑文. 促早栽培對(duì)楊梅葉片形態(tài)及果實(shí)成熟與品質(zhì)的影響[J]. 果樹(shù)學(xué)報(bào),2023,40(11):2403-2412.

    QI Xingjiang,LIANG Senmiao,CHEN Haibao,YU Zheping,SUN Li,ZHENG Xiliang,ZHANG Shuwen. Effects of forcing cultivation on the leaf morphology,fruit ripening and quality of Myrica rubra[J]. Journal of Fruit Science,2023,40(11):2403-2412.

    [7] 解冰芊,郭天然,李玉婷,任利慧,黃建. 冬棗光響應(yīng)模型及不同物候期光合變化動(dòng)態(tài)研究[J]. 果樹(shù)學(xué)報(bào),2024,41(8):1617-1626.

    XIE Bingqian,GUO Tianran,LI Yuting,REN Lihui,HUANG Jian. Light response model and photosynthetic dynamics at different phenological stages of Dongzao jujube[J]. Journal of Fruit Science,2024,41(8):1617-1626.

    [8] 李天來(lái),齊明芳,孟思達(dá). 中國(guó)設(shè)施園藝發(fā)展60年成就與展望[J]. 園藝學(xué)報(bào),2022,49(10):2119-2130.

    LI Tianlai,QI Mingfang,MENG Sida. Sixty years of facility horticulture development in China:Achievements and prospects[J]. Acta Horticulturae Sinica,2022,49(10):2119-2130.

    [9] 李天來(lái). 加快發(fā)展好中國(guó)特色設(shè)施種植業(yè)[J]. 寒旱農(nóng)業(yè)科學(xué),2022,1(1):1-3.

    LI Tianlai. Speeding up the development of facility planting industry with Chinese characteristics[J]. Journal of Cold-Arid Agricultural Sciences,2022,1(1):1-3.

    [10] 齊明芳,劉興安,孟思達(dá),李天來(lái). 我國(guó)節(jié)能日光溫室發(fā)展歷程[J]. 新農(nóng)業(yè),2023(19):4-7.

    QI Mingfang,LIU Xing’an,MENG Sida,LI Tianlai. The development history of energy-saving solar greenhouses in China[J]. New Agriculture,2023(19):4-7.

    [11] LI Y M,YAN J,LI Z Z,HE M,LIU X G,LI T L. A globalized methodology of energy-saving solar greenhouse design in high latitudes[J]. Energy,2024,304:132117.

    [12] YANG A Q,XU X,JIA S C,HAO W X. Heat storage and release performance of solar greenhouses made of composite phase change material comprising methyl palmitate and hexadecanol in cold climate[J]. Thermal Science and Engineering Progress,2024,54:102837.

    [13] WAN X C,XIA T Y,LI Y M,SUN Z P,LIU X G,LI T L. Study on a novel water heat accumulator below the north roof in Chinese solar greenhouse:System design[J]. Applied Thermal Engineering,2023,234:121316.

    [14] 王蕊,楊小龍,馬健,須暉,李天來(lái). 溫室透光覆蓋材料的種類(lèi)與特性分析[J]. 農(nóng)業(yè)工程技術(shù),2016,36(16):9-12.

    WANG Rui,YANG Xiaolong,MA Jian,XU Hui,LI Tianlai. Analysis of types and characteristics of light-transmitting covering materials for greenhouses[J]. Agricultural Engineering Technology,2016,36(16):9-12.

    [15] 周長(zhǎng)吉. 日光溫室主動(dòng)加溫技術(shù)與設(shè)備[J]. 中國(guó)蔬菜,2023(7):7-19.

    ZHOU Changji. Active heating technology and equipment for Chinese solar greenhouse[J]. China Vegetables,2023(7):7-19.

    [16] 張惠楠,李明,祝鵬. 北方日光溫室構(gòu)造的研究進(jìn)展[J]. 智慧農(nóng)業(yè)導(dǎo)刊,2024,4(6):64-68.

    ZHANG Huinan,LI Ming,ZHU Peng. Progress in the structure of the northern solar greenhouse[J]. Journal of Smart Agriculture,2024,4(6):64-68.

    [17] 王志強(qiáng),王海波,劉鳳之,王孝娣,王小龍,李鵬,史祥賓. 設(shè)施農(nóng)業(yè)大棚冬季除雪注意事項(xiàng)及方法[J]. 果樹(shù)實(shí)用技術(shù)與信息,2022(12):45-46.

    WANG Zhiqiang,WANG Haibo,LIU Fengzhi,WANG Xiaodi,WANG Xiaolong,LI Peng,SHI Xiangbin. Points for attention and methods for snow removal in winter from facility agricultural greenhouses[J]. Applied Technology and Information for Fruit Trees,2022(12):45-46.

    [18] 郭利民,常聚普,吳亞冉,王磊,于利強(qiáng),桑圣奇. 一種新型適宜果樹(shù)反季節(jié)栽培的鋼結(jié)構(gòu)日光溫室[J]. 北方園藝,2019(19):45-48.

    GUO Limin,CHANG Jupu,WU Yaran,WANG Lei,YU Liqiang,SANG Shengqi. A novel steel-framed solar greenhouse suitable for off-season cultivation of fruit trees[J]. Northern Horticulture,2019(19):45-48.

    [19] 陳吉. 果樹(shù)專(zhuān)用連棟大棚設(shè)計(jì)與應(yīng)用[J]. 農(nóng)業(yè)開(kāi)發(fā)與裝備,2017(9):88-89.

    CHEN Ji. Design and application of a specialized multi-span greenhouse for fruit trees[J]. Agricultural Development amp; Equipments,2017(9):88-89.

    [20] 陸琳,于菲,仇明華,張晏. 一種新型日光溫室及其在果樹(shù)栽培中的應(yīng)用[J]. 農(nóng)業(yè)工程技術(shù),2017,37(25):38-40.

    LU Lin,YU Fei,QIU Minghua,ZHANG Yan. A novel solar greenhouse and its application in fruit tree cultivation[J]. Agricultural Engineering Technology,2017,37(25):38-40.

    [21] 閆冬梅,徐開(kāi)亮,周長(zhǎng)吉,張秋生. 柔性保溫墻橢圓管單管拱架日光溫室內(nèi)力分析及結(jié)構(gòu)優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2023,39(14):215-222.

    YAN Dongmei,XU Kailiang,ZHOU Changji,ZHANG Qiusheng. Internal force analysis and structure optimization of single oval tube arch solar greenhouse with flexible insulation wall[J]. Transactions of the Chinese Society of Agricultural Engineering,2023,39(14):215-222.

    [22] 郄麗娟,韓建會(huì),李永. 裝配式異質(zhì)復(fù)合墻體日光溫室熱性能分析與評(píng)價(jià)[J]. 中國(guó)農(nóng)業(yè)大學(xué)學(xué)報(bào),2023,28(4):159-169.

    QIE Lijuan,HAN Jianhui,LI Yong. Thermal performance analysis and evaluation on solar greenhouse with assembled heterogeneous composite wall[J]. Journal of China Agricultural University,2023,28(4):159-169.

    [23] 王蕊,楊小龍,王小雯,馬健,李天來(lái),須暉. 含水量對(duì)日光溫室土質(zhì)墻體穩(wěn)定性影響的有限元分析[J]. 沈陽(yáng)農(nóng)業(yè)大學(xué)學(xué)報(bào),2017,48(3):277-283.

    WANG Rui,YANG Xiaolong,WANG Xiaowen,MA Jian,LI Tianlai,XU Hui. Finite element analysis of effect of water content on earth-wall stability of Chinese solar greenhouse[J]. Journal of Shenyang Agricultural University,2017,48(3):277-283.

    [24] 蔣國(guó)振,胡耀華,劉玉鳳,鄒志榮. 基于CFD的下沉式日光溫室保溫性能分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2011,27(12):275-281.

    JIANG Guozhen,HU Yaohua,LIU Yufeng,ZOU Zhirong. Analysis on insulation performance of sunken solar greenhouse based on CFD[J]. Transactions of the Chinese Society of Agricultural Engineering,2011,27(12):275-281.

    [25] 孫樹(shù)鵬,董朝陽(yáng),黎貞發(fā),楊涵洧. 基于CFD的不同環(huán)境溫度下日光溫室內(nèi)部溫度變化研究[J]. 天津農(nóng)業(yè)科學(xué),2020,26(10):43-47.

    SUN Shupeng,DONG Chaoyang,LI Zhenfa,YANG Hanwei. Study on temperature change of solar greenhouse at different environmental temperature based on CFD[J]. Tianjin Agricultural Sciences,2020,26(10):43-47.

