摘" " 要:果樹(shù)設(shè)施栽培是通過(guò)人為因素改變果樹(shù)生產(chǎn)的外部環(huán)境,從而改變果樹(shù)生產(chǎn)周期,使果品提前或推遲成熟,提高果樹(shù)的生產(chǎn)效益,已成為中國(guó)果業(yè)發(fā)展的新業(yè)態(tài)。重點(diǎn)闡述分析了果樹(shù)設(shè)施栽培中的建筑設(shè)施、監(jiān)測(cè)系統(tǒng)、環(huán)境調(diào)控設(shè)備、生產(chǎn)設(shè)備與機(jī)具等關(guān)鍵裝備的研究應(yīng)用現(xiàn)狀,總結(jié)中國(guó)設(shè)施果樹(shù)栽培裝備研究應(yīng)用中存在的問(wèn)題有:設(shè)施結(jié)構(gòu)簡(jiǎn)陋,缺乏專(zhuān)用覆蓋材料,環(huán)境調(diào)控能力弱,農(nóng)機(jī)生產(chǎn)裝備落后、智能化不足等。指出了中國(guó)設(shè)施果樹(shù)栽培裝備未來(lái)的發(fā)展方向?yàn)椋航ㄖO(shè)施智能化、生態(tài)化,設(shè)施環(huán)境調(diào)控智能化,農(nóng)機(jī)農(nóng)藝高度融合。
關(guān)鍵詞:設(shè)施果樹(shù);栽培;裝備;環(huán)境控制;中國(guó)
中圖分類(lèi)號(hào):S66 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1009-9980(2024)12-2567-15
Research status and prospects of equipments for protected fruit tree cultivation in China
WANG Wenming1, WANG Zhiqiang2#, SUN Yongli3, HE lihong4*, WANG Haibo2*
(1Taizhou Vocational College of Science and Technology, Taizhou 318020, Zhejiang, China; 2Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng 125100, Liaoning, China; 3Northeast Agricultural University, Harbin 150030, Heilongjiang, China; 4China Agricultural Machinery Testing Centre, Ministry of Agriculture and Rural Affairs, Beijing 100122, China)
Abstract: The cultivation of fruit trees in facilities is a new format in the development of China’s fruit industry, which changes the external environment of fruit production through human factors, thus changing the production cycle of fruit crops, making fruit ripening ahead of or behind schedule, and improving the production efficiency of fruit trees. Compared with open-air cultivation and field production, the protected fruit tree cultivation has the outstanding advantages of being unaffected by climatic conditions, high degree of automation, high utilization rate of space per unit area, and continuous production throughout the year. Facility fruit tree cultivation equipment is a key element for realizing the facility cultivation of fruit trees. In recent years, with the continuous progress of science and technology and the deepening of agricultural modernization, significant achievements have been made in the research on and application of facility fruit tree cultivation equipments in China. This article focuses on analyzing the current research and application status of key equipments in fruit tree facility cultivation, including architectural facilities, monitoring systems, environmental control equipment, production equipment and machinery. The issues identified in the research and application of fruit tree facility cultivation equipment in China are summarized as follows: (1) Simplistic facility structures: Fruit tree facility cultivation requires specialized facilities such as greenhouses, large sheds, and irrigation and fertilization systems. However, market supply is limited, and orchards often rely on general agricultural facilities. These facilities are inadequate for meeting the specific needs of fruit trees, leading to poor growth and low yields. Due to economic and technical constraints, fruit growers tend to opt for low-cost and structurally simple large sheds or greenhouses. While these can basically meet growth requirements, they lack insulation, ventilation and shading functions, resulting in significant environmental fluctuations and cramped spaces that are unfavorable for mechanized operations, thereby limiting the production efficiency of facility fruit trees. (2) Lack of specialized covering materials: Fruit tree facility cultivation necessitates specialized covering materials and suitable substrates, but the market offers limited specialized materials. Orchards frequently use ordinary agricultural materials as substitutes, yielding unsatisfactory results. These alternative materials often have poor light transmission and weak weather resistance, and are prone to damage and aging, leading to insufficient illumination and temperature fluctuations. Simultaneously, unsuitable substrates cause poor root development and frequent pest and disease outbreaks in fruit trees. These issues collectively affect the effectiveness of facility cultivation and fruit quality, highlighting the urgency of research and application of specialized materials. (3) Weak environmental control capabilities: Facility fruit tree cultivation requires precise control of environmental factors such as temperature, humidity and lighting to meet the needs of fruit trees at different growth stages. However, due to simplistic facility structures, many orchards lack corresponding environmental control equipment, such as temperature control systems, humidity control systems and light supplementation systems. This results in ineffective environmental control within the facilities, failing to meet the optimal conditions for fruit tree growth, which subsequently affects fruit tree yield and quality. (4) Outdated agricultural machinery and equipment with insufficient intelligence: Facility fruit tree cultivation requires specific agricultural machinery and equipment to adapt to its production environment and operational needs, such as miniaturized agricultural machinery to fit the cramped spatial layout within facilities. However, most fruit tree facilities still use general agricultural machinery and equipment, whose operational accuracy and efficiency fail to meet the requirements of facility fruit tree cultivation. Additionally, the level of automation and intelligence of agricultural machinery and tools is low, with many requiring manual assistance, preventing automated operations and precise control. This increases the production costs of facility fruit tree cultivation and limits production efficiency. The future development directions for fruit tree facility cultivation equipment in China are pointed out as follows: (1) Future architectural facilities will not only provide basic functions like insulation and shading but also integrate smart materials and Internet of Things technology to achieve automated adjustment and ecological cycling. Simultaneously, an