    [26] BERROUG F,LAKHAL E K,EL OMARI M,F(xiàn)ARAJI M,EL QARNIA H. Thermal performance of a greenhouse with a phase change material north wall[J]. Energy and Buildings,2011,43(11):3027-3035.

    [27] 趙曉彤,須暉,李天來(lái),王蕊. 東北地區(qū)日光溫室冬季能量分配模型的建立[J]. 沈陽(yáng)農(nóng)業(yè)大學(xué)學(xué)報(bào),2019,50(1):43-50.

    ZHAO Xiaotong,XU Hui,LI Tianlai,WANG Rui. Establishment of winter energy distribution model for solar greenhouse in Northeast China[J]. Journal of Shenyang Agricultural University,2019,50(1):43-50.

    [28] 王超,方慧,張義,桑碩,曹軻菲. 輕簡(jiǎn)柔性墻體裝配式日光溫室能耗分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2023,39(3):190-197.

    WANG Chao,F(xiàn)ANG Hui,ZHANG Yi,SANG Shuo,CAO Kefei. Energy consumption analysis of simply soft insulated wall-assembled Chinese solar greenhouse[J]. Transactions of the Chinese Society of Agricultural Engineering,2023,39(3):190-197.

    [29] 史宇亮,王秀峰,魏珉,李清明,劉福勝,侯加林. 日光溫室土墻體溫度變化及蓄熱放熱特點(diǎn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(22):214-221.

    SHI Yuliang,WANG Xiufeng,WEI Min,LI Qingming,LIU Fusheng,HOU Jialin. Temperature variation,heat storage and heat release characteristics of soil wall in solar greenhouse[J]. Transactions of the Chinese Society of Agricultural Engineering,2016,32(22):214-221.

    [30] 許紅軍,曹晏飛,李彥榮,阿拉帕提,高杰,蔣衛(wèi)杰,鄒志榮. 基于CFD的日光溫室墻體蓄熱層厚度的確定[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(4):175-184.

    XU Hongjun,CAO Yanfei,LI Yanrong,Alapati,GAO Jie,JIANG Weijie,ZOU Zhirong. Determination of thickness of thermal storage layer of solar greenhouse wall based on CFD[J]. Transactions of the Chinese Society of Agricultural Engineering,2019,35(4):175-184.

    [31] 趙洪滿. 設(shè)施溫室材料選擇及建造模式[J]. 農(nóng)業(yè)工程,2022,12(6):75-77.

    ZHAO Hongman. Material selection and construction mode of facility greenhouse[J]. Agricultural Engineering,2022,12(6):75-77.

    [32] 劉晨霞,馬承偉,王平智,趙淑梅,程杰宇,王明磊. 日光溫室保溫被傳熱的理論解析及驗(yàn)證[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(2):170-176.

    LIU Chenxia,MA Chengwei,WANG Pingzhi,ZHAO Shumei,CHENG Jieyu,WANG Minglei. Theoretical analysis and experimental verification of heat transfer through thick covering materials of solar greenhouse[J]. Transactions of the Chinese Society of Agricultural Engineering,2015,31(2):170-176.

    [33] 于威,劉文合,白義奎,丁小明. 基于CFD的兩連跨日光溫室熱環(huán)境模擬[J]. 農(nóng)業(yè)工程學(xué)報(bào),2023,39(16):215-222.

    YU Wei,LIU Wenhe,BAI Yikui,DING Xiaoming. Simulating thermal environment in a two-span solar greenhouse using CFD[J]. Transactions of the Chinese Society of Agricultural Engineering,2023,39(16):215-222.

    [34] 王偉,方慧,伍綱,程瑞鋒,張義,袁余. 基于CFD模型的雙膜大跨度拱棚熱環(huán)境模擬[J]. 中國(guó)農(nóng)業(yè)大學(xué)學(xué)報(bào),2024,29(5):115-124.

    WANG Wei,F(xiàn)ANG Hui,WU Gang,CHENG Ruifeng,ZHANG Yi,YUAN Yu. Thermal environment simulation in a double-film large-span greenhouse based on CFD model[J]. Journal of China Agricultural University,2024,29(5):115-124.

    [35] 魏巍,楊林艷,柴云娥,顧金壽,劉孝敏,劉葉瑞. 雙膜日光溫室土壤-空氣換熱器土壤溫度試驗(yàn)研究[J]. 科學(xué)技術(shù)與工程,2024,24(5):1930-1936.

    WEI Wei,YANG Linyan,CHAI Yun’e,GU Jinshou,LIU Xiaomin,LIU Yerui. Experimental study on soil temperature of soil-air heat exchanger in double-film solar greenhouse[J]. Science Technology and Engineering,2024,24(5):1930-1936.

    [36] 楊小鋒,李勁松,楊沐,陳明樂(lè),黃植. 設(shè)施栽培覆蓋材料對(duì)芒果品質(zhì)及設(shè)施環(huán)境的影響[J]. 中國(guó)果樹(shù),2011(6):44-48.

    YANG Xiaofeng,LI Jinsong,YANG Mu,CHEN Mingle,HUANG Zhi. Effects of covering materials on mango quality and facility environment in protected cultivation[J]. China Fruits,2011(6):44-48.

    [37] 楊定偉,荊海薇,景煒婷,何斌,鄒志榮,鮑恩財(cái),曹晏飛. 不同墻體材料的裝配式日光溫室的熱性能對(duì)比分析[J]. 中國(guó)農(nóng)業(yè)大學(xué)學(xué)報(bào),2023,28(10):194-205.

    YANG Dingwei,JING Haiwei,JING Weiting,HE Bin,ZOU Zhirong,BAO Encai,CAO Yanfei. Comparative analysis of thermal performance of fabricated solar greenhouses with different wall materials[J]. Journal of China Agricultural University,2023,28(10):194-205.

    [38] 程麗,張國(guó)輝,楊帥,王春雨,林娜,潘凱. 高寒地區(qū)冬季不同類(lèi)型日光溫室內(nèi)環(huán)境的比較[J]. 北方園藝,2023(12):44-50.

    CHENG Li,ZHANG Guohui,YANG Shuai,WANG Chunyu,LIN Na,PAN Kai. Comparative analysis of internal environment of different types of solar greenhouses in winter in alpine regions[J]. Northern Horticulture,2023(12):44-50.

    [39] 王柯如,任妮,金晶,毛曉娟,劉楊. 設(shè)施環(huán)境調(diào)控技術(shù)研究現(xiàn)狀與挑戰(zhàn)[J]. 中國(guó)農(nóng)業(yè)信息,2024,36(2):73-82.

    WANG Keru,REN Ni,JIN Jing,MAO Xiaojuan,LIU Yang. Current status and challenges of research in facility environmental control technology[J]. China Agricultural Informatics,2024,36(2):73-82.

    [40] KOCHHAR A,KUMAR N. Wireless sensor networks for greenhouses:An end-to-end review[J]. Computers and Electronics in Agriculture,2019,163:104877.

    [41] 徐鵬,張冠智,李洋,徐曉東,楊振超. 智慧設(shè)施農(nóng)業(yè)中控制系統(tǒng)的研究進(jìn)展[J]. 中國(guó)農(nóng)學(xué)通報(bào),2023,39(3):156-164.

    XU Peng,ZHANG Guanzhi,LI Yang,XU Xiaodong,YANG Zhenchao. Control system in smart facility agriculture:Research progress[J]. Chinese Agricultural Science Bulletin,2023,39(3):156-164.

    [42] 李振東. 智能葡萄大棚監(jiān)測(cè)系統(tǒng)設(shè)計(jì)[D]. 淮南:安徽理工大學(xué),2019.

    LI Zhendong. Design of intelligent grape greenhouse monitoring system[D]. Huainan:Anhui University of Science amp; Technology,2019.

    [43] 陳春玲,崔琳,許童羽,周云成,李天來(lái),王一情. 日光溫室無(wú)線傳感器多數(shù)據(jù)融合技術(shù)研究[J]. 沈陽(yáng)農(nóng)業(yè)大學(xué)學(xué)報(bào),2016,47(1):86-91.

    CHEN Chunling,CUI Lin,XU Tongyu,ZHOU Yuncheng,LI Tianlai,WANG Yiqing. Wireless-sensor and multi-data fusion technological research of sunlight greenhouse[J]. Journal of Shenyang Agricultural University,2016,47(1):86-91.

    [44] 孫昌權(quán),高菊玲. 設(shè)施草莓智慧生產(chǎn)管控系統(tǒng)設(shè)計(jì)與實(shí)現(xiàn)[J]. 中國(guó)農(nóng)機(jī)化學(xué)報(bào),2021,42(12):80-86.

    SUN Changquan,GAO Juling. Design and implementation of intelligent control system for strawberry greenhouse[J]. Journal of Chinese Agricultural Mechanization,2021,42(12):80-86.

    [45] 李玉亮,王尚華,魚(yú)亞蘭,牟佳,王旭東. 設(shè)施農(nóng)業(yè)溫室環(huán)境調(diào)控裝備的研究與進(jìn)展[J]. 中國(guó)農(nóng)機(jī)裝備,2024(7):57-59.

    LI Yuliang,WANG Shanghua,YU Yalan,MOU Jia,WANG Xudong. Research progress of greenhouse environment control equipment in facility agriculture[J]. China Agricultural Machinery Equipment,2024(7):57-59.

    [46] HE X L,WANG J,GUO S R,ZHANG J,WEI B,SUN J,SHU S. Ventilation optimization of solar greenhouse with removable back walls based on CFD[J]. Computers and Electronics in Agriculture,2018,149:16-25.

    [47] 張明秋. 人工光源型植物工廠溫濕度環(huán)境控制與試驗(yàn)研究[D]. 大慶:黑龍江八一農(nóng)墾大學(xué),2021.

    ZHANG Mingqiu. Experimental study on temperature and humidity environment control in plant factory with artificial light source[D]. Daqing:Heilongjiang Bayi Agricultural University,2021.

    [48] 李亨. 基于模糊神經(jīng)網(wǎng)絡(luò)的植物工廠溫濕度控制研究[D]. 天津:天津職業(yè)技術(shù)師范大學(xué),2019.

    LI Heng. Study on temperature and humidity control of plant factory based on fuzzy neural network[D]. Tianjin:Tianjin University of Technology and Education,2019.

    [49] 劉云驥,徐繼彤,龐松若,孫周平,李天來(lái). 日光溫室正壓式濕簾風(fēng)機(jī)系統(tǒng)設(shè)計(jì)及其降溫效果[J]. 中國(guó)農(nóng)業(yè)大學(xué)學(xué)報(bào),2019,24(5):130-139.

    LIU Yunji,XU Jitong,PANG Songruo,SUN Zhouping,LI Tianlai. Design of positive-pressure wet curtain fan system for solar greenhouse and its cooling effects[J]. Journal of China Agricultural University,2019,24(5):130-139.

    [50] 宋財(cái)柱,塔娜,閆彩霞,孫云峰,甄琦,李曉凱. 日光溫室環(huán)境因子預(yù)測(cè)模型及應(yīng)用:基于BP神經(jīng)網(wǎng)絡(luò)[J]. 農(nóng)機(jī)化研究,2024,46(10):175-179.

    SONG Caizhu,TA Na,YAN Caixia,SUN Yunfeng,ZHEN Qi,LI Xiaokai. Establishment and application of environmental factor model of solar greenhouse—based on BP neural network[J]. Journal of Agricultural Mechanization Research,2024,46(10):175-179.

    [51] 陳辛格,伍綱,馮朝卿,姬亞寧,馬前磊,程瑞鋒. 基于窄槽式集熱器的日光溫室晝夜雙循環(huán)熱濕調(diào)控研究[J]. 工程熱物理學(xué)報(bào),2024,45(4):962-969.

    CHEN Xinge,WU Gang,F(xiàn)ENG Chaoqing,JI Yaning,MA Qianlei,CHENG Ruifeng. Study on diurnal double-cycle heat and humidity control system of solar greenhouse based on solar narrow trough collector[J]. Journal of Engineering Thermophysics,2024,45(4):962-969.

    [52] 薛曉萍,宿文. 基于CFD的自然通風(fēng)對(duì)日光溫室濕度分布模擬分析[J]. 海洋氣象學(xué)報(bào),2019,39(4):90-96.

    XUE Xiaoping,SU Wen. CFD simulation of humidity distribution in solar greenhouse under natural ventilation[J]. Journal of Marine Meteorology,2019,39(4):90-96.

    [53] 張國(guó)祥,傅澤田,張領(lǐng)先,嚴(yán)謹(jǐn),張標(biāo),李鑫星. 中國(guó)日光溫室機(jī)械卷簾技術(shù)發(fā)展現(xiàn)狀與趨勢(shì)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(增刊1):1-10.

    ZHANG Guoxiang,F(xiàn)U Zetian,ZHANG Lingxian,YAN Jin,ZHANG Biao,LI Xinxing. Development status and prospect of mechanical rolling shutter technology in solar greenhouse in China[J]. Transactions of the Chinese Society of Agricultural Engineering,2017,33(Suppl. 1):1-10.

    [54] 劉洋,宋衛(wèi)堂,王平智. 外保溫塑料大棚錐形滾筒式翻越卷放裝置的設(shè)計(jì)與試驗(yàn)[J]. 中國(guó)農(nóng)業(yè)大學(xué)學(xué)報(bào),2023,28(9):158-166.

    LIU Yang,SONG Weitang,WANG Pingzhi. Design and experiment of a conical reel type over-top rolling machine for thermal quilt in external thermal arch shed[J]. Journal of China Agricultural University,2023,28(9):158-166.

    [55] 吳若丁,何斌,張亦博,龔健林,趙昱權(quán). 雙穩(wěn)態(tài)折疊結(jié)構(gòu)日光溫室前屋面保溫設(shè)施的設(shè)計(jì)與試驗(yàn)[J]. 中國(guó)農(nóng)業(yè)科技導(dǎo)報(bào),2023,25(5):112-122.

    WU Ruoding,HE Bin,ZHANG Yibo,GONG Jianlin,ZHAO Yuquan. Design and experiment of thermal insulation facilities for the front roof of bistable folding solar greenhouse[J]. Journal of Agricultural Science and Technology,2023,25(5):112-122.

    [56] 張國(guó)祥,張璐,李鑫星,龔志文,董玉紅,馬云飛. 日光溫室前屋面覆蓋物協(xié)調(diào)鋪卷裝置設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2023,54(5):348-358.

    ZHANG Guoxiang,ZHANG Lu,LI Xinxing,GONG Zhiwen,DONG Yuhong,MA Yunfei. Design and experiment of coordinative operation device of covers on front roof of Chinese solar greenhouse[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(5):348-358.

    [57] 裴雪,范奧華,劉煥宇,王孝龍,王東,范葉滿,翟長(zhǎng)遠(yuǎn). 基于溫光耦合的溫室卷簾機(jī)控制設(shè)備開(kāi)發(fā)[J]. 農(nóng)機(jī)化研究,2018,40(4):83-86.

    PEI Xue,F(xiàn)AN Aohua,LIU Huanyu,WANG Xiaolong,WANG Dong,F(xiàn)AN Yeman,ZHAI Changyuan. Development of greenhouse rolling machine control equipment based on temperature and light coupling[J]. Journal of Agricultural Mechanization Research,2018,40(4):83-86.

    [58] 董亮,王家忠,孔德剛,劉江濤,袁永偉. 日光溫室卷簾機(jī)自動(dòng)接縫裝置設(shè)計(jì)[J]. 河北農(nóng)業(yè)大學(xué)學(xué)報(bào),2016,39(6):107-111.

    DONG Liang,WANG Jiazhong,KONG Degang,LIU Jiangtao,YUAN Yongwei. A design of automatic seamless device for solar greenhouse rolling machine[J]. Journal of Agricultural University of Hebei,2016,39(6):107-111.

    [59] 李偉靜. 設(shè)施果樹(shù)栽培增補(bǔ)二氧化碳的作用和方法[J]. 北方果樹(shù),2023(1):23-25.

    LI Weijing. Effects and methods of carbon dioxide supplementation in protected cultivation of fruit trees[J]. Northern Fruits,2023(1):23-25.

    [60] 張俊清,丁宏斌. 溫室增施二氧化碳?xì)夥始夹g(shù)試驗(yàn)效果探析[J]. 當(dāng)代農(nóng)機(jī),2017(2):12-13.

    ZHANG Junqing,DING Hongbin. Analysis of the Experimental effects of carbon dioxide fertilization technology in greenhouses[J]. Contemporary Farm Machinery,2017(2):12-13.

    [61] 辛敏. 引進(jìn)室外冷源的植物工廠零濃度差CO2施肥系統(tǒng)[D]. 北京:中國(guó)農(nóng)業(yè)科學(xué)院,2015.