ecological cycling system will be constructed within the facilities, such as rainwater collection and reuse, and natural degradation of waste through the synergistic effects between plants and microorganisms. This development direction aims to enhance the adaptability and ecological sustainability of the facilities. (2) Monitoring and control devices will be upgraded to comprehensive intelligent systems that perceive the growth status of fruit trees through the addition of biosensors. The data analysis terminal will employ deep learning and pattern recognition technologies to analyze data in real-time and provide precise guidance for environmental control. Combined with big data and AI, the system can automatically formulate management plans, such as irrigation, fertilization, and pest and disease control, thereby improving the management level and production efficiency of facility fruit tree cultivation. (3) Water and fertilizer integration equipment, combined with high-precision sensors and control systems, will monitor fruit tree growth and soil conditions in real-time, precisely control irrigation and fertilization, and achieve personalized customized management. This will enhance water and fertilizer utilization efficiency, reduce waste, and improve fruit tree quality and yield. Simultaneously, facility agricultural machinery and equipment will incorporate advanced navigation, recognition and communication technologies to achieve automated and intelligent operations, like precise pruning and efficient harvesting. Multiple agricultural machinery and equipment will also share information in real-time and work in coordination to complete complex cultivation tasks. This trend will significantly enhance the efficiency and quality of facility fruit tree cultivation, promoting higher-level development of facility agriculture.
Key words: Facility fruit tree; Cultivation; Equipment; Environmental control; China
設(shè)施栽培,又稱設(shè)施園藝或保護(hù)地栽培,是一種在露地不適于園藝作物生長(zhǎng)的季節(jié)(如寒冷或炎熱季節(jié))或地區(qū),利用特定設(shè)施(如溫室、塑料大棚、小拱棚、養(yǎng)殖棚等)人為地創(chuàng)造適宜園藝作物生長(zhǎng)發(fā)育的小氣候環(huán)境的農(nóng)業(yè)生產(chǎn)方式[1-2]。設(shè)施果樹(shù)栽培,作為現(xiàn)代農(nóng)業(yè)的重要組成部分,對(duì)提高果樹(shù)產(chǎn)量、改善果實(shí)品質(zhì)、滿足市場(chǎng)需求以及推動(dòng)農(nóng)業(yè)產(chǎn)業(yè)結(jié)構(gòu)調(diào)整具有重要的意義[3-5]。栽培裝備是設(shè)施果樹(shù)栽培的關(guān)鍵要素,近年來(lái),隨著科技的不斷進(jìn)步和農(nóng)業(yè)現(xiàn)代化的深入推進(jìn),中國(guó)設(shè)施果樹(shù)栽培裝備的研究與應(yīng)用取得了顯著成果,實(shí)現(xiàn)了從簡(jiǎn)單到復(fù)雜、從單一到多元的轉(zhuǎn)變,涵蓋了溫室大棚、水肥一體化設(shè)備、環(huán)境調(diào)控設(shè)備與農(nóng)機(jī)作業(yè)機(jī)具等多個(gè)方面[6-7]。這些裝備的應(yīng)用不僅改善了果樹(shù)生長(zhǎng)的環(huán)境條件,還實(shí)現(xiàn)了對(duì)果樹(shù)生長(zhǎng)過(guò)程的精準(zhǔn)控制,有效提升了果樹(shù)的產(chǎn)量和品質(zhì)。筆者旨在系統(tǒng)梳理中國(guó)設(shè)施果樹(shù)栽培裝備的研究應(yīng)用現(xiàn)狀,分析其存在的主要問(wèn)題,并探討未來(lái)的發(fā)展趨勢(shì),以期為全面提高中國(guó)設(shè)施果樹(shù)栽培裝備研究應(yīng)用水平提供有益參考。
1 中國(guó)設(shè)施果樹(shù)栽培裝備研究現(xiàn)狀
如圖1所示,中國(guó)設(shè)施果樹(shù)栽培裝備按不同功能可由建筑設(shè)施、測(cè)控裝置、環(huán)境調(diào)控設(shè)備和生產(chǎn)設(shè)備與機(jī)具組成[8-10]。建筑設(shè)施是設(shè)施果樹(shù)栽培的關(guān)鍵裝備,其通常由不同結(jié)構(gòu)的大棚、溫室等組成,可以提供保溫、遮陽(yáng)、通風(fēng)、防蟲(chóng)等功能,可幫助果樹(shù)在寒冷的冬季和早春之間生長(zhǎng),保護(hù)果樹(shù)免受惡劣天氣和害蟲(chóng)的侵害。測(cè)控裝置包括安裝在設(shè)施內(nèi)的各種傳感器(如溫度、光照度、CO2濃度、土壤含水率傳感器等)和數(shù)據(jù)分析決策終端,傳感器用于實(shí)時(shí)監(jiān)測(cè)果樹(shù)生長(zhǎng)環(huán)境的各項(xiàng)參數(shù),了解果樹(shù)所處環(huán)境的狀態(tài),智能決策終端通過(guò)對(duì)傳感器采集數(shù)據(jù)的分析,形成相關(guān)決策傳遞給設(shè)施內(nèi)的環(huán)境調(diào)控設(shè)備(補(bǔ)光、增溫、加濕、通風(fēng)、氣體調(diào)控等),使得設(shè)施內(nèi)的環(huán)境更適宜果樹(shù)的生長(zhǎng)。生產(chǎn)設(shè)備與機(jī)具由水肥一體化裝備與農(nóng)機(jī)作業(yè)裝備組成,水肥一體化裝備的功能是通過(guò)自動(dòng)化攪拌裝備將水和肥料混合并準(zhǔn)確地送到果樹(shù)的根部,有效地控制果樹(shù)的水分和營(yíng)養(yǎng)供應(yīng),以滿足果樹(shù)的生長(zhǎng)需求,可以根據(jù)果樹(shù)的生長(zhǎng)階段和需求調(diào)整水肥的比例和供應(yīng)量,提高果樹(shù)的產(chǎn)量和質(zhì)量。農(nóng)機(jī)作業(yè)裝備主要包括割草機(jī)、修枝機(jī)、果實(shí)采摘機(jī)等,其主要功能是代替人工進(jìn)行設(shè)施內(nèi)的相關(guān)生產(chǎn)環(huán)節(jié)作業(yè),提高果樹(shù)生產(chǎn)效率和栽培質(zhì)量。
1.1 建筑設(shè)施
1.1.1 建筑設(shè)施類(lèi)型與特點(diǎn) 常用的設(shè)施果樹(shù)栽培的建筑設(shè)施主要有日光溫室、塑料大棚和連棟玻璃溫室,其結(jié)構(gòu)特點(diǎn)與材料組成如表1所示。日光溫室是節(jié)能日光溫室的簡(jiǎn)稱,又稱暖棚,由兩側(cè)山墻、維護(hù)后墻體、支撐骨架及覆蓋材料組成[11-12],在中國(guó)北方地區(qū)廣泛應(yīng)用,是一種在室內(nèi)不加熱的溫室,通過(guò)后墻體對(duì)太陽(yáng)能吸收實(shí)現(xiàn)蓄放熱,維持室內(nèi)一定的溫度水平,以滿足作物生長(zhǎng)的需要[13];塑料大棚俗稱冷棚,是一種簡(jiǎn)易實(shí)用的保護(hù)地栽培設(shè)施,利用竹木、鋼材等材料,并覆蓋塑料薄膜,搭成拱形棚,具有建造容易、使用方便、投資較少等優(yōu)點(diǎn),在中國(guó)南方被廣泛應(yīng)用,其有利于果樹(shù)防御自然災(zāi)害,能提早或延遲供應(yīng)鮮果,提高單位面積產(chǎn)量;連棟玻璃溫室是一種以鋼結(jié)構(gòu)為主體,利用玻璃作為覆蓋材料的溫室類(lèi)型,內(nèi)置了采暖、通風(fēng)、灌溉等配套設(shè)備,其采光好、強(qiáng)度高、環(huán)境調(diào)節(jié)能力強(qiáng),在中國(guó)南方經(jīng)濟(jì)發(fā)達(dá)省份已少部分推廣使用,但建造成本較高[14-15]。
1.1.2 建筑設(shè)施結(jié)構(gòu)研究 在設(shè)施果樹(shù)栽培中,建筑設(shè)施的結(jié)構(gòu)設(shè)計(jì)直接關(guān)系到溫室的穩(wěn)定性、耐久性以及果樹(shù)的生產(chǎn)效率,合理的結(jié)構(gòu)設(shè)計(jì)不僅能有效抵御風(fēng)雪等自然災(zāi)害,還能最大化利用光照資源,為果樹(shù)創(chuàng)造適宜的生長(zhǎng)環(huán)境[16]。中國(guó)農(nóng)業(yè)科學(xué)院果樹(shù)研究所漿果類(lèi)創(chuàng)新團(tuán)隊(duì)設(shè)計(jì)了一種適合國(guó)情的低成本、節(jié)能型日光溫室[17],并在不同地區(qū)進(jìn)行了試驗(yàn)驗(yàn)證,結(jié)果顯示該溫室在保溫、采光及積雪清理方面表現(xiàn)優(yōu)異,對(duì)葡萄等果樹(shù)的生長(zhǎng)質(zhì)量和果實(shí)品質(zhì)有顯著提升。郭利民等[18]設(shè)計(jì)了一種高脊、大跨度、空間寬敞的鋼結(jié)構(gòu)日光溫室,其結(jié)構(gòu)穩(wěn)固性顯著提升,增強(qiáng)了抵抗自然災(zāi)害的能力。陳吉[19]和陸琳等[20]針對(duì)不同地域和氣候條件分別設(shè)計(jì)了果樹(shù)專(zhuān)用大棚和適應(yīng)低緯高原氣候的新型日光溫室。閆冬梅等[21]利用有限元軟件建模分析了不同作物吊掛模式等對(duì)溫室結(jié)構(gòu)內(nèi)力的影響,發(fā)現(xiàn)柱腳鉸接的單管拱架在作物荷載兩點(diǎn)吊掛時(shí)會(huì)出現(xiàn)強(qiáng)烈的局部應(yīng)力集中現(xiàn)象,提出應(yīng)采用前柱腳鉸接、后柱腳固接、后墻立柱為格構(gòu)柱的結(jié)構(gòu)形式,以達(dá)到最小和最大應(yīng)力及最合理的應(yīng)力分布。此外,郄麗娟等[22]設(shè)計(jì)了一種裝配式異質(zhì)復(fù)合墻體日光溫室,使用環(huán)保建材和裝配式鋼骨架,與傳統(tǒng)溫室相比,該溫室墻體熱阻高、傳熱系數(shù)低,且具有更高的放熱效率和升溫速率,室內(nèi)溫度更穩(wěn)定,且結(jié)構(gòu)安全性更好。王蕊等[23]的研究結(jié)果表明,針對(duì)北方土質(zhì)墻體日光溫室,黏土、粉質(zhì)黏土和沙土含水量超26%、16%和14%時(shí)墻體易失穩(wěn),外坡角增至70°加劇風(fēng)險(xiǎn),建議控制含水量,外坡角60°~70°為宜。