    XIN Min. Null CO2 concentration difference enrichment system by introducing outside cold air in plant factor[D]. Beijing:Chinese Academy of Agricultural Sciences,2015.

    [62] 馬凱,韓立群,閆鵬,克里木·伊明,梅闖,王繼勛. 南疆日光溫室油桃CO2施肥效應(yīng)研究[J]. 新疆農(nóng)業(yè)科學(xué),2015,52(3):467-471.

    MA Kai,HAN Liqun,YAN Peng,Kelimu·Yimin,MEI Chuang,WANG Jixun. Study on effects of enrichment to nectarine in greenhouses[J]. Xinjiang Agricultural Sciences,2015,52(3):467-471.

    [63] 牟華偉,王金星,劉雙喜,于蓮雙,范連祥,傅生輝. 日光溫室集中式最優(yōu)化控制通風(fēng)系統(tǒng)[J]. 農(nóng)機(jī)化研究,2015,37(9):113-117.

    MOU Huawei,WANG Jinxing,LIU Shuangxi,YU Lianshuang,F(xiàn)AN Lianxiang,F(xiàn)U Shenghui. Greenhouse centralized optimization control ventilation system[J]. Journal of Agricultural Mechanization Research,2015,37(9):113-117.

    [64] 劉林,侯加林,姜斌. 日光溫室通風(fēng)系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)[J]. 山東農(nóng)業(yè)科學(xué),2015,47(5):115-118.

    LIU Lin,HOU Jialin,JIANG Bin. Design and implementation of intelligent greenhouse ventilation system[J]. Shandong Agricultural Sciences,2015,47(5):115-118.

    [65] MASHONJOWA E,RONSSE F,MILFORD J R,PIETERS J G. Modelling the thermal performance of a naturally ventilated greenhouse in Zimbabwe using a dynamic greenhouse climate model[J]. Solar Energy,2013,91:381-393.

    [66] 方慧,楊其長(zhǎng),張義,程瑞鋒,張芳,盧威. 日光溫室熱壓風(fēng)壓耦合自然通風(fēng)流量的模擬[J]. 中國(guó)農(nóng)業(yè)氣象,2016,37(5):531-537.

    FANG Hui,YANG Qichang,ZHANG Yi,CHENG Ruifeng,ZHANG Fang,LU Wei. Simulation on ventilation flux of solar greenhouse based on the coupling between stack and wind effects[J]. Chinese Journal of Agrometeorology,2016,37(5):531-537.

    [67] AL-HELAL I M,WAHEEB S A,IBRAHIM A A,SHADY M R,ABDEL-GHANY A M. Modified thermal model to predict the natural ventilation of greenhouses[J]. Energy and Buildings,2015,99:1-8.

    [68] 胡萬(wàn)玲,陳沖,管勇,馬喬喬,葉文濤. 拱架送/回風(fēng)方式對(duì)日光溫室冬季作物冠層區(qū)熱環(huán)境的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2024,40(4):262-272.

    HU Wanling,CHEN Chong,GUAN Yong,MA Qiaoqiao,YE Wentao. Effects of arch frame air supply and return mode on the indoor thermal environment of crop canopy area for solar greenhouse in winter[J]. Transactions of the Chinese Society of Agricultural Engineering,2024,40(4):262-272.

    [69] 萬(wàn)敏,楊魏,劉竹青,徐晨曦,劉東. 不同通風(fēng)方式日光溫室微環(huán)境模擬與作物蒸騰研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2024,55(1):328-338.

    WAN Min,YANG Wei,LIU Zhuqing,XU Chenxi,LIU Dong. Microenvironment simulation and crop transpiration analysis of solar greenhouse with different ventilation modes[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(1):328-338.

    [70] 鄭若琳,楊魏,劉竹青. 不同通風(fēng)形式日光溫室濕熱特性的數(shù)值模擬[J]. 中國(guó)農(nóng)業(yè)大學(xué)學(xué)報(bào),2023,28(3):140-150.

    ZHENG Ruolin,YANG Wei,LIU Zhuqing. Numerical simulation of humid heat characteristics in solar greenhouse under different ventilation modes[J]. Journal of China Agricultural University,2023,28(3):140-150.

    [71] 劉思汝,石偉琦,馬海洋,王國(guó)安,陳清,徐明崗. 果樹(shù)水肥一體化高效利用技術(shù)研究進(jìn)展[J]. 果樹(shù)學(xué)報(bào),2019,36(3):366-384.

    LIU Siru,SHI Weiqi,MA Haiyang,WANG Guoan,CHEN Qing,XU Minggang. Advances in research on efficient utilization of fertigation in fruit trees[J]. Journal of Fruit Science,2019,36(3):366-384.

    [72] 馮紫薈,但晨歆,薛鑫海,丘智晃,陳煜林,涂攀峰,鄧蘭生. 水肥一體化技術(shù)在荔枝上的應(yīng)用[J]. 安徽農(nóng)業(yè)科學(xué),2023,51(6):144-147.

    FENG Zihui,DAN Chenxin,XUE Xinhai,QIU Zhihuang,CHEN Yulin,TU Panfeng,DENG Lansheng. Application of integrated water and fertilizer technology in litchi[J]. Journal of Anhui Agricultural Sciences,2023,51(6):144-147.

    [73] 胡亮亮,熊橙梁,張慶富,瞿水根,陳金,方志超,楊柳,何激光,鄧小華. 水肥一體化技術(shù)研究現(xiàn)狀及在我國(guó)的推廣應(yīng)用[J]. 現(xiàn)代農(nóng)業(yè)科技,2023(20):104-109.

    HU Liangliang,XIONG Chengliang,ZHANG Qingfu,QU Shuigen,CHEN Jin,F(xiàn)ANG Zhichao,YANG Liu,HE Jiguang,DENG Xiaohua. Research status of fertigation technology and its promotion and application in our country[J]. Modern Agricultural Science and Technology,2023(20):104-109.

    [74] 李紅,湯攀,陳超,張志洋,夏華猛. 中國(guó)水肥一體化施肥設(shè)備研究現(xiàn)狀與發(fā)展趨勢(shì)[J]. 排灌機(jī)械工程學(xué)報(bào),2021,39(2):200-209.

    LI Hong,TANG Pan,CHEN Chao,ZHANG Zhiyang,XIA Huameng. Research status and development trend of fertilization equipment used in fertigation in China[J]. Journal of Drainage and Irrigation Machinery Engineering,2021,39(2):200-209.

    [75] 黃卿宜,孫一迪,周明耀,王恬,陳喜鋒. 水肥一體化條件下設(shè)施甜瓜灌溉施肥制度試驗(yàn)研究[J]. 節(jié)水灌溉,2022(4):71-76.

    HUANG Qingyi,SUN Yidi,ZHOU Mingyao,WANG Tian,CHEN Xifeng. Experimental study on irrigation and fertilization regime of protected melon under water and fertilizer integration[J]. Water Saving Irrigation,2022(4):71-76.

    [76] 李增源,王紹雷,姬廷廷,張衛(wèi)峰. 設(shè)施葡萄智能化水肥管理體系研究[J]. 中國(guó)土壤與肥料,2022(1):73-80.

    LI Zengyuan,WANG Shaolei,JI Tingting,ZHANG Weifeng. Research on intelligent water and fertilizer management system of greenhouse grape[J]. Soil and Fertilizer Sciences in China,2022(1):73-80.

    [77] 潘殿蓮,王志強(qiáng). 我國(guó)設(shè)施果樹(shù)全程機(jī)械化生產(chǎn)現(xiàn)狀與趨勢(shì)研究[J]. 中國(guó)果樹(shù),2024(4):148-151.

    PAN Dianlian,WANG Zhiqiang. Research on the current situation and trends of mechanized production of protected fruit trees in China[J]. China Fruits,2024(4):148-151.

    [78] 周桂官,蘇生平,蘇宇翔,吳劍銘,夏冰. 江蘇省設(shè)施西瓜機(jī)械化應(yīng)用現(xiàn)狀及發(fā)展建議[J]. 中國(guó)蔬菜,2021(11):113-117.

    ZHOU Guiguan,SU Shengping,SU Yuxiang,WU Jianming,XIA Bing. Current status and development suggestions for mechanized application in facility watermelon production in Jiangsu province[J]. China Vegetables,2021(11):113-117.

    [79] 孫錦,高洪波,田婧,王軍偉,杜長(zhǎng)霞,郭世榮. 我國(guó)設(shè)施園藝發(fā)展現(xiàn)狀與趨勢(shì)[J]. 南京農(nóng)業(yè)大學(xué)學(xué)報(bào),2019,42(4):594-604.

    SUN Jin,GAO Hongbo,TIAN Jing,WANG Junwei,DU Changxia,GUO Shirong. Development status and trends of protected horticulture in China[J]. Journal of Nanjing Agricultural University,2019,42(4):594-604.

    [80] LIU J Z,ZHAO S Y,LI N,F(xiàn)AHEEM M,ZHOU T,CAI W J,ZHAO M Z,ZHU X Y,LI P P. Development and field test of an autonomous strawberry plug seeding transplanter for use in elevated cultivation[J]. Applied Engineering in Agriculture,2019,35(6):1067-1078.

    [81] XIONG Y,GE Y Y,GRIMSTAD L,F(xiàn)ROM P J. An autonomous strawberry-harvesting robot:Design,development,integration,and field evaluation[J]. Journal of Field Robotics,2020,37(2):202-224.

    [82] 閻應(yīng)紅. 柑桔機(jī)械化和機(jī)器人采收研發(fā)現(xiàn)狀與展望[J]. 中國(guó)南方果樹(shù),2023,52(2):203-209.

    YAN Yinghong. Current status and future prospects of research and development on mechanization and robotic harvesting of citrus[J]. South China Fruits,2023,52(2):203-209.

    [83] 姬麗雯,劉永華,高菊玲,吳丹. 溫室草莓采摘機(jī)器人設(shè)計(jì)與試驗(yàn)[J]. 中國(guó)農(nóng)機(jī)化學(xué)報(bào),2023,44(1):192-198.

    JI Liwen,LIU Yonghua,GAO Juling,WU Dan. Design and experiment of strawberry picking robot in greenhouse[J]. Journal of Chinese Agricultural Mechanization,2023,44(1):192-198.

    [84] 劉霓紅,蔣先平,程俊峰,李惠玲,李葦,薛坤鵬,侯露,熊征. 國(guó)外有機(jī)設(shè)施園藝現(xiàn)狀及對(duì)中國(guó)設(shè)施農(nóng)業(yè)可持續(xù)發(fā)展的啟示[J]. 農(nóng)業(yè)工程技術(shù),2023,43(6):78.

    LIU Nihong,JIANG Xianping,CHENG Junfeng,LI Huiling,LI Wei,XUE Kunpeng,HOU Lu,XIONG Zheng. Current status of organic protected horticulture abroad and its implications for sustainable development of protected agriculture in china[J]. Agricultural Engineering Technology,2023,43(6):78.

    [85] 束勝,康云艷,王玉,袁凌云,鐘珉,孫錦,郭世榮. 世界設(shè)施園藝發(fā)展概況、特點(diǎn)及趨勢(shì)分析[J]. 中國(guó)蔬菜,2018(7):1-13.

    SHU Sheng,KANG Yunyan,WANG Yu,YUAN Lingyun,ZHONG Min,SUN Jin,GUO Shirong. Analysis of the development status, characteristics, and trends of global facility horticulture[J]. China Vegetables,2018(7):1-13.

    [86] EZZAERI K,F(xiàn)ATNASSI H,WIFAYA A,BAZGAOU A,AHAROUNE A,PONCET C,BEKKAOUI A,BOUIRDEN L. Performance of photovoltaic Canarian greenhouse:A comparison study between summer and winter seasons[J]. Solar Energy,2020,198:275-282.

    [87] REGANOLD J P,WACHTER J M. Organic agriculture in the twenty-first century[J]. Nature Plants,2016,2:15221.

    [88] RAHMANN G,REZA ARDAKANI M,BàRBERI P,BOEHM H,CANALI S,CHANDER M,DAVID W,DENGEL L,ERISMAN J W,GALVIS-MARTINEZ A C,HAMM U,KAHL J,K?PKE U,KüHNE S,LEE S B,L?ES A K,MOOS J H,NEUHOF D,NUUTILA J T,OLOWE V,OPPERMANN R,REMBIA?KOWSKA E,RIDDLE J,RASMUSSEN I A,SHADE J,SOHN S M,TADESSE M,TASHI S,THATCHER A,UDDIN N,VON FRAGSTEIN UND NIEMSDORFF P,WIBE A,WIVSTAD M,WU W L,ZANOLI R. Organic agriculture 3.0 is innovation with research[J]. Organic Agriculture,2017,7(3):169-197.

    [89] RAMIN SHAMSHIRI R,KALANTARI F,TING K C,THORP K R,HAMEED I A,WELTZIEN C,AHMAD D,MOJGAN SHAD Z. Advances in greenhouse automation and controlled environment agriculture:A transition to plant factories and urban agriculture[J]. International Journal of Agricultural and Biological Engineering,2018,11(1):1-22.

    [90] FATNASSI H,BOURNET P E,BOULARD T,ROY J C,MOLINA-AIZ F D,ZAABOUL R. Use of computational fluid dynamic tools to model the coupling of plant canopy activity and climate in greenhouses and closed plant growth systems:A review[J]. Biosystems Engineering,2023,230:388-408.

    [91] CHU C R,LAN T W,TASI R K,WU T R,YANG C K. Wind-driven natural ventilation of greenhouses with vegetation[J]. Biosystems Engineering,2017,164:221-234.

    [92] FERENTINOS K P,KATSOULAS N,TZOUNIS A,BARTZANAS T,KITTAS C. Wireless sensor networks for greenhouse climate and plant condition assessment[J]. Biosystems Engineering,2017,153:70-81.

    [93] CHAUHAN P S,KUMAR A. Performance analysis of greenhouse dryer by using insulated north-wall under natural convection mode[J]. Energy Reports,2016,2:107-116.

    [94] KAWASHIMA H. Development of a new energy-saving pipe-framed greenhouse[J]. Japan Agricultural Research Quarterly,2015,49:235-243.

    [95] HOFFMAN J,LOEBER A. Exploring the micro-politics in transitions from a practice perspective:The case of greenhouse innovation in the Netherlands[J]. Journal of Environmental Policy amp; Planning,2016,18(5):692-711.

    [96] DOUGKA G,BRIASSOULIS D. Load carrying capacity of greenhouse covering films under wind action:Optimising the supporting systems of greenhouse films[J]. Biosystems Engineering,2020,192:199-214.

    [97] KUZNETSOV S,POSPISIL S. Full-scale measurements of local wind loads on a high-rise building using wind tunnel based predictions[J]. IOP Conference Series:Materials Science and Engineering,2019,471:052053.

    [98] KIM R W,LEE I B,YEO U H,LEE S Y. Evaluation of various national greenhouse design standards for wind loading[J]. Biosystems Engineering,2019,188:136-154.

    [99] 竇宗信,李寬瑩,龐勇,王寶春,徐鑒民,李冠男,王永旭. 北方設(shè)施葡萄發(fā)展現(xiàn)狀與對(duì)策探析[J]. 南方農(nóng)機(jī),2023,54(8):17-19.

    DOU Zongxin,LI Kuanying,PANG Yong,WANG Baochun,XU Jianmin,LI Guannan,WANG Yongxu. Present situation and development countermeasures of protected grape in North China[J]. China Southern Agricultural Machinery,2023,54(8):17-19.

    [100] 牟德生,郭艷蘭,張斌,王鑫,趙連鑫,李強(qiáng),馬尚有,陳巖輝. 河西走廊設(shè)施葡萄產(chǎn)業(yè)現(xiàn)狀及高質(zhì)量發(fā)展對(duì)策建議[J]. 中外葡萄與葡萄酒,2024(3):114-118.

    MU Desheng,GUO Yanlan,ZHANG Bin,WANG Xin,ZHAO Lianxin,LI Qiang,MA Shangyou,CHEN Yanhui. Current situation and high quality development countermeasures of facility grape industry in Hexi Corridor[J]. Sino-Overseas Grapevine amp; Wine,2024(3):114-118.

    [101] 田躍,姚冠新. 江蘇省設(shè)施果樹(shù)產(chǎn)業(yè)發(fā)展現(xiàn)狀、問(wèn)題及對(duì)策[J]. 中國(guó)果樹(shù),2022(3):98-102.

    TIAN Yue,YAO Guanxin. The current situation, problems and countermeasures of the development of protected fruit industry in Jiangsu Province[J]. China Fruits,2022(3):98-102.

    [102] 鄭寧寧. 物聯(lián)網(wǎng)技術(shù)在溫室大棚中推廣問(wèn)題與對(duì)策研究[J]. 山東農(nóng)業(yè)工程學(xué)院學(xué)報(bào),2022,39(6):28-31.