1.1.3 建筑設(shè)施環(huán)境與能耗研究 建筑設(shè)施環(huán)境與能耗的研究是提升設(shè)施果樹(shù)生產(chǎn)效率和實(shí)現(xiàn)綠色發(fā)展的關(guān)鍵,降低能耗、提高能源利用效率,不僅能降低生產(chǎn)成本,還能減輕對(duì)環(huán)境的影響,推動(dòng)設(shè)施果樹(shù)栽培向更加環(huán)保、可持續(xù)的方向發(fā)展[24-26]。趙曉彤等[27]通過(guò)實(shí)時(shí)監(jiān)測(cè)典型日光溫室的環(huán)境因子,分析了溫室的能耗情況,發(fā)現(xiàn)傳熱能耗在冬季夜間占主導(dǎo)地位,其次為冷風(fēng)滲透能量消耗,土壤在日光溫室夜間起到室內(nèi)保溫作用。王超等[28]的研究結(jié)果表明,最冷月和冬至日的日光溫室采暖能耗需求隨緯度升高而增加,冬至日需求量分布不均,關(guān)鍵影響因素為南屋面保溫和換氣次數(shù)。史宇亮等[29]通過(guò)測(cè)試最冷季節(jié)(30 d)溫室內(nèi)氣溫、墻體溫度、室外氣溫及室外太陽(yáng)輻照度等數(shù)據(jù),分析了土墻溫室內(nèi)外溫度分布規(guī)律,結(jié)果表明,墻體表面及淺層溫度隨溫室氣溫周期性變化,深層溫度穩(wěn)定,墻體夜間放熱效率為43%。許紅軍等[30]研究結(jié)果表明,日光溫室墻體可劃分為保溫層、穩(wěn)定層、蓄熱層,各層的厚度與墻體蓄熱材料、保溫材料的熱物性有關(guān),墻體厚度大于30 cm時(shí),溫室內(nèi)溫度波動(dòng)平緩。在溫室結(jié)構(gòu)、保溫性能不變的情況下,溫室蓄熱層厚度及波動(dòng)情況受外界光溫環(huán)境的綜合影響較小。
1.1.4 建筑設(shè)施覆蓋材料研究 設(shè)施果樹(shù)栽培中,建筑設(shè)施的覆蓋材料選擇多樣,主要包括塑料薄膜(如PVC、PE、PO膜)、玻璃、遮陽(yáng)網(wǎng)、無(wú)紡布、草苫(或草簾)以及水簾等[31-33]。其中,塑料薄膜因其成本低、透光保溫性能優(yōu)良且安裝維護(hù)簡(jiǎn)便,得到廣泛應(yīng)用。玻璃則以其出色的透光隔熱性著稱,但成本相對(duì)較高。遮陽(yáng)網(wǎng)和無(wú)紡布等半透明材料,能夠有效調(diào)節(jié)設(shè)施內(nèi)的光照和溫度,滿足特定栽培需求。草苫和草簾等不透明材料,則主要用于保溫,確保果樹(shù)在寒冷季節(jié)的正常生長(zhǎng)。此外,水簾在夏季用于降溫,以保持設(shè)施內(nèi)的適宜溫度。在選擇這些覆蓋材料時(shí),應(yīng)綜合考慮作物生長(zhǎng)需求、當(dāng)?shù)貧夂驐l件、成本效益以及環(huán)保因素,以實(shí)現(xiàn)最佳栽培效果。王偉等[34]通過(guò)CFD方法對(duì)比發(fā)現(xiàn),雙膜拱棚在夏季能減少高溫積聚,冬季則保持較高平均溫度,特別適合壽光地區(qū)氣候。魏巍等[35]的研究顯示,雙膜日光溫室能顯著提高淺層土壤溫度,且室內(nèi)熱環(huán)境更穩(wěn)定。楊小鋒等[36]則提出了覆蓋PE薄膜較之白色防蟲(chóng)網(wǎng)和露地處理,可提高棚內(nèi)溫度,調(diào)節(jié)設(shè)施溫差和光環(huán)境,防止害蟲(chóng)侵入,顯著改善果實(shí)品質(zhì),提高果實(shí)產(chǎn)品安全性,促進(jìn)杧果植株生長(zhǎng)。楊定偉等[37]和程麗等[38]的研究則分別揭示了裝配式礫石和土模塊溫室的優(yōu)異保溫蓄熱性能,以及雙層薄膜覆蓋和復(fù)合材料后墻體對(duì)保溫性能的提升作用。
1.2 監(jiān)測(cè)系統(tǒng)
設(shè)施果樹(shù)栽培通過(guò)監(jiān)測(cè)系統(tǒng)的應(yīng)用,果農(nóng)可更加準(zhǔn)確地掌握果樹(shù)生長(zhǎng)環(huán)境的變化,精確調(diào)節(jié)灌溉和養(yǎng)分供應(yīng),提高果樹(shù)的生長(zhǎng)效率和產(chǎn)量,并減少資源的浪費(fèi)[39],其工作原理如圖2所示。監(jiān)測(cè)系統(tǒng)一般包括光照傳感器、溫濕度傳感器、CO2氣體濃度傳感器、土壤水分養(yǎng)分檢測(cè)裝置等[40-41]。李振東[42]設(shè)計(jì)了涉及物聯(lián)網(wǎng)、ZigBee、ARM,以及4G通信技術(shù)的智能葡萄大棚監(jiān)測(cè)系統(tǒng),通過(guò)信息采集器對(duì)溫室環(huán)境信息數(shù)據(jù)進(jìn)行采集,然后通過(guò)無(wú)線傳感網(wǎng)絡(luò)將數(shù)據(jù)傳遞到協(xié)調(diào)器上,以ARM作為核心處理器替代傳統(tǒng)單片機(jī)進(jìn)行數(shù)據(jù)處理,最后通過(guò)4G網(wǎng)絡(luò)通信技術(shù)將數(shù)據(jù)傳送到云管理,從而實(shí)現(xiàn)管理人員對(duì)葡萄大棚的實(shí)時(shí)監(jiān)測(cè)與控制。陳春玲等[43]基于北方果樹(shù)栽培日光溫室環(huán)境,提出一種基于無(wú)線傳感器的數(shù)據(jù)融合方法,以提高實(shí)時(shí)數(shù)據(jù)精度,通過(guò)格拉布斯判定準(zhǔn)則剔除粗大誤差,再結(jié)合自適應(yīng)加權(quán)平均算法進(jìn)行數(shù)據(jù)融合,試驗(yàn)結(jié)果顯示,該方法能有效提高數(shù)據(jù)精度,為溫室環(huán)境監(jiān)測(cè)和控制提供更精準(zhǔn)的基礎(chǔ)數(shù)據(jù)。孫昌權(quán)等[44]設(shè)計(jì)開(kāi)發(fā)了一種設(shè)施草莓智慧生產(chǎn)管控系統(tǒng),包括生長(zhǎng)環(huán)境信息感知系統(tǒng)和設(shè)施內(nèi)的環(huán)境調(diào)控系統(tǒng)2個(gè)部分,該系統(tǒng)結(jié)合多傳感器數(shù)據(jù)融合算法和專(zhuān)家決策控制系統(tǒng)模型,提高環(huán)境參數(shù)采集的準(zhǔn)確性和真實(shí)性,保證草莓各生長(zhǎng)階段對(duì)生長(zhǎng)環(huán)境和水肥需求的精準(zhǔn)控制。
1.3 環(huán)境調(diào)控設(shè)備
環(huán)境調(diào)控設(shè)備包括溫濕度控制裝置(如溫控器、加熱設(shè)備、卷膜器、加濕裝置等)、光照調(diào)控設(shè)備(如光溫室自動(dòng)卷簾機(jī)、LED補(bǔ)光燈等)、CO2發(fā)生裝置和通風(fēng)裝置(風(fēng)道、排風(fēng)設(shè)備)等組成,環(huán)境調(diào)控設(shè)備的應(yīng)用可有效優(yōu)化果樹(shù)的生長(zhǎng)環(huán)境,提高生產(chǎn)效率,提高產(chǎn)量和果品質(zhì)量[45-46]。
1.3.1 溫濕度控制裝置 在設(shè)施果樹(shù)栽培中,溫濕度控制裝置通過(guò)溫濕度傳感器收集數(shù)據(jù),依據(jù)預(yù)設(shè)范圍自動(dòng)調(diào)節(jié)風(fēng)機(jī)、卷膜器和加濕器等,維持最佳生長(zhǎng)環(huán)境。張明秋[47]采用先進(jìn)的隨機(jī)森林算法,設(shè)計(jì)了人工光源設(shè)施內(nèi)的溫濕度控制系統(tǒng)。該系統(tǒng)通過(guò)多變量解耦內(nèi)??刂品椒ǎ瑢?shí)現(xiàn)了對(duì)溫濕度的精準(zhǔn)控制,試驗(yàn)證明其性能穩(wěn)定且滿足生產(chǎn)需求。李亨[48]通過(guò)對(duì)比多種控制方法,發(fā)現(xiàn)模糊解耦控制在設(shè)施內(nèi)溫濕度調(diào)控方面表現(xiàn)最佳。劉云驥等[49]研發(fā)了日光溫室正壓式濕簾風(fēng)機(jī)降溫系統(tǒng),并優(yōu)化了結(jié)構(gòu)參數(shù),該系統(tǒng)在夏季能顯著降低溫度,提供均勻的溫濕度環(huán)境。宋財(cái)柱等[50]則利用L-M算法的BP神經(jīng)網(wǎng)絡(luò)模型,成功建立了溫室內(nèi)空氣溫濕度的預(yù)測(cè)模型,為溫室內(nèi)的環(huán)境調(diào)控提供了有力支持。陳辛格等[51]針對(duì)中高緯度地區(qū)溫室冬季面臨的問(wèn)題,提出了結(jié)合窄槽式集熱器與固體除濕劑的調(diào)控系統(tǒng),顯著改善了作物生長(zhǎng)環(huán)境。薛曉萍等[52]研究結(jié)果表明,自然通風(fēng)降濕能力弱,溫室內(nèi)濕度呈現(xiàn)明顯的下高上低垂直分布,高風(fēng)速降濕能力強(qiáng),溫室北側(cè)濕度高于南側(cè),偏東風(fēng)降濕效率高,北風(fēng)效果差。
1.3.2 自動(dòng)卷簾機(jī) 自動(dòng)卷簾機(jī)能自動(dòng)卷放保溫覆蓋物,調(diào)節(jié)棚內(nèi)光照、溫度和濕度,提高勞動(dòng)效率,減小勞動(dòng)強(qiáng)度,是設(shè)施果樹(shù)栽培不可或缺的裝備[53]。劉洋等[54]設(shè)計(jì)了一種錐形滾筒式翻越卷放裝置,該裝置由卷被軸、搖桿、主機(jī)、輔助翻越機(jī)構(gòu)組成,通過(guò)繩索傳動(dòng)實(shí)現(xiàn)保溫被的翻越卷放,有效解決了保溫被卷起后的問(wèn)題。吳若丁等[55]研發(fā)了一種新型日光溫室雙穩(wěn)態(tài)折疊結(jié)構(gòu)保溫設(shè)施,通過(guò)充氣或抽氣進(jìn)行狀態(tài)切換,免除了卷簾機(jī)的使用。張國(guó)祥等[56]設(shè)計(jì)的協(xié)調(diào)鋪卷裝置,能實(shí)現(xiàn)多種覆蓋物的協(xié)調(diào)鋪卷,展現(xiàn)出較好的控制精度和穩(wěn)定性。裴雪等[57]設(shè)計(jì)了基于溫光耦合的卷簾機(jī)精準(zhǔn)控制系統(tǒng),該系統(tǒng)采用光照與溫度傳感器實(shí)時(shí)監(jiān)測(cè),結(jié)合溫光耦合模型決策,通過(guò)中間繼電器及紅外限位開(kāi)關(guān)控制卷簾機(jī),提高其控制精度與使用安全性。董亮等[58]設(shè)計(jì)了一款自動(dòng)接縫的日光溫室卷簾裝置,實(shí)現(xiàn)中間覆蓋材料同步卷放,可折疊且與卷簾軸同步運(yùn)行,保持恒定角度避免碰撞。
1.3.3 CO2發(fā)生裝置 CO2發(fā)生裝置一般安裝在設(shè)施中央部,利用化學(xué)反應(yīng)產(chǎn)生CO2,通過(guò)排氣管將產(chǎn)生的CO2均勻釋放至整個(gè)空間,促進(jìn)果樹(shù)光合作用,提高果樹(shù)產(chǎn)量與果實(shí)品質(zhì)[59-60]。辛敏[61]設(shè)計(jì)的零濃度差CO2施肥系統(tǒng),能夠?qū)⑹覂?nèi)CO2濃度有效補(bǔ)充至室外相同水平,不僅降低了成本,還提高了CO2的利用率。馬凱等[62]設(shè)計(jì)了日光溫室CO2施肥系統(tǒng),試驗(yàn)結(jié)果表明,日光溫室的施肥區(qū)CO2濃度提高12.4%,油桃光合速率提高48.2%,品質(zhì)顯著改善,增施CO2氣肥可有效提高油桃光合速率及品質(zhì)。
1.3.4 通風(fēng)裝置 通風(fēng)裝置是設(shè)施果樹(shù)栽培的重要設(shè)備,主要由進(jìn)風(fēng)口、出風(fēng)口、風(fēng)機(jī)及控制系統(tǒng)等組成,其通過(guò)風(fēng)機(jī)驅(qū)動(dòng)空氣流動(dòng),實(shí)現(xiàn)溫室與外界的空氣交換,有效降低室內(nèi)溫度,減少病蟲(chóng)害發(fā)生,一些先進(jìn)的通風(fēng)裝置還集成了降溫、加濕等功能,進(jìn)一步提升了設(shè)施果樹(shù)栽培的效率和果實(shí)品質(zhì)[63-67]。胡萬(wàn)玲等[68]研究不同的送/回風(fēng)方式對(duì)日光溫室的影響,發(fā)現(xiàn)下送上回的通風(fēng)方式效果最佳。萬(wàn)敏等[69]研究發(fā)現(xiàn)開(kāi)啟后墻通風(fēng)口及調(diào)整其位置能提高降溫效率、降低作物蒸騰速率。鄭若琳等[70]則通過(guò)數(shù)值模擬揭示,通風(fēng)形式顯著影響溫室內(nèi)氣流與溫濕度分布,上下通風(fēng)口同時(shí)開(kāi)啟在炎熱天氣下效果最佳,有效降低室內(nèi)溫濕度,而下通風(fēng)口單獨(dú)使用則會(huì)導(dǎo)致分布不均。
1.4 生產(chǎn)設(shè)備與機(jī)具
1.4.1 水肥一體化裝備 設(shè)施果樹(shù)栽培可通過(guò)水肥一體化裝備,將水與肥料混合后,經(jīng)過(guò)精確的灌溉系統(tǒng),將水分和養(yǎng)分均勻地輸送到果樹(shù)的根部,為果樹(shù)精確供應(yīng)水肥,優(yōu)化果樹(shù)的生長(zhǎng)環(huán)境[71-73]。水肥一體化裝備一般由儲(chǔ)水裝置、肥料儲(chǔ)存與混合裝置、灌溉系統(tǒng)和控制系統(tǒng)組成,如圖3所示。儲(chǔ)水裝置儲(chǔ)存各種水源以確保灌溉連續(xù),肥料儲(chǔ)存裝置混合適合果樹(shù)吸收的營(yíng)養(yǎng)液,灌溉系統(tǒng)將水肥溶液均勻送至果樹(shù)根部,實(shí)現(xiàn)節(jié)水、節(jié)肥、高效灌溉;控制系統(tǒng)監(jiān)控管理整個(gè)裝備,根據(jù)果樹(shù)生長(zhǎng)、環(huán)境條件和用戶需求,自動(dòng)調(diào)整水肥混合比例、灌溉時(shí)間和頻率,確保果樹(shù)獲得最佳水肥供應(yīng)[74]。黃卿宜等[75]研究水肥一體化條件下設(shè)施甜瓜施肥灌溉制度,試驗(yàn)結(jié)果表明,增加施肥量能顯著提升甜瓜株高和莖粗,高灌水下限可促使作物早熟,提高市場(chǎng)價(jià)值。李增源等[76]設(shè)計(jì)了設(shè)施葡萄智能化水肥管理系統(tǒng),其基于NB-IoT網(wǎng)絡(luò)傳輸?shù)墓虘B(tài)電阻傳感器設(shè)備對(duì)設(shè)施葡萄根系土壤水分進(jìn)行實(shí)時(shí)監(jiān)測(cè),建立基于土壤水分張力的設(shè)施葡萄灌溉決策指標(biāo),并依托水肥一體化設(shè)備實(shí)現(xiàn)自動(dòng)灌溉。