    ZHENG Ningning. Research on the problems and countermeasures of popularization of internet of things technology in greenhouses[J]. The Journal of Shandong Agriculture and Engineering University,2022,39(6):28-31.

    [103] 劉秀先. 提高設(shè)施果樹(shù)栽培光照效果的樹(shù)形研究[J]. 農(nóng)業(yè)開(kāi)發(fā)與裝備,2022(2):235-237.

    LIU Xiuxian. Research on tree shapes to improve lighting effects in protected fruit tree cultivation[J]. Agricultural Development amp; Equipments,2022(2):235-237.

    [104] 陳建,張文河. 北方果樹(shù)設(shè)施栽培的現(xiàn)狀及展望[J]. 現(xiàn)代農(nóng)業(yè)研究,2021,27(7):115-116.

    CHEN Jian,ZHANG Wenhe. Present situation and prospect of fruit tree cultivation facilities in North China[J]. Modern Agriculture Research,2021,27(7):115-116.

    [105] 王婷. 探究果樹(shù)設(shè)施栽培發(fā)展現(xiàn)狀與展望[J]. 現(xiàn)代園藝,2020(10):10-11.

    WANG Ting. Exploration of the current status and prospects for development of protected cultivation of fruit trees[J]. Xiandai Horticulture,2020(10):10-11.

    [106] 齊飛,李?lèi)?,李邵,何芬,周新? 世界設(shè)施園藝智能化裝備發(fā)展對(duì)中國(guó)的啟示研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(2):183-195.

    QI Fei,LI Kai,LI Shao,HE Fen,ZHOU Xinqun. Development of intelligent equipment for protected horticulture in world and enlightenment to China[J]. Transactions of the Chinese Society of Agricultural Engineering,2019,35(2):183-195.

    [107] 趙立虹,薛梅. 智能化農(nóng)機(jī)裝備助力設(shè)施園藝發(fā)展探析[J]. 農(nóng)業(yè)裝備與車(chē)輛工程,2021,59(9):153-155.

    ZHAO Lihong,XUE Mei. Analysis on development of protected horticulture with intelligent agricultural machinery equipment[J]. Agricultural Equipment amp; Vehicle Engineering,2021,59(9):153-155.

    [108] 古寧寧. “農(nóng)藝-農(nóng)機(jī)-設(shè)施” 深度融合推動(dòng)設(shè)施園藝高效發(fā)展[J]. 農(nóng)業(yè)工程技術(shù),2024,44(3):12-14.

    GU Ningning. Deep integration of agronomy,agricultural machinery, and facilities to promote efficient development of facility horticulture[J]. Agricultural Engineering Technology,2024,44(3):12-14.

    [109] 宋衛(wèi)堂,李明. 以“農(nóng)藝-農(nóng)機(jī)-設(shè)施” 深度融合推動(dòng)設(shè)施園藝高效發(fā)展[J]. 農(nóng)業(yè)工程技術(shù),2020,40(1):44-47.

    SONG Weitang,LI Ming. Promote the efficient development of protected horticulture through the deep integration of agriculture-agricultural machinery-facilities[J]. Agricultural Engineering Technology,2020,40(1):44-47.

    [110] 王連泉,王旭東. 智能化機(jī)械裝備在設(shè)施農(nóng)業(yè)中的應(yīng)用及創(chuàng)新[J]. 中國(guó)農(nóng)機(jī)裝備,2024(7):66-68.

    WANG Lianquan,WANG Xudong. Application and innovation of intelligent machinery and equipment in facility agriculture[J]. China Agricultural Machinery Equipment,2024(7):66-68.

    [111] 郭娜,田素博,須暉,關(guān)旭生,李天來(lái). 設(shè)施園藝植保裝備及其精準(zhǔn)施藥技術(shù)研究進(jìn)展[J]. 農(nóng)機(jī)化研究,2022,44(11):1-10.

    GUO Na,TIAN Subo,XU Hui,GUAN Xusheng,LI Tianlai. Research progress on precision spraying technology and equipment of protected horticulture[J]. Journal of Agricultural Mechanization Research,2022,44(11):1-10.