1.4.2 農(nóng)機(jī)作業(yè)裝備 設(shè)施果樹(shù)栽培的農(nóng)機(jī)作業(yè)裝備包括微耕機(jī)、割草機(jī)、修枝機(jī)、植保機(jī)、采摘機(jī)等[77-79],其性能參數(shù)如表2所示。微耕機(jī)是小型土壤耕作機(jī)械,適用于狹小空間,能進(jìn)行旋耕、松土、開(kāi)溝等作業(yè),可根據(jù)需求更換刀具和附件;割草機(jī)以電動(dòng)遙控式為主,高效除草,保持果園整潔;修枝機(jī)則根據(jù)果樹(shù)需求修剪枝條,保持樹(shù)形和通風(fēng),有手動(dòng)、電動(dòng)、氣動(dòng)等類(lèi)型;植保機(jī)用于病蟲(chóng)害防治,噴灑化學(xué)藥劑,電動(dòng)植保機(jī)噴霧均勻且高效;采摘機(jī)則能自動(dòng)采摘成熟度和大小合適的果實(shí),提高采摘效率,有振動(dòng)式、吸入式等多種類(lèi)型,這些機(jī)械大大提高了設(shè)施果樹(shù)的生產(chǎn)效率[80-82]。姬麗雯等[83]研究設(shè)計(jì)了一種應(yīng)用于日光溫室的草莓采摘機(jī)器人,該機(jī)器人使用激光雷達(dá)構(gòu)建地圖與定位,雙目深度相機(jī)識(shí)別成熟草莓,并由6自由度機(jī)械臂進(jìn)行抓取和放置,能實(shí)現(xiàn)自主路徑規(guī)劃,行走過(guò)程中識(shí)別成熟草莓并完成采摘。
2 國(guó)外設(shè)施果樹(shù)栽培裝備研究現(xiàn)狀
國(guó)外設(shè)施果樹(shù)栽培裝備的研究起步較早,呈現(xiàn)高度集成化、智能化與綠色化的發(fā)展趨勢(shì),以荷蘭、日本、澳大利亞、美國(guó)、以色列等發(fā)達(dá)國(guó)家的成果顯著[84-87],這些國(guó)家多采用現(xiàn)代化的大型連棟大棚及日光溫室作為主要栽培設(shè)施,并結(jié)合先進(jìn)的保溫、通風(fēng)、遮陽(yáng)及加溫系統(tǒng),能夠精準(zhǔn)調(diào)控環(huán)境參數(shù),為果樹(shù)生長(zhǎng)創(chuàng)造最適條件[88-91]。
美國(guó)新建造的果樹(shù)栽培溫室單體面積均在1 hm2以上,并大量采用無(wú)土栽培技術(shù)[92];荷蘭的設(shè)施果樹(shù)栽培連棟玻璃溫室如圖4所示,溫室以文洛式結(jié)構(gòu)設(shè)計(jì),具有超大空間和跨度,便于中大型農(nóng)業(yè)機(jī)械進(jìn)入作業(yè),采用中空鋁合金骨架代替?zhèn)鹘y(tǒng)溫室的單層鐵材質(zhì)天溝,不僅減少了設(shè)施溫室的支撐結(jié)構(gòu),也降低了支撐結(jié)構(gòu)的遮光面積,提升了采光及保溫效果,設(shè)施頂部覆蓋高透光漫反射玻璃,透光率在90%以上,為果樹(shù)提供了充足的光照條件。同時(shí)溫室內(nèi)配備先進(jìn)的環(huán)境調(diào)控系統(tǒng)和智能化管理系統(tǒng),能夠精確控制溫室的環(huán)境參數(shù),為果樹(shù)提供最佳的生長(zhǎng)環(huán)境[93-95]。
日本的設(shè)施葡萄栽培大棚如圖5所示,大棚多采用堅(jiān)固耐用的鋼架結(jié)構(gòu)作為支撐,覆蓋材料則選用透光性好、耐用的聚乙烯長(zhǎng)壽無(wú)滴膜等;大棚設(shè)計(jì)充分考慮采光、保溫和通風(fēng)需求,通常坐北朝南、東西延長(zhǎng),確保葡萄能夠充分接受光照;大棚尺寸適中,一般脊高在4.5~5 m之間,長(zhǎng)度在80~120 m之間,既方便管理又適宜機(jī)械化,大棚內(nèi)配備了傳感器及水肥一體化系統(tǒng),以實(shí)現(xiàn)葡萄生長(zhǎng)環(huán)境的實(shí)時(shí)監(jiān)測(cè)和精準(zhǔn)控制。
美國(guó)、荷蘭、以色列等發(fā)達(dá)國(guó)家,通過(guò)將工業(yè)的先進(jìn)技術(shù)融入到農(nóng)業(yè)生產(chǎn)中,較早地提出了“工廠化農(nóng)業(yè)”的理念,這些國(guó)家已研發(fā)了系列的設(shè)施果樹(shù)生產(chǎn)配套裝備,如小型微耕機(jī)、除草機(jī)、修枝機(jī)及采摘機(jī)器人等,實(shí)現(xiàn)了從土壤耕整、樹(shù)體修剪到果實(shí)采摘的設(shè)施生產(chǎn)全程機(jī)械化作業(yè),提高了設(shè)施果樹(shù)的栽培效率[96-97]。此外,荷蘭還研制出大型溫室清洗裝置,專(zhuān)門(mén)用于清除溫室屋面的灰塵,以此提高溫室的透光效果,進(jìn)一步優(yōu)化農(nóng)業(yè)生產(chǎn)條件。
3 中國(guó)設(shè)施果樹(shù)栽培裝備發(fā)展面臨的問(wèn)題
3.1 設(shè)施結(jié)構(gòu)簡(jiǎn)陋
設(shè)施果樹(shù)栽培需要一系列專(zhuān)用的設(shè)施來(lái)支持,包括溫室、大棚、灌溉系統(tǒng)、施肥系統(tǒng)等。然而,目前市場(chǎng)上針對(duì)設(shè)施果樹(shù)栽培的專(zhuān)用設(shè)施并不多[98-100]。同時(shí)受經(jīng)濟(jì)條件和技術(shù)水平限制,許多果農(nóng)往往選擇結(jié)構(gòu)簡(jiǎn)單、材料廉價(jià)的簡(jiǎn)易大棚或溫室栽培果樹(shù),據(jù)統(tǒng)計(jì),中國(guó)簡(jiǎn)易設(shè)施面積約占設(shè)施總面積的2/3[9],這些簡(jiǎn)易設(shè)施結(jié)構(gòu)規(guī)格不一,雖然能夠在一定程度上滿足果樹(shù)生長(zhǎng)的基本需求,但往往缺乏必要的保溫、通風(fēng)和遮陽(yáng)等功能,導(dǎo)致設(shè)施內(nèi)環(huán)境波動(dòng)大,不利于果樹(shù)的穩(wěn)定生長(zhǎng);同時(shí)這種設(shè)施跨度小、高度矮,內(nèi)部空間不足,無(wú)法進(jìn)行機(jī)械化作業(yè),限制了設(shè)施果樹(shù)生產(chǎn)效率的提高[101]。
3.2 設(shè)施環(huán)境調(diào)控能力弱
設(shè)施果樹(shù)栽培需要對(duì)溫度、濕度、光照等環(huán)境因子進(jìn)行精準(zhǔn)調(diào)控,以滿足果樹(shù)不同生長(zhǎng)階段的需求。然而,由于設(shè)施結(jié)構(gòu)簡(jiǎn)陋,缺乏相應(yīng)自動(dòng)化環(huán)境調(diào)控設(shè)備,如溫濕度控制系統(tǒng)、補(bǔ)光系統(tǒng)、通風(fēng)系統(tǒng)等,這導(dǎo)致設(shè)施內(nèi)環(huán)境無(wú)法得到有效調(diào)控,難以滿足果樹(shù)生長(zhǎng)的最佳條件[102]。
3.3 缺乏專(zhuān)用覆蓋材料
設(shè)施果樹(shù)栽培需要使用一些專(zhuān)用的覆蓋材料(耐候性強(qiáng)、透光性好),然而市場(chǎng)上的專(zhuān)用設(shè)施覆蓋材料不多,很多只能使用普通的農(nóng)業(yè)材料進(jìn)行替代[103]。傳統(tǒng)的覆蓋材料(如草苫、保溫被等)存在透光性能差、易損壞、保溫效果不好等缺陷,難以滿足設(shè)施果樹(shù)對(duì)光、溫的精細(xì)調(diào)控需求。這不僅增大了環(huán)境調(diào)控難度,還限制了果樹(shù)的正常生長(zhǎng),進(jìn)而影響了果品的產(chǎn)量與品質(zhì)。
3.4 設(shè)施生產(chǎn)機(jī)械化程度低、智能化程度不足
目前,中國(guó)設(shè)施果樹(shù)栽培的機(jī)械化程度較低,綜合機(jī)械化率不足40%,很多生產(chǎn)環(huán)節(jié)仍以人力為主[77,104]。設(shè)施果樹(shù)栽培因其特殊的種植模式和狹小的空間布局,急需小型化、靈活性強(qiáng)的專(zhuān)用農(nóng)機(jī)具,然而當(dāng)前市場(chǎng)上針對(duì)設(shè)施果樹(shù)栽培的專(zhuān)用小型農(nóng)機(jī)種類(lèi)有限,且功能相對(duì)單一,難以滿足多樣化、精細(xì)化的生產(chǎn)需求。同時(shí)農(nóng)機(jī)自動(dòng)化、智能化水平較低,很多需要人力輔助作業(yè),這都增加了設(shè)施果樹(shù)的生產(chǎn)成本,限制了生產(chǎn)效率。
4 設(shè)施果樹(shù)栽培裝備未來(lái)的發(fā)展方向
4.1 建筑設(shè)施智能化、生態(tài)化
未來(lái)的建筑設(shè)施不僅提供基礎(chǔ)的保溫、遮陽(yáng)等功能,還將結(jié)合智能材料、物聯(lián)網(wǎng)技術(shù),實(shí)現(xiàn)自動(dòng)化調(diào)節(jié)和生態(tài)循環(huán)[105]。例如,溫室可采用智能玻璃或智能棚膜,根據(jù)光照度自動(dòng)調(diào)節(jié)透光度;同時(shí),設(shè)施內(nèi)部將構(gòu)建生態(tài)循環(huán)系統(tǒng),如雨水收集、再利用,以及通過(guò)植物和微生物的協(xié)同作用實(shí)現(xiàn)廢棄物的自然降解。這種發(fā)展方向旨在提高設(shè)施的自適應(yīng)性和生態(tài)可持續(xù)性。
4.2 設(shè)施環(huán)境調(diào)控智能化
首先測(cè)控裝置將進(jìn)化為全面感知果樹(shù)生長(zhǎng)狀態(tài)的智能系統(tǒng),除了現(xiàn)有的溫度、光照等傳感器,還將引入更多類(lèi)型的生物傳感器,如葉片氣孔導(dǎo)度、果實(shí)可溶性固形物含量、果實(shí)香氣成分等,以全方位地監(jiān)測(cè)果樹(shù)生長(zhǎng)。數(shù)據(jù)分析決策終端將運(yùn)用更先進(jìn)的算法,如深度學(xué)習(xí)、模式識(shí)別等,對(duì)感知數(shù)據(jù)進(jìn)行實(shí)時(shí)分析,為環(huán)境調(diào)控提供精準(zhǔn)指導(dǎo),通過(guò)大數(shù)據(jù)和人工智能技術(shù)的結(jié)合,管理系統(tǒng)能自動(dòng)制定和調(diào)整灌溉、施肥、病蟲(chóng)害防治等方案,以滿足果樹(shù)生長(zhǎng)的各種需求。這種全面感知與智能決策的發(fā)展趨勢(shì),將極大地提高設(shè)施果樹(shù)栽培的管理水平和生產(chǎn)效益[106]。
4.3 農(nóng)機(jī)農(nóng)藝高度融合
在未來(lái)設(shè)施果樹(shù)栽培中,農(nóng)機(jī)與農(nóng)藝將高度融合[107-109]。首先,結(jié)合果樹(shù)生長(zhǎng)特性,采用標(biāo)準(zhǔn)的設(shè)施果樹(shù)栽培模式,包括科學(xué)地確定株行距、培養(yǎng)適宜的樹(shù)形,拓寬設(shè)施內(nèi)機(jī)耕道路,平整土地,以適應(yīng)機(jī)械化作業(yè)的需求。其次,一系列智能農(nóng)機(jī)將被廣泛應(yīng)用,設(shè)施內(nèi)的智能農(nóng)機(jī)裝備將結(jié)合先進(jìn)的導(dǎo)航、識(shí)別和通信技術(shù),實(shí)現(xiàn)自動(dòng)化和智能化的作業(yè),如修剪機(jī)器人能夠自動(dòng)識(shí)別樹(shù)枝的生長(zhǎng)情況和修剪需求,進(jìn)行精準(zhǔn)的修剪操作;采摘機(jī)器人則能通過(guò)視覺(jué)識(shí)別和機(jī)械手臂的精確控制,實(shí)現(xiàn)無(wú)損、高效的果實(shí)采摘。再次,多臺(tái)農(nóng)機(jī)裝備之間還將實(shí)現(xiàn)實(shí)時(shí)的信息共享和協(xié)同作業(yè),通過(guò)先進(jìn)的通信技術(shù)和協(xié)同算法,共同完成復(fù)雜的果樹(shù)栽培任務(wù)。農(nóng)機(jī)農(nóng)藝高度融合將極大地提升設(shè)施果樹(shù)栽培的作業(yè)效率和生產(chǎn)質(zhì)量,推動(dòng)其向更高水平發(fā)展[110-111]。
參考文獻(xiàn) References:
[1] 許奇志,鄧朝軍,蔣際謀,陳秀萍. 避雨設(shè)施葡萄對(duì)套種枇杷生長(zhǎng)與結(jié)果的影響[J]. 果樹(shù)學(xué)報(bào),2023,40(10):2149-2159.
XU Qizhi,DENG Chaojun,JIANG Jimou,CHEN Xiuping. Effects of grapes in shelter facilities on tree growth and fruiting of interplanted loquat[J]. Journal of Fruit Science,2023,40(10):2149-2159.
[2] 李都岳,吳延軍. 補(bǔ)光對(duì)設(shè)施栽培櫻桃果實(shí)成熟和糖分積累的影響[J]. 果樹(shù)學(xué)報(bào),2023,40(10):2183-2194.
LI Duyue,WU Yanjun. Effects of supplementary light on ripening and sugar accumulation of cherry under protected cultivation[J]. Journal of Fruit Science,2023,40(10):2183-2194.
[3] 劉鳳之,王海波,李莉,宣景宏. 我國(guó)設(shè)施果樹(shù)產(chǎn)業(yè)現(xiàn)狀、存在問(wèn)題與發(fā)展對(duì)策[J]. 中國(guó)果樹(shù),2021(11):1-4.
LIU Fengzhi,WANG Haibo,LI Li,XUAN Jinghong. Current situation,issue and suggestion of the protected fruit industry in China[J]. China Fruits,2021(11):1-4.
[4] 王海波,周澤宇,楊振鋒,曹玉芬,張彩霞,程存剛,周宗山,王文輝,胡成志,馮學(xué)杰,呂鑫,曹永生. 我國(guó)果業(yè)高質(zhì)量發(fā)展的制約因素探析[J]. 中國(guó)果樹(shù),2023(7):1-9.
WANG Haibo,ZHOU Zeyu,YANG Zhenfeng,CAO Yufen,ZHANG Caixia,CHENG Cungang,ZHOU Zongshan,WANG Wenhui,HU Chengzhi,F(xiàn)ENG Xuejie,Lü Xin,CAO Yongsheng. Constraints on the high-quality development of Chinese fruit industry[J]. China Fruits,2023(7):1-9.
[5] 楊玉香. 中國(guó)北方設(shè)施果樹(shù)產(chǎn)業(yè)現(xiàn)狀與發(fā)展對(duì)策[J]. 落葉果樹(shù),2024,56(3):63-65.
YANG Yuxiang. Current situation and development strategies of facility fruit tree industry in Northern China[J]. Deciduous Fruits,2024,56(3):63-65.
[6] 戚行江,梁森苗,陳海豹,俞浙萍,孫鸝,鄭錫良,張淑文. 促早栽培對(duì)楊梅葉片形態(tài)及果實(shí)成熟與品質(zhì)的影響[J]. 果樹(shù)學(xué)報(bào),2023,40(11):2403-2412.
QI Xingjiang,LIANG Senmiao,CHEN Haibao,YU Zheping,SUN Li,ZHENG Xiliang,ZHANG Shuwen. Effects of forcing cultivation on the leaf morphology,fruit ripening and quality of Myrica rubra[J]. Journal of Fruit Science,2023,40(11):2403-2412.
[7] 解冰芊,郭天然,李玉婷,任利慧,黃建. 冬棗光響應(yīng)模型及不同物候期光合變化動(dòng)態(tài)研究[J]. 果樹(shù)學(xué)報(bào),2024,41(8):1617-1626.
XIE Bingqian,GUO Tianran,LI Yuting,REN Lihui,HUANG Jian. Light response model and photosynthetic dynamics at different phenological stages of Dongzao jujube[J]. Journal of Fruit Science,2024,41(8):1617-1626.
[8] 李天來(lái),齊明芳,孟思達(dá). 中國(guó)設(shè)施園藝發(fā)展60年成就與展望[J]. 園藝學(xué)報(bào),2022,49(10):2119-2130.
LI Tianlai,QI Mingfang,MENG Sida. Sixty years of facility horticulture development in China:Achievements and prospects[J]. Acta Horticulturae Sinica,2022,49(10):2119-2130.
[9] 李天來(lái). 加快發(fā)展好中國(guó)特色設(shè)施種植業(yè)[J]. 寒旱農(nóng)業(yè)科學(xué),2022,1(1):1-3.
LI Tianlai. Speeding up the development of facility planting industry with Chinese characteristics[J]. Journal of Cold-Arid Agricultural Sciences,2022,1(1):1-3.
[10] 齊明芳,劉興安,孟思達(dá),李天來(lái). 我國(guó)節(jié)能日光溫室發(fā)展歷程[J]. 新農(nóng)業(yè),2023(19):4-7.
QI Mingfang,LIU Xing’an,MENG Sida,LI Tianlai. The development history of energy-saving solar greenhouses in China[J]. New Agriculture,2023(19):4-7.
[11] LI Y M,YAN J,LI Z Z,HE M,LIU X G,LI T L. A globalized methodology of energy-saving solar greenhouse design in high latitudes[J]. Energy,2024,304:132117.
[12] YANG A Q,XU X,JIA S C,HAO W X. Heat storage and release performance of solar greenhouses made of composite phase change material comprising methyl palmitate and hexadecanol in cold climate[J]. Thermal Science and Engineering Progress,2024,54:102837.
[13] WAN X C,XIA T Y,LI Y M,SUN Z P,LIU X G,LI T L. Study on a novel water heat accumulator below the north roof in Chinese solar greenhouse:System design[J]. Applied Thermal Engineering,2023,234:121316.
[14] 王蕊,楊小龍,馬健,須暉,李天來(lái). 溫室透光覆蓋材料的種類(lèi)與特性分析[J]. 農(nóng)業(yè)工程技術(shù),2016,36(16):9-12.
WANG Rui,YANG Xiaolong,MA Jian,XU Hui,LI Tianlai. Analysis of types and characteristics of light-transmitting covering materials for greenhouses[J]. Agricultural Engineering Technology,2016,36(16):9-12.
[15] 周長(zhǎng)吉. 日光溫室主動(dòng)加溫技術(shù)與設(shè)備[J]. 中國(guó)蔬菜,2023(7):7-19.
ZHOU Changji. Active heating technology and equipment for Chinese solar greenhouse[J]. China Vegetables,2023(7):7-19.
[16] 張惠楠,李明,祝鵬. 北方日光溫室構(gòu)造的研究進(jìn)展[J]. 智慧農(nóng)業(yè)導(dǎo)刊,2024,4(6):64-68.
ZHANG Huinan,LI Ming,ZHU Peng. Progress in the structure of the northern solar greenhouse[J]. Journal of Smart Agriculture,2024,4(6):64-68.
[17] 王志強(qiáng),王海波,劉鳳之,王孝娣,王小龍,李鵬,史祥賓. 設(shè)施農(nóng)業(yè)大棚冬季除雪注意事項(xiàng)及方法[J]. 果樹(shù)實(shí)用技術(shù)與信息,2022(12):45-46.
WANG Zhiqiang,WANG Haibo,LIU Fengzhi,WANG Xiaodi,WANG Xiaolong,LI Peng,SHI Xiangbin. Points for attention and methods for snow removal in winter from facility agricultural greenhouses[J]. Applied Technology and Information for Fruit Trees,2022(12):45-46.
[18] 郭利民,常聚普,吳亞冉,王磊,于利強(qiáng),桑圣奇. 一種新型適宜果樹(shù)反季節(jié)栽培的鋼結(jié)構(gòu)日光溫室[J]. 北方園藝,2019(19):45-48.
GUO Limin,CHANG Jupu,WU Yaran,WANG Lei,YU Liqiang,SANG Shengqi. A novel steel-framed solar greenhouse suitable for off-season cultivation of fruit trees[J]. Northern Horticulture,2019(19):45-48.
[19] 陳吉. 果樹(shù)專(zhuān)用連棟大棚設(shè)計(jì)與應(yīng)用[J]. 農(nóng)業(yè)開(kāi)發(fā)與裝備,2017(9):88-89.
CHEN Ji. Design and application of a specialized multi-span greenhouse for fruit trees[J]. Agricultural Development amp; Equipments,2017(9):88-89.
[20] 陸琳,于菲,仇明華,張晏. 一種新型日光溫室及其在果樹(shù)栽培中的應(yīng)用[J]. 農(nóng)業(yè)工程技術(shù),2017,37(25):38-40.
LU Lin,YU Fei,QIU Minghua,ZHANG Yan. A novel solar greenhouse and its application in fruit tree cultivation[J]. Agricultural Engineering Technology,2017,37(25):38-40.
[21] 閆冬梅,徐開(kāi)亮,周長(zhǎng)吉,張秋生. 柔性保溫墻橢圓管單管拱架日光溫室內(nèi)力分析及結(jié)構(gòu)優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2023,39(14):215-222.
YAN Dongmei,XU Kailiang,ZHOU Changji,ZHANG Qiusheng. Internal force analysis and structure optimization of single oval tube arch solar greenhouse with flexible insulation wall[J]. Transactions of the Chinese Society of Agricultural Engineering,2023,39(14):215-222.
[22] 郄麗娟,韓建會(huì),李永. 裝配式異質(zhì)復(fù)合墻體日光溫室熱性能分析與評(píng)價(jià)[J]. 中國(guó)農(nóng)業(yè)大學(xué)學(xué)報(bào),2023,28(4):159-169.
QIE Lijuan,HAN Jianhui,LI Yong. Thermal performance analysis and evaluation on solar greenhouse with assembled heterogeneous composite wall[J]. Journal of China Agricultural University,2023,28(4):159-169.
[23] 王蕊,楊小龍,王小雯,馬健,李天來(lái),須暉. 含水量對(duì)日光溫室土質(zhì)墻體穩(wěn)定性影響的有限元分析[J]. 沈陽(yáng)農(nóng)業(yè)大學(xué)學(xué)報(bào),2017,48(3):277-283.
WANG Rui,YANG Xiaolong,WANG Xiaowen,MA Jian,LI Tianlai,XU Hui. Finite element analysis of effect of water content on earth-wall stability of Chinese solar greenhouse[J]. Journal of Shenyang Agricultural University,2017,48(3):277-283.
[24] 蔣國(guó)振,胡耀華,劉玉鳳,鄒志榮. 基于CFD的下沉式日光溫室保溫性能分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2011,27(12):275-281.
JIANG Guozhen,HU Yaohua,LIU Yufeng,ZOU Zhirong. Analysis on insulation performance of sunken solar greenhouse based on CFD[J]. Transactions of the Chinese Society of Agricultural Engineering,2011,27(12):275-281.
[25] 孫樹(shù)鵬,董朝陽(yáng),黎貞發(fā),楊涵洧. 基于CFD的不同環(huán)境溫度下日光溫室內(nèi)部溫度變化研究[J]. 天津農(nóng)業(yè)科學(xué),2020,26(10):43-47.