    猜你喜歡
    裝備栽培
    好裝備這樣造
    哪些裝備為太空之旅護(hù)航
    新少年(2022年9期)2022-09-17 07:10:58
    這些精銳與裝備馳援瀘定
    港警新裝備
    蘋(píng)果樹(shù)栽培及凍害預(yù)防技術(shù)
    圣女果高產(chǎn)栽培六步曲
    防曬裝備折起來(lái)
    自然栽培的味道
    特別健康(2018年3期)2018-07-04 00:40:18
    夏季苦瓜栽培
    大豆要高產(chǎn),該如何栽培?
    亚洲五月天丁香| 久久中文看片网| 欧美性猛交╳xxx乱大交人| 亚洲欧美成人综合另类久久久 | 日本与韩国留学比较| 91午夜精品亚洲一区二区三区| 熟女电影av网| 日本成人三级电影网站| 久久精品久久久久久噜噜老黄 | 国产精品,欧美在线| 超碰av人人做人人爽久久| 男插女下体视频免费在线播放| 99久久精品国产国产毛片| 毛片女人毛片| 日韩精品青青久久久久久| 中文资源天堂在线| 国产综合懂色| 亚洲图色成人| 欧美xxxx性猛交bbbb| 国产精品三级大全| 亚洲自偷自拍三级| 久久精品国产自在天天线| 亚洲av中文av极速乱| av福利片在线观看| 婷婷精品国产亚洲av| 国产高清不卡午夜福利| 中文亚洲av片在线观看爽| 精品人妻偷拍中文字幕| 3wmmmm亚洲av在线观看| 此物有八面人人有两片| 中文资源天堂在线| 国产乱人偷精品视频| 国产人妻一区二区三区在| 日本撒尿小便嘘嘘汇集6| 又爽又黄无遮挡网站| 亚洲av电影不卡..在线观看| 97超级碰碰碰精品色视频在线观看| 久久精品夜色国产| 性欧美人与动物交配| 久久久久精品国产欧美久久久| 日韩大尺度精品在线看网址| 青春草视频在线免费观看| 中文字幕av在线有码专区| 日韩大尺度精品在线看网址| 国产精品,欧美在线| 黄片wwwwww| 精品熟女少妇av免费看| 精品福利观看| 亚洲色图av天堂| 精品福利观看| 日本-黄色视频高清免费观看| 插逼视频在线观看| 又粗又爽又猛毛片免费看| 91午夜精品亚洲一区二区三区| 亚洲精品粉嫩美女一区| 97超级碰碰碰精品色视频在线观看| 在线播放无遮挡| 亚洲精品在线观看二区| 69人妻影院| 免费看日本二区| 两性午夜刺激爽爽歪歪视频在线观看| 色噜噜av男人的天堂激情| 成人午夜高清在线视频| 蜜桃亚洲精品一区二区三区| 国产黄片美女视频| 国产精品人妻久久久影院| 春色校园在线视频观看| 亚洲在线观看片| 国产极品精品免费视频能看的| 97超视频在线观看视频| 美女 人体艺术 gogo| 久久久欧美国产精品| 此物有八面人人有两片| 亚洲aⅴ乱码一区二区在线播放| 干丝袜人妻中文字幕| 不卡视频在线观看欧美| 久久久久久久久大av| 免费人成视频x8x8入口观看| 老司机福利观看| 少妇熟女aⅴ在线视频| eeuss影院久久| 99国产精品一区二区蜜桃av| 老师上课跳d突然被开到最大视频| 国产白丝娇喘喷水9色精品| 国产蜜桃级精品一区二区三区| 毛片一级片免费看久久久久| 国产色婷婷99| 老熟妇仑乱视频hdxx| 色吧在线观看| 午夜激情欧美在线| 国产午夜精品论理片| 深夜a级毛片| 女人十人毛片免费观看3o分钟| 午夜精品国产一区二区电影 | 欧美日本视频| 久久精品国产自在天天线| 六月丁香七月| 欧美最黄视频在线播放免费| 亚洲精品一区av在线观看| 嫩草影院新地址| 成人鲁丝片一二三区免费| 成人高潮视频无遮挡免费网站| 在线免费观看不下载黄p国产| 免费看a级黄色片| 亚洲精品日韩在线中文字幕 | 夜夜看夜夜爽夜夜摸| 中文字幕av成人在线电影| 日本色播在线视频| a级毛片免费高清观看在线播放| 精品人妻熟女av久视频| 久久久久国产网址| 国产精品人妻久久久影院| 国产精品美女特级片免费视频播放器| 国产成人freesex在线 | 少妇的逼水好多| 亚洲真实伦在线观看| 欧美日韩乱码在线| 精品午夜福利视频在线观看一区| 熟女电影av网| 欧美性感艳星| 国产在视频线在精品| 国产一级毛片七仙女欲春2| 亚洲熟妇熟女久久| 特大巨黑吊av在线直播| 国产视频一区二区在线看| 我的女老师完整版在线观看| 最近在线观看免费完整版| a级一级毛片免费在线观看| 人人妻人人澡欧美一区二区| 欧美成人一区二区免费高清观看| 久久久久久久久中文| 亚洲自拍偷在线| 免费人成视频x8x8入口观看| 麻豆一二三区av精品| 亚洲精品亚洲一区二区| 欧美性感艳星| 亚洲精品乱码久久久v下载方式| 高清午夜精品一区二区三区 | 久99久视频精品免费| 中文资源天堂在线| 日日撸夜夜添| 能在线免费观看的黄片| 国产黄片美女视频| 国产国拍精品亚洲av在线观看| 日本撒尿小便嘘嘘汇集6| 亚洲av五月六月丁香网| 国产一区二区激情短视频| 欧美中文日本在线观看视频| 亚洲欧美精品自产自拍| 亚洲av第一区精品v没综合| 亚洲国产精品国产精品| 99国产极品粉嫩在线观看| 69人妻影院| 九九爱精品视频在线观看| 日日摸夜夜添夜夜添av毛片| 国产精品不卡视频一区二区| 国产成人aa在线观看| aaaaa片日本免费| 人妻久久中文字幕网| 亚洲精品乱码久久久v下载方式| 联通29元200g的流量卡| 国产免费男女视频| 国产女主播在线喷水免费视频网站 | 尤物成人国产欧美一区二区三区| 亚洲激情五月婷婷啪啪| 99久久无色码亚洲精品果冻| 午夜免费男女啪啪视频观看 | 精品久久久久久久久久免费视频| 成人三级黄色视频| av女优亚洲男人天堂| 国产免费男女视频| 日产精品乱码卡一卡2卡三| 长腿黑丝高跟| 悠悠久久av| 中文资源天堂在线| 波多野结衣高清无吗| 99久久精品热视频| 日本免费a在线| 插阴视频在线观看视频| 啦啦啦啦在线视频资源| 一卡2卡三卡四卡精品乱码亚洲| 亚洲在线观看片| 欧美日韩一区二区视频在线观看视频在线 | 国产高清视频在线观看网站| 国产精品一区www在线观看| 一个人看视频在线观看www免费| 国产精品免费一区二区三区在线| 51国产日韩欧美| 黄色配什么色好看| a级毛片免费高清观看在线播放| 最新在线观看一区二区三区| 色5月婷婷丁香| 国产精品国产高清国产av| 国产老妇女一区| 欧美日本亚洲视频在线播放| 久久久久久伊人网av| 男女视频在线观看网站免费| 国产又黄又爽又无遮挡在线| 人人妻人人澡人人爽人人夜夜 | 亚洲精品在线观看二区| 91久久精品国产一区二区三区| 99riav亚洲国产免费| 欧美高清性xxxxhd video| 亚洲色图av天堂| 国产真实伦视频高清在线观看| 亚洲av一区综合| 亚洲成a人片在线一区二区| 国产激情偷乱视频一区二区| 成年女人看的毛片在线观看| 菩萨蛮人人尽说江南好唐韦庄 | 91久久精品国产一区二区三区| 国产亚洲av嫩草精品影院| 又爽又黄无遮挡网站| 又爽又黄a免费视频| 国产亚洲精品av在线| 少妇熟女aⅴ在线视频| 国产美女午夜福利| 精品久久久久久成人av| 国产在线精品亚洲第一网站| 久久久精品欧美日韩精品| 成年女人永久免费观看视频| 欧美日韩在线观看h| 悠悠久久av| 少妇丰满av| 久久6这里有精品| 少妇人妻精品综合一区二区 | 国产午夜精品久久久久久一区二区三区 | 夜夜看夜夜爽夜夜摸| 91av网一区二区| 97在线视频观看| 成人av在线播放网站| 欧美成人精品欧美一级黄| 久久久久精品国产欧美久久久| 成人精品一区二区免费| 国产黄片美女视频| 日韩精品青青久久久久久| 丰满的人妻完整版| 国产一区二区激情短视频| 少妇猛男粗大的猛烈进出视频 | 欧美极品一区二区三区四区| 久久久精品大字幕| 成人高潮视频无遮挡免费网站| 大型黄色视频在线免费观看| 久久99热这里只有精品18| 我要看日韩黄色一级片| 毛片女人毛片| 直男gayav资源| 日韩国内少妇激情av| 久久欧美精品欧美久久欧美| 亚洲一级一片aⅴ在线观看| 成人午夜高清在线视频| 韩国av在线不卡| 亚洲三级黄色毛片| 国产亚洲精品久久久久久毛片| 亚洲精品成人久久久久久| 欧美性猛交黑人性爽| 成熟少妇高潮喷水视频| 中文亚洲av片在线观看爽| 国产精品人妻久久久影院| 最后的刺客免费高清国语| 成熟少妇高潮喷水视频| 久久久久久久久久成人| 日韩一本色道免费dvd| 十八禁网站免费在线| 男插女下体视频免费在线播放| 精品久久久久久成人av| 两性午夜刺激爽爽歪歪视频在线观看| 欧美又色又爽又黄视频| 久久久精品94久久精品| 91精品国产九色| 国产aⅴ精品一区二区三区波| 亚洲人成网站在线播放欧美日韩| 日本 av在线| 男女之事视频高清在线观看| 人妻久久中文字幕网| 黄色日韩在线| 黑人高潮一二区| 可以在线观看的亚洲视频| 欧美高清成人免费视频www| 色在线成人网| 久久午夜福利片| 国产乱人偷精品视频| 亚洲第一区二区三区不卡| 18禁黄网站禁片免费观看直播| 国产女主播在线喷水免费视频网站 | 成人精品一区二区免费| 久久人人精品亚洲av| 插阴视频在线观看视频| 亚洲无线观看免费| 一a级毛片在线观看| 高清毛片免费观看视频网站| 成人一区二区视频在线观看| 国产爱豆传媒在线观看| 听说在线观看完整版免费高清| 晚上一个人看的免费电影| 国产黄片美女视频| 亚洲自偷自拍三级| 国产美女午夜福利| 亚洲欧美日韩东京热| 成年女人永久免费观看视频| 大又大粗又爽又黄少妇毛片口| 欧美日本视频| 精华霜和精华液先用哪个| 美女 人体艺术 gogo| 人妻夜夜爽99麻豆av| 69av精品久久久久久| 欧美日韩国产亚洲二区| or卡值多少钱| 中文字幕av在线有码专区| 十八禁网站免费在线| 中文字幕人妻熟人妻熟丝袜美| 美女大奶头视频| 秋霞在线观看毛片| 神马国产精品三级电影在线观看| 精品无人区乱码1区二区| 国产一级毛片七仙女欲春2| 欧美成人一区二区免费高清观看| 成人亚洲欧美一区二区av| 日韩av在线大香蕉| 网址你懂的国产日韩在线| 日本爱情动作片www.