SUN Shupeng,DONG Chaoyang,LI Zhenfa,YANG Hanwei. Study on temperature change of solar greenhouse at different environmental temperature based on CFD[J]. Tianjin Agricultural Sciences,2020,26(10):43-47.
[26] BERROUG F,LAKHAL E K,EL OMARI M,F(xiàn)ARAJI M,EL QARNIA H. Thermal performance of a greenhouse with a phase change material north wall[J]. Energy and Buildings,2011,43(11):3027-3035.
[27] 趙曉彤,須暉,李天來(lái),王蕊. 東北地區(qū)日光溫室冬季能量分配模型的建立[J]. 沈陽(yáng)農(nóng)業(yè)大學(xué)學(xué)報(bào),2019,50(1):43-50.
ZHAO Xiaotong,XU Hui,LI Tianlai,WANG Rui. Establishment of winter energy distribution model for solar greenhouse in Northeast China[J]. Journal of Shenyang Agricultural University,2019,50(1):43-50.
[28] 王超,方慧,張義,桑碩,曹軻菲. 輕簡(jiǎn)柔性墻體裝配式日光溫室能耗分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2023,39(3):190-197.
WANG Chao,F(xiàn)ANG Hui,ZHANG Yi,SANG Shuo,CAO Kefei. Energy consumption analysis of simply soft insulated wall-assembled Chinese solar greenhouse[J]. Transactions of the Chinese Society of Agricultural Engineering,2023,39(3):190-197.
[29] 史宇亮,王秀峰,魏珉,李清明,劉福勝,侯加林. 日光溫室土墻體溫度變化及蓄熱放熱特點(diǎn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(22):214-221.
SHI Yuliang,WANG Xiufeng,WEI Min,LI Qingming,LIU Fusheng,HOU Jialin. Temperature variation,heat storage and heat release characteristics of soil wall in solar greenhouse[J]. Transactions of the Chinese Society of Agricultural Engineering,2016,32(22):214-221.
[30] 許紅軍,曹晏飛,李彥榮,阿拉帕提,高杰,蔣衛(wèi)杰,鄒志榮. 基于CFD的日光溫室墻體蓄熱層厚度的確定[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(4):175-184.
XU Hongjun,CAO Yanfei,LI Yanrong,Alapati,GAO Jie,JIANG Weijie,ZOU Zhirong. Determination of thickness of thermal storage layer of solar greenhouse wall based on CFD[J]. Transactions of the Chinese Society of Agricultural Engineering,2019,35(4):175-184.
[31] 趙洪滿. 設(shè)施溫室材料選擇及建造模式[J]. 農(nóng)業(yè)工程,2022,12(6):75-77.
ZHAO Hongman. Material selection and construction mode of facility greenhouse[J]. Agricultural Engineering,2022,12(6):75-77.
[32] 劉晨霞,馬承偉,王平智,趙淑梅,程杰宇,王明磊. 日光溫室保溫被傳熱的理論解析及驗(yàn)證[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(2):170-176.
LIU Chenxia,MA Chengwei,WANG Pingzhi,ZHAO Shumei,CHENG Jieyu,WANG Minglei. Theoretical analysis and experimental verification of heat transfer through thick covering materials of solar greenhouse[J]. Transactions of the Chinese Society of Agricultural Engineering,2015,31(2):170-176.
[33] 于威,劉文合,白義奎,丁小明. 基于CFD的兩連跨日光溫室熱環(huán)境模擬[J]. 農(nóng)業(yè)工程學(xué)報(bào),2023,39(16):215-222.
YU Wei,LIU Wenhe,BAI Yikui,DING Xiaoming. Simulating thermal environment in a two-span solar greenhouse using CFD[J]. Transactions of the Chinese Society of Agricultural Engineering,2023,39(16):215-222.
[34] 王偉,方慧,伍綱,程瑞鋒,張義,袁余. 基于CFD模型的雙膜大跨度拱棚熱環(huán)境模擬[J]. 中國(guó)農(nóng)業(yè)大學(xué)學(xué)報(bào),2024,29(5):115-124.
WANG Wei,F(xiàn)ANG Hui,WU Gang,CHENG Ruifeng,ZHANG Yi,YUAN Yu. Thermal environment simulation in a double-film large-span greenhouse based on CFD model[J]. Journal of China Agricultural University,2024,29(5):115-124.
[35] 魏巍,楊林艷,柴云娥,顧金壽,劉孝敏,劉葉瑞. 雙膜日光溫室土壤-空氣換熱器土壤溫度試驗(yàn)研究[J]. 科學(xué)技術(shù)與工程,2024,24(5):1930-1936.
WEI Wei,YANG Linyan,CHAI Yun’e,GU Jinshou,LIU Xiaomin,LIU Yerui. Experimental study on soil temperature of soil-air heat exchanger in double-film solar greenhouse[J]. Science Technology and Engineering,2024,24(5):1930-1936.
[36] 楊小鋒,李勁松,楊沐,陳明樂(lè),黃植. 設(shè)施栽培覆蓋材料對(duì)芒果品質(zhì)及設(shè)施環(huán)境的影響[J]. 中國(guó)果樹(shù),2011(6):44-48.
YANG Xiaofeng,LI Jinsong,YANG Mu,CHEN Mingle,HUANG Zhi. Effects of covering materials on mango quality and facility environment in protected cultivation[J]. China Fruits,2011(6):44-48.
[37] 楊定偉,荊海薇,景煒婷,何斌,鄒志榮,鮑恩財(cái),曹晏飛. 不同墻體材料的裝配式日光溫室的熱性能對(duì)比分析[J]. 中國(guó)農(nóng)業(yè)大學(xué)學(xué)報(bào),2023,28(10):194-205.
YANG Dingwei,JING Haiwei,JING Weiting,HE Bin,ZOU Zhirong,BAO Encai,CAO Yanfei. Comparative analysis of thermal performance of fabricated solar greenhouses with different wall materials[J]. Journal of China Agricultural University,2023,28(10):194-205.
[38] 程麗,張國(guó)輝,楊帥,王春雨,林娜,潘凱. 高寒地區(qū)冬季不同類(lèi)型日光溫室內(nèi)環(huán)境的比較[J]. 北方園藝,2023(12):44-50.
CHENG Li,ZHANG Guohui,YANG Shuai,WANG Chunyu,LIN Na,PAN Kai. Comparative analysis of internal environment of different types of solar greenhouses in winter in alpine regions[J]. Northern Horticulture,2023(12):44-50.
[39] 王柯如,任妮,金晶,毛曉娟,劉楊. 設(shè)施環(huán)境調(diào)控技術(shù)研究現(xiàn)狀與挑戰(zhàn)[J]. 中國(guó)農(nóng)業(yè)信息,2024,36(2):73-82.
WANG Keru,REN Ni,JIN Jing,MAO Xiaojuan,LIU Yang. Current status and challenges of research in facility environmental control technology[J]. China Agricultural Informatics,2024,36(2):73-82.
[40] KOCHHAR A,KUMAR N. Wireless sensor networks for greenhouses:An end-to-end review[J]. Computers and Electronics in Agriculture,2019,163:104877.
[41] 徐鵬,張冠智,李洋,徐曉東,楊振超. 智慧設(shè)施農(nóng)業(yè)中控制系統(tǒng)的研究進(jìn)展[J]. 中國(guó)農(nóng)學(xué)通報(bào),2023,39(3):156-164.
XU Peng,ZHANG Guanzhi,LI Yang,XU Xiaodong,YANG Zhenchao. Control system in smart facility agriculture:Research progress[J]. Chinese Agricultural Science Bulletin,2023,39(3):156-164.
[42] 李振東. 智能葡萄大棚監(jiān)測(cè)系統(tǒng)設(shè)計(jì)[D]. 淮南:安徽理工大學(xué),2019.
LI Zhendong. Design of intelligent grape greenhouse monitoring system[D]. Huainan:Anhui University of Science amp; Technology,2019.
[43] 陳春玲,崔琳,許童羽,周云成,李天來(lái),王一情. 日光溫室無(wú)線傳感器多數(shù)據(jù)融合技術(shù)研究[J]. 沈陽(yáng)農(nóng)業(yè)大學(xué)學(xué)報(bào),2016,47(1):86-91.
CHEN Chunling,CUI Lin,XU Tongyu,ZHOU Yuncheng,LI Tianlai,WANG Yiqing. Wireless-sensor and multi-data fusion technological research of sunlight greenhouse[J]. Journal of Shenyang Agricultural University,2016,47(1):86-91.
[44] 孫昌權(quán),高菊玲. 設(shè)施草莓智慧生產(chǎn)管控系統(tǒng)設(shè)計(jì)與實(shí)現(xiàn)[J]. 中國(guó)農(nóng)機(jī)化學(xué)報(bào),2021,42(12):80-86.
SUN Changquan,GAO Juling. Design and implementation of intelligent control system for strawberry greenhouse[J]. Journal of Chinese Agricultural Mechanization,2021,42(12):80-86.
[45] 李玉亮,王尚華,魚(yú)亞蘭,牟佳,王旭東. 設(shè)施農(nóng)業(yè)溫室環(huán)境調(diào)控裝備的研究與進(jìn)展[J]. 中國(guó)農(nóng)機(jī)裝備,2024(7):57-59.
LI Yuliang,WANG Shanghua,YU Yalan,MOU Jia,WANG Xudong. Research progress of greenhouse environment control equipment in facility agriculture[J]. China Agricultural Machinery Equipment,2024(7):57-59.
[46] HE X L,WANG J,GUO S R,ZHANG J,WEI B,SUN J,SHU S. Ventilation optimization of solar greenhouse with removable back walls based on CFD[J]. Computers and Electronics in Agriculture,2018,149:16-25.
[47] 張明秋. 人工光源型植物工廠溫濕度環(huán)境控制與試驗(yàn)研究[D]. 大慶:黑龍江八一農(nóng)墾大學(xué),2021.
ZHANG Mingqiu. Experimental study on temperature and humidity environment control in plant factory with artificial light source[D]. Daqing:Heilongjiang Bayi Agricultural University,2021.
[48] 李亨. 基于模糊神經(jīng)網(wǎng)絡(luò)的植物工廠溫濕度控制研究[D]. 天津:天津職業(yè)技術(shù)師范大學(xué),2019.
LI Heng. Study on temperature and humidity control of plant factory based on fuzzy neural network[D]. Tianjin:Tianjin University of Technology and Education,2019.
[49] 劉云驥,徐繼彤,龐松若,孫周平,李天來(lái). 日光溫室正壓式濕簾風(fēng)機(jī)系統(tǒng)設(shè)計(jì)及其降溫效果[J]. 中國(guó)農(nóng)業(yè)大學(xué)學(xué)報(bào),2019,24(5):130-139.
LIU Yunji,XU Jitong,PANG Songruo,SUN Zhouping,LI Tianlai. Design of positive-pressure wet curtain fan system for solar greenhouse and its cooling effects[J]. Journal of China Agricultural University,2019,24(5):130-139.
[50] 宋財(cái)柱,塔娜,閆彩霞,孫云峰,甄琦,李曉凱. 日光溫室環(huán)境因子預(yù)測(cè)模型及應(yīng)用:基于BP神經(jīng)網(wǎng)絡(luò)[J]. 農(nóng)機(jī)化研究,2024,46(10):175-179.
SONG Caizhu,TA Na,YAN Caixia,SUN Yunfeng,ZHEN Qi,LI Xiaokai. Establishment and application of environmental factor model of solar greenhouse—based on BP neural network[J]. Journal of Agricultural Mechanization Research,2024,46(10):175-179.
[51] 陳辛格,伍綱,馮朝卿,姬亞寧,馬前磊,程瑞鋒. 基于窄槽式集熱器的日光溫室晝夜雙循環(huán)熱濕調(diào)控研究[J]. 工程熱物理學(xué)報(bào),2024,45(4):962-969.
CHEN Xinge,WU Gang,F(xiàn)ENG Chaoqing,JI Yaning,MA Qianlei,CHENG Ruifeng. Study on diurnal double-cycle heat and humidity control system of solar greenhouse based on solar narrow trough collector[J]. Journal of Engineering Thermophysics,2024,45(4):962-969.
[52] 薛曉萍,宿文. 基于CFD的自然通風(fēng)對(duì)日光溫室濕度分布模擬分析[J]. 海洋氣象學(xué)報(bào),2019,39(4):90-96.
XUE Xiaoping,SU Wen. CFD simulation of humidity distribution in solar greenhouse under natural ventilation[J]. Journal of Marine Meteorology,2019,39(4):90-96.
[53] 張國(guó)祥,傅澤田,張領(lǐng)先,嚴(yán)謹(jǐn),張標(biāo),李鑫星. 中國(guó)日光溫室機(jī)械卷簾技術(shù)發(fā)展現(xiàn)狀與趨勢(shì)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(增刊1):1-10.
ZHANG Guoxiang,F(xiàn)U Zetian,ZHANG Lingxian,YAN Jin,ZHANG Biao,LI Xinxing. Development status and prospect of mechanical rolling shutter technology in solar greenhouse in China[J]. Transactions of the Chinese Society of Agricultural Engineering,2017,33(Suppl. 1):1-10.
[54] 劉洋,宋衛(wèi)堂,王平智. 外保溫塑料大棚錐形滾筒式翻越卷放裝置的設(shè)計(jì)與試驗(yàn)[J]. 中國(guó)農(nóng)業(yè)大學(xué)學(xué)報(bào),2023,28(9):158-166.
LIU Yang,SONG Weitang,WANG Pingzhi. Design and experiment of a conical reel type over-top rolling machine for thermal quilt in external thermal arch shed[J]. Journal of China Agricultural University,2023,28(9):158-166.
[55] 吳若丁,何斌,張亦博,龔健林,趙昱權(quán). 雙穩(wěn)態(tài)折疊結(jié)構(gòu)日光溫室前屋面保溫設(shè)施的設(shè)計(jì)與試驗(yàn)[J]. 中國(guó)農(nóng)業(yè)科技導(dǎo)報(bào),2023,25(5):112-122.
WU Ruoding,HE Bin,ZHANG Yibo,GONG Jianlin,ZHAO Yuquan. Design and experiment of thermal insulation facilities for the front roof of bistable folding solar greenhouse[J]. Journal of Agricultural Science and Technology,2023,25(5):112-122.
[56] 張國(guó)祥,張璐,李鑫星,龔志文,董玉紅,馬云飛. 日光溫室前屋面覆蓋物協(xié)調(diào)鋪卷裝置設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2023,54(5):348-358.
ZHANG Guoxiang,ZHANG Lu,LI Xinxing,GONG Zhiwen,DONG Yuhong,MA Yunfei. Design and experiment of coordinative operation device of covers on front roof of Chinese solar greenhouse[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(5):348-358.
[57] 裴雪,范奧華,劉煥宇,王孝龍,王東,范葉滿,翟長(zhǎng)遠(yuǎn). 基于溫光耦合的溫室卷簾機(jī)控制設(shè)備開(kāi)發(fā)[J]. 農(nóng)機(jī)化研究,2018,40(4):83-86.
PEI Xue,F(xiàn)AN Aohua,LIU Huanyu,WANG Xiaolong,WANG Dong,F(xiàn)AN Yeman,ZHAI Changyuan. Development of greenhouse rolling machine control equipment based on temperature and light coupling[J]. Journal of Agricultural Mechanization Research,2018,40(4):83-86.
[58] 董亮,王家忠,孔德剛,劉江濤,袁永偉. 日光溫室卷簾機(jī)自動(dòng)接縫裝置設(shè)計(jì)[J]. 河北農(nóng)業(yè)大學(xué)學(xué)報(bào),2016,39(6):107-111.
DONG Liang,WANG Jiazhong,KONG Degang,LIU Jiangtao,YUAN Yongwei. A design of automatic seamless device for solar greenhouse rolling machine[J]. Journal of Agricultural University of Hebei,2016,39(6):107-111.
[59] 李偉靜. 設(shè)施果樹(shù)栽培增補(bǔ)二氧化碳的作用和方法[J]. 北方果樹(shù),2023(1):23-25.
LI Weijing. Effects and methods of carbon dioxide supplementation in protected cultivation of fruit trees[J]. Northern Fruits,2023(1):23-25.
[60] 張俊清,丁宏斌. 溫室增施二氧化碳?xì)夥始夹g(shù)試驗(yàn)效果探析[J]. 當(dāng)代農(nóng)機(jī),2017(2):12-13.
ZHANG Junqing,DING Hongbin. Analysis of the Experimental effects of carbon dioxide fertilization technology in greenhouses[J]. Contemporary Farm Machinery,2017(2):12-13.
[61] 辛敏. 引進(jìn)室外冷源的植物工廠零濃度差CO2施肥系統(tǒng)[D]. 北京:中國(guó)農(nóng)業(yè)科學(xué)院,2015.
XIN Min. Null CO2 concentration difference enrichment system by introducing outside cold air in plant factor[D]. Beijing:Chinese Academy of Agricultural Sciences,2015.
[62] 馬凱,韓立群,閆鵬,克里木·伊明,梅闖,王繼勛. 南疆日光溫室油桃CO2施肥效應(yīng)研究[J]. 新疆農(nóng)業(yè)科學(xué),2015,52(3):467-471.
MA Kai,HAN Liqun,YAN Peng,Kelimu·Yimin,MEI Chuang,WANG Jixun. Study on effects of enrichment to nectarine in greenhouses[J]. Xinjiang Agricultural Sciences,2015,52(3):467-471.
[63] 牟華偉,王金星,劉雙喜,于蓮雙,范連祥,傅生輝. 日光溫室集中式最優(yōu)化控制通風(fēng)系統(tǒng)[J]. 農(nóng)機(jī)化研究,2015,37(9):113-117.
MOU Huawei,WANG Jinxing,LIU Shuangxi,YU Lianshuang,F(xiàn)AN Lianxiang,F(xiàn)U Shenghui. Greenhouse centralized optimization control ventilation system[J]. Journal of Agricultural Mechanization Research,2015,37(9):113-117.
[64] 劉林,侯加林,姜斌. 日光溫室通風(fēng)系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)[J]. 山東農(nóng)業(yè)科學(xué),2015,47(5):115-118.
LIU Lin,HOU Jialin,JIANG Bin. Design and implementation of intelligent greenhouse ventilation system[J]. Shandong Agricultural Sciences,2015,47(5):115-118.
[65] MASHONJOWA E,RONSSE F,MILFORD J R,PIETERS J G. Modelling the thermal performance of a naturally ventilated greenhouse in Zimbabwe using a dynamic greenhouse climate model[J]. Solar Energy,2013,91:381-393.
[66] 方慧,楊其長(zhǎng),張義,程瑞鋒,張芳,盧威. 日光溫室熱壓風(fēng)壓耦合自然通風(fēng)流量的模擬[J]. 中國(guó)農(nóng)業(yè)氣象,2016,37(5):531-537.
FANG Hui,YANG Qichang,ZHANG Yi,CHENG Ruifeng,ZHANG Fang,LU Wei. Simulation on ventilation flux of solar greenhouse based on the coupling between stack and wind effects[J]. Chinese Journal of Agrometeorology,2016,37(5):531-537.
[67] AL-HELAL I M,WAHEEB S A,IBRAHIM A A,SHADY M R,ABDEL-GHANY A M. Modified thermal model to predict the natural ventilation of greenhouses[J]. Energy and Buildings,2015,99:1-8.
[68] 胡萬(wàn)玲,陳沖,管勇,馬喬喬,葉文濤. 拱架送/回風(fēng)方式對(duì)日光溫室冬季作物冠層區(qū)熱環(huán)境的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2024,40(4):262-272.
HU Wanling,CHEN Chong,GUAN Yong,MA Qiaoqiao,YE Wentao. Effects of arch frame air supply and return mode on the indoor thermal environment of crop canopy area for solar greenhouse in winter[J]. Transactions of the Chinese Society of Agricultural Engineering,2024,40(4):262-272.
[69] 萬(wàn)敏,楊魏,劉竹青,徐晨曦,劉東. 不同通風(fēng)方式日光溫室微環(huán)境模擬與作物蒸騰研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2024,55(1):328-338.
WAN Min,YANG Wei,LIU Zhuqing,XU Chenxi,LIU Dong. Microenvironment simulation and crop transpiration analysis of solar greenhouse with different ventilation modes[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(1):328-338.
[70] 鄭若琳,楊魏,劉竹青. 不同通風(fēng)形式日光溫室濕熱特性的數(shù)值模擬[J]. 中國(guó)農(nóng)業(yè)大學(xué)學(xué)報(bào),2023,28(3):140-150.
ZHENG Ruolin,YANG Wei,LIU Zhuqing. Numerical simulation of humid heat characteristics in solar greenhouse under different ventilation modes[J]. Journal of China Agricultural University,2023,28(3):140-150.
[71] 劉思汝,石偉琦,馬海洋,王國(guó)安,陳清,徐明崗. 果樹(shù)水肥一體化高效利用技術(shù)研究進(jìn)展[J]. 果樹(shù)學(xué)報(bào),2019,36(3):366-384.
LIU Siru,SHI Weiqi,MA Haiyang,WANG Guoan,CHEN Qing,XU Minggang. Advances in research on efficient utilization of fertigation in fruit trees[J]. Journal of Fruit Science,2019,36(3):366-384.
[72] 馮紫薈,但晨歆,薛鑫海,丘智晃,陳煜林,涂攀峰,鄧蘭生. 水肥一體化技術(shù)在荔枝上的應(yīng)用[J]. 安徽農(nóng)業(yè)科學(xué),2023,51(6):144-147.
FENG Zihui,DAN Chenxin,XUE Xinhai,QIU Zhihuang,CHEN Yulin,TU Panfeng,DENG Lansheng. Application of integrated water and fertilizer technology in litchi[J]. Journal of Anhui Agricultural Sciences,2023,51(6):144-147.
[73] 胡亮亮,熊橙梁,張慶富,瞿水根,陳金,方志超,楊柳,何激光,鄧小華. 水肥一體化技術(shù)研究現(xiàn)狀及在我國(guó)的推廣應(yīng)用[J]. 現(xiàn)代農(nóng)業(yè)科技,2023(20):104-109.
HU Liangliang,XIONG Chengliang,ZHANG Qingfu,QU Shuigen,CHEN Jin,F(xiàn)ANG Zhichao,YANG Liu,HE Jiguang,DENG Xiaohua. Research status of fertigation technology and its promotion and application in our country[J]. Modern Agricultural Science and Technology,2023(20):104-109.
[74] 李紅,湯攀,陳超,張志洋,夏華猛. 中國(guó)水肥一體化施肥設(shè)備研究現(xiàn)狀與發(fā)展趨勢(shì)[J]. 排灌機(jī)械工程學(xué)報(bào),2021,39(2):200-209.
LI Hong,TANG Pan,CHEN Chao,ZHANG Zhiyang,XIA Huameng. Research status and development trend of fertilization equipment used in fertigation in China[J]. Journal of Drainage and Irrigation Machinery Engineering,2021,39(2):200-209.
[75] 黃卿宜,孫一迪,周明耀,王恬,陳喜鋒. 水肥一體化條件下設(shè)施甜瓜灌溉施肥制度試驗(yàn)研究[J]. 節(jié)水灌溉,2022(4):71-76.