在线观看 | 亚洲aⅴ乱码一区二区在线播放| 国产午夜精品论理片| 综合色av麻豆| 国产亚洲精品综合一区在线观看| 国产欧美日韩精品亚洲av| 久久久a久久爽久久v久久| 日产精品乱码卡一卡2卡三| 日韩 亚洲 欧美在线| 国内精品美女久久久久久| 国产成人影院久久av| 成年版毛片免费区| 欧美成人a在线观看| 久久久久国产精品人妻aⅴ院| 免费观看人在逋| 日韩欧美在线乱码| a级毛片免费高清观看在线播放| 欧美最黄视频在线播放免费| 国产精品三级大全| 午夜免费男女啪啪视频观看 | 国内久久婷婷六月综合欲色啪| 精品久久久久久久久久久久久| 国产单亲对白刺激| 亚洲经典国产精华液单| 亚洲熟妇熟女久久| 老司机午夜福利在线观看视频| 一级黄色大片毛片| 亚洲最大成人av| 久久久久久久久久久丰满| 国产乱人视频| 国产精品久久久久久av不卡| 成人一区二区视频在线观看| 精品国产三级普通话版| 国产真实乱freesex| 亚洲色图av天堂| 少妇的逼好多水| 国产av一区在线观看免费| 亚洲精品一区av在线观看| 久久久久国内视频| 欧美绝顶高潮抽搐喷水| 亚洲av免费在线观看| 国产视频内射| 精品一区二区三区视频在线观看免费| 午夜亚洲福利在线播放| 久久久久精品国产欧美久久久| av中文乱码字幕在线| 亚洲最大成人手机在线| 在线a可以看的网站| 91久久精品国产一区二区三区| 真实男女啪啪啪动态图| 全区人妻精品视频| 日韩欧美免费精品| 精品一区二区三区av网在线观看| 成人三级黄色视频| 亚洲四区av| 亚洲专区国产一区二区| 乱人视频在线观看| 啦啦啦观看免费观看视频高清| 丰满的人妻完整版| 久久人人爽人人片av| 国产高潮美女av| 18禁在线无遮挡免费观看视频 | 深夜a级毛片| 日本欧美国产在线视频| 网址你懂的国产日韩在线| 偷拍熟女少妇极品色| 最近最新中文字幕大全电影3| 一区福利在线观看| 亚洲成人久久爱视频| 欧美日韩综合久久久久久| 亚洲av第一区精品v没综合| 午夜免费男女啪啪视频观看 | 日日摸夜夜添夜夜添小说| 男女下面进入的视频免费午夜| 最近的中文字幕免费完整| 国产老妇女一区| 一夜夜www| 国产探花在线观看一区二区| 日日撸夜夜添| 国产精品久久电影中文字幕| 神马国产精品三级电影在线观看| 在现免费观看毛片| 熟女电影av网| 日日干狠狠操夜夜爽| 看黄色毛片网站| 一进一出好大好爽视频| 成人二区视频| 日韩av不卡免费在线播放| 毛片女人毛片| 精品人妻一区二区三区麻豆 | 我要看日韩黄色一级片| 亚洲美女搞黄在线观看 | 国产精华一区二区三区| 国产伦精品一区二区三区四那| 成人国产麻豆网| 国产亚洲欧美98| 欧美三级亚洲精品| 亚洲欧美日韩卡通动漫| 18+在线观看网站| 免费不卡的大黄色大毛片视频在线观看 | 久久精品夜夜夜夜夜久久蜜豆| 久久久久久国产a免费观看| 日本一本二区三区精品| 国产精品福利在线免费观看| 久久久久久久午夜电影| 免费人成在线观看视频色| 亚洲精品一区av在线观看| 最后的刺客免费高清国语| 久久久久国产精品人妻aⅴ院| 校园人妻丝袜中文字幕| 免费一级毛片在线播放高清视频| eeuss影院久久| 51国产日韩欧美| 99视频精品全部免费 在线| 国产精品三级大全| 日韩欧美精品免费久久| 婷婷精品国产亚洲av| 久久6这里有精品| 老熟妇乱子伦视频在线观看| 最新在线观看一区二区三区| 大型黄色视频在线免费观看| 亚洲精品456在线播放app| 少妇被粗大猛烈的视频| 国产高清三级在线| 国产精品一区二区三区四区久久| 在线播放无遮挡| av视频在线观看入口| 三级经典国产精品| 国产欧美日韩一区二区精品| 国产三级在线视频| 欧美另类亚洲清纯唯美| 日韩三级伦理在线观看| 国产精品人妻久久久久久| 日本爱情动作片www.在线观看 | 欧美日韩乱码在线| 在线a可以看的网站| 麻豆国产av国片精品| 日韩人妻高清精品专区| 久久草成人影院| 草草在线视频免费看| 亚洲av成人精品一区久久| 久久久久久国产a免费观看| 国产精品99久久久久久久久| 久久韩国三级中文字幕| 国产精品亚洲一级av第二区| 狂野欧美白嫩少妇大欣赏| 国产 一区精品| 久久精品国产鲁丝片午夜精品| 国产欧美日韩精品亚洲av| 在线播放无遮挡| 卡戴珊不雅视频在线播放| 高清午夜精品一区二区三区 | 99久久精品一区二区三区| 亚洲性夜色夜夜综合| 欧美绝顶高潮抽搐喷水| 亚洲精品国产av成人精品 | a级毛色黄片| 成人国产麻豆网| 国内精品久久久久精免费| 综合色av麻豆| h日本视频在线播放| 男人和女人高潮做爰伦理| 亚洲精品在线观看二区| 久久精品国产亚洲av天美| 波多野结衣高清作品| 尾随美女入室| 欧美xxxx黑人xx丫x性爽| 悠悠久久av| 性欧美人与动物交配| 菩萨蛮人人尽说江南好唐韦庄 | 国产成人aa在线观看| 国产 一区精品| 少妇猛男粗大的猛烈进出视频 | 欧美高清性xxxxhd video| 国产av在哪里看| 男人和女人高潮做爰伦理| 精品不卡国产一区二区三区| 日本爱情动作片www.在线观看 | 观看美女的网站| 91狼人影院| 美女xxoo啪啪120秒动态图| 中文资源天堂在线| 免费看美女性在线毛片视频| 中文资源天堂在线| 我要看日韩黄色一级片| 欧美日韩国产亚洲二区| 亚洲va在线va天堂va国产| 国产精品久久久久久亚洲av鲁大| 别揉我奶头 嗯啊视频| 国产私拍福利视频在线观看| 在线国产一区二区在线| 欧美成人a在线观看| 久久久久久九九精品二区国产| 久久草成人影院| 黑人高潮一二区| 国产伦在线观看视频一区| 一级毛片我不卡| 日韩精品青青久久久久久| 高清毛片免费看| 久久久久久国产a免费观看| 又黄又爽又免费观看的视频| 国产精品嫩草影院av在线观看| 亚洲欧美日韩无卡精品| 天堂网av新在线| 欧美日韩乱码在线| 寂寞人妻少妇视频99o| 国产精品伦人一区二区| 亚洲熟妇中文字幕五十中出| 成人高潮视频无遮挡免费网站| 久久久色成人| 日韩中字成人| 国产欧美日韩精品一区二区| 免费人成视频x8x8入口观看| 悠悠久久av| 午夜精品国产一区二区电影 | 一个人免费在线观看电影| 成人特级黄色片久久久久久久| 免费在线观看成人毛片| 亚洲综合色惰| 国产探花在线观看一区二区| 欧美性猛交黑人性爽| 国产伦在线观看视频一区| 岛国在线免费视频观看| 国产亚洲精品av在线| 神马国产精品三级电影在线观看| 美女高潮的动态| 看非洲黑人一级黄片| 老师上课跳d突然被开到最大视频| 久久精品夜夜夜夜夜久久蜜豆| 蜜桃亚洲精品一区二区三区| 草草在线视频免费看| 成人综合一区亚洲| 亚洲精品粉嫩美女一区| 亚洲,欧美,日韩| 美女内射精品一级片tv| 在线a可以看的网站| 在线免费十八禁| 国产精品福利在线免费观看| 日本在线视频免费播放| 国产精品人妻久久久影院| 国产色婷婷99| 偷拍熟女少妇极品色| 变态另类成人亚洲欧美熟女| 99在线视频只有这里精品首页| 在线观看av片永久免费下载| 国产69精品久久久久777片| 成人国产麻豆网| 观看免费一级毛片| 国国产精品蜜臀av免费| 特级一级黄色大片| 观看美女的网站| 婷婷精品国产亚洲av| 欧美色视频一区免费| 亚洲真实伦在线观看| 校园春色视频在线观看| 国产成年人精品一区二区| 国产在线男女| av在线播放精品| 在线天堂最新版资源| 午夜激情欧美在线| 亚洲美女黄片视频| 老司机午夜福利在线观看视频| 99久久精品热视频| 国内精品久久久久精免费| 色综合站精品国产| 欧美绝顶高潮抽搐喷水| 一区二区三区免费毛片| 成年女人看的毛片在线观看| 51国产日韩欧美| 亚洲精品成人久久久久久| 又爽又黄a免费视频| 少妇的逼好多水| 国产精品不卡视频一区二区| 成人午夜高清在线视频| 欧美+亚洲+日韩+国产| 真实男女啪啪啪动态图| 99国产精品一区二区蜜桃av| 22中文网久久字幕| 又爽又黄a免费视频| 一夜夜www| 久久精品人妻少妇| 一本精品99久久精品77| 亚洲七黄色美女视频| 日韩精品青青久久久久久| 久久精品国产亚洲av天美| 波多野结衣高清作品| 日韩成人伦理影院| 成人av一区二区三区在线看| 免费搜索国产男女视频| 色综合色国产| 久久九九热精品免费| 国产高潮美女av| 99热这里只有是精品在线观看| 精品久久久久久久久亚洲| 国产aⅴ精品一区二区三区波|