HUANG Qingyi,SUN Yidi,ZHOU Mingyao,WANG Tian,CHEN Xifeng. Experimental study on irrigation and fertilization regime of protected melon under water and fertilizer integration[J]. Water Saving Irrigation,2022(4):71-76.
[76] 李增源,王紹雷,姬廷廷,張衛(wèi)峰. 設(shè)施葡萄智能化水肥管理體系研究[J]. 中國(guó)土壤與肥料,2022(1):73-80.
LI Zengyuan,WANG Shaolei,JI Tingting,ZHANG Weifeng. Research on intelligent water and fertilizer management system of greenhouse grape[J]. Soil and Fertilizer Sciences in China,2022(1):73-80.
[77] 潘殿蓮,王志強(qiáng). 我國(guó)設(shè)施果樹(shù)全程機(jī)械化生產(chǎn)現(xiàn)狀與趨勢(shì)研究[J]. 中國(guó)果樹(shù),2024(4):148-151.
PAN Dianlian,WANG Zhiqiang. Research on the current situation and trends of mechanized production of protected fruit trees in China[J]. China Fruits,2024(4):148-151.
[78] 周桂官,蘇生平,蘇宇翔,吳劍銘,夏冰. 江蘇省設(shè)施西瓜機(jī)械化應(yīng)用現(xiàn)狀及發(fā)展建議[J]. 中國(guó)蔬菜,2021(11):113-117.
ZHOU Guiguan,SU Shengping,SU Yuxiang,WU Jianming,XIA Bing. Current status and development suggestions for mechanized application in facility watermelon production in Jiangsu province[J]. China Vegetables,2021(11):113-117.
[79] 孫錦,高洪波,田婧,王軍偉,杜長(zhǎng)霞,郭世榮. 我國(guó)設(shè)施園藝發(fā)展現(xiàn)狀與趨勢(shì)[J]. 南京農(nóng)業(yè)大學(xué)學(xué)報(bào),2019,42(4):594-604.
SUN Jin,GAO Hongbo,TIAN Jing,WANG Junwei,DU Changxia,GUO Shirong. Development status and trends of protected horticulture in China[J]. Journal of Nanjing Agricultural University,2019,42(4):594-604.
[80] LIU J Z,ZHAO S Y,LI N,F(xiàn)AHEEM M,ZHOU T,CAI W J,ZHAO M Z,ZHU X Y,LI P P. Development and field test of an autonomous strawberry plug seeding transplanter for use in elevated cultivation[J]. Applied Engineering in Agriculture,2019,35(6):1067-1078.
[81] XIONG Y,GE Y Y,GRIMSTAD L,F(xiàn)ROM P J. An autonomous strawberry-harvesting robot:Design,development,integration,and field evaluation[J]. Journal of Field Robotics,2020,37(2):202-224.
[82] 閻應(yīng)紅. 柑桔機(jī)械化和機(jī)器人采收研發(fā)現(xiàn)狀與展望[J]. 中國(guó)南方果樹(shù),2023,52(2):203-209.
YAN Yinghong. Current status and future prospects of research and development on mechanization and robotic harvesting of citrus[J]. South China Fruits,2023,52(2):203-209.
[83] 姬麗雯,劉永華,高菊玲,吳丹. 溫室草莓采摘機(jī)器人設(shè)計(jì)與試驗(yàn)[J]. 中國(guó)農(nóng)機(jī)化學(xué)報(bào),2023,44(1):192-198.
JI Liwen,LIU Yonghua,GAO Juling,WU Dan. Design and experiment of strawberry picking robot in greenhouse[J]. Journal of Chinese Agricultural Mechanization,2023,44(1):192-198.
[84] 劉霓紅,蔣先平,程俊峰,李惠玲,李葦,薛坤鵬,侯露,熊征. 國(guó)外有機(jī)設(shè)施園藝現(xiàn)狀及對(duì)中國(guó)設(shè)施農(nóng)業(yè)可持續(xù)發(fā)展的啟示[J]. 農(nóng)業(yè)工程技術(shù),2023,43(6):78.
LIU Nihong,JIANG Xianping,CHENG Junfeng,LI Huiling,LI Wei,XUE Kunpeng,HOU Lu,XIONG Zheng. Current status of organic protected horticulture abroad and its implications for sustainable development of protected agriculture in china[J]. Agricultural Engineering Technology,2023,43(6):78.
[85] 束勝,康云艷,王玉,袁凌云,鐘珉,孫錦,郭世榮. 世界設(shè)施園藝發(fā)展概況、特點(diǎn)及趨勢(shì)分析[J]. 中國(guó)蔬菜,2018(7):1-13.
SHU Sheng,KANG Yunyan,WANG Yu,YUAN Lingyun,ZHONG Min,SUN Jin,GUO Shirong. Analysis of the development status, characteristics, and trends of global facility horticulture[J]. China Vegetables,2018(7):1-13.
[86] EZZAERI K,F(xiàn)ATNASSI H,WIFAYA A,BAZGAOU A,AHAROUNE A,PONCET C,BEKKAOUI A,BOUIRDEN L. Performance of photovoltaic Canarian greenhouse:A comparison study between summer and winter seasons[J]. Solar Energy,2020,198:275-282.
[87] REGANOLD J P,WACHTER J M. Organic agriculture in the twenty-first century[J]. Nature Plants,2016,2:15221.
[88] RAHMANN G,REZA ARDAKANI M,BàRBERI P,BOEHM H,CANALI S,CHANDER M,DAVID W,DENGEL L,ERISMAN J W,GALVIS-MARTINEZ A C,HAMM U,KAHL J,K?PKE U,KüHNE S,LEE S B,L?ES A K,MOOS J H,NEUHOF D,NUUTILA J T,OLOWE V,OPPERMANN R,REMBIA?KOWSKA E,RIDDLE J,RASMUSSEN I A,SHADE J,SOHN S M,TADESSE M,TASHI S,THATCHER A,UDDIN N,VON FRAGSTEIN UND NIEMSDORFF P,WIBE A,WIVSTAD M,WU W L,ZANOLI R. Organic agriculture 3.0 is innovation with research[J]. Organic Agriculture,2017,7(3):169-197.
[89] RAMIN SHAMSHIRI R,KALANTARI F,TING K C,THORP K R,HAMEED I A,WELTZIEN C,AHMAD D,MOJGAN SHAD Z. Advances in greenhouse automation and controlled environment agriculture:A transition to plant factories and urban agriculture[J]. International Journal of Agricultural and Biological Engineering,2018,11(1):1-22.
[90] FATNASSI H,BOURNET P E,BOULARD T,ROY J C,MOLINA-AIZ F D,ZAABOUL R. Use of computational fluid dynamic tools to model the coupling of plant canopy activity and climate in greenhouses and closed plant growth systems:A review[J]. Biosystems Engineering,2023,230:388-408.
[91] CHU C R,LAN T W,TASI R K,WU T R,YANG C K. Wind-driven natural ventilation of greenhouses with vegetation[J]. Biosystems Engineering,2017,164:221-234.
[92] FERENTINOS K P,KATSOULAS N,TZOUNIS A,BARTZANAS T,KITTAS C. Wireless sensor networks for greenhouse climate and plant condition assessment[J]. Biosystems Engineering,2017,153:70-81.
[93] CHAUHAN P S,KUMAR A. Performance analysis of greenhouse dryer by using insulated north-wall under natural convection mode[J]. Energy Reports,2016,2:107-116.
[94] KAWASHIMA H. Development of a new energy-saving pipe-framed greenhouse[J]. Japan Agricultural Research Quarterly,2015,49:235-243.
[95] HOFFMAN J,LOEBER A. Exploring the micro-politics in transitions from a practice perspective:The case of greenhouse innovation in the Netherlands[J]. Journal of Environmental Policy amp; Planning,2016,18(5):692-711.
[96] DOUGKA G,BRIASSOULIS D. Load carrying capacity of greenhouse covering films under wind action:Optimising the supporting systems of greenhouse films[J]. Biosystems Engineering,2020,192:199-214.
[97] KUZNETSOV S,POSPISIL S. Full-scale measurements of local wind loads on a high-rise building using wind tunnel based predictions[J]. IOP Conference Series:Materials Science and Engineering,2019,471:052053.
[98] KIM R W,LEE I B,YEO U H,LEE S Y. Evaluation of various national greenhouse design standards for wind loading[J]. Biosystems Engineering,2019,188:136-154.
[99] 竇宗信,李寬瑩,龐勇,王寶春,徐鑒民,李冠男,王永旭. 北方設(shè)施葡萄發(fā)展現(xiàn)狀與對(duì)策探析[J]. 南方農(nóng)機(jī),2023,54(8):17-19.
DOU Zongxin,LI Kuanying,PANG Yong,WANG Baochun,XU Jianmin,LI Guannan,WANG Yongxu. Present situation and development countermeasures of protected grape in North China[J]. China Southern Agricultural Machinery,2023,54(8):17-19.
[100] 牟德生,郭艷蘭,張斌,王鑫,趙連鑫,李強(qiáng),馬尚有,陳巖輝. 河西走廊設(shè)施葡萄產(chǎn)業(yè)現(xiàn)狀及高質(zhì)量發(fā)展對(duì)策建議[J]. 中外葡萄與葡萄酒,2024(3):114-118.
MU Desheng,GUO Yanlan,ZHANG Bin,WANG Xin,ZHAO Lianxin,LI Qiang,MA Shangyou,CHEN Yanhui. Current situation and high quality development countermeasures of facility grape industry in Hexi Corridor[J]. Sino-Overseas Grapevine amp; Wine,2024(3):114-118.
[101] 田躍,姚冠新. 江蘇省設(shè)施果樹(shù)產(chǎn)業(yè)發(fā)展現(xiàn)狀、問(wèn)題及對(duì)策[J]. 中國(guó)果樹(shù),2022(3):98-102.
TIAN Yue,YAO Guanxin. The current situation, problems and countermeasures of the development of protected fruit industry in Jiangsu Province[J]. China Fruits,2022(3):98-102.
[102] 鄭寧寧. 物聯(lián)網(wǎng)技術(shù)在溫室大棚中推廣問(wèn)題與對(duì)策研究[J]. 山東農(nóng)業(yè)工程學(xué)院學(xué)報(bào),2022,39(6):28-31.
ZHENG Ningning. Research on the problems and countermeasures of popularization of internet of things technology in greenhouses[J]. The Journal of Shandong Agriculture and Engineering University,2022,39(6):28-31.
[103] 劉秀先. 提高設(shè)施果樹(shù)栽培光照效果的樹(shù)形研究[J]. 農(nóng)業(yè)開(kāi)發(fā)與裝備,2022(2):235-237.
LIU Xiuxian. Research on tree shapes to improve lighting effects in protected fruit tree cultivation[J]. Agricultural Development amp; Equipments,2022(2):235-237.
[104] 陳建,張文河. 北方果樹(shù)設(shè)施栽培的現(xiàn)狀及展望[J]. 現(xiàn)代農(nóng)業(yè)研究,2021,27(7):115-116.
CHEN Jian,ZHANG Wenhe. Present situation and prospect of fruit tree cultivation facilities in North China[J]. Modern Agriculture Research,2021,27(7):115-116.
[105] 王婷. 探究果樹(shù)設(shè)施栽培發(fā)展現(xiàn)狀與展望[J]. 現(xiàn)代園藝,2020(10):10-11.
WANG Ting. Exploration of the current status and prospects for development of protected cultivation of fruit trees[J]. Xiandai Horticulture,2020(10):10-11.
[106] 齊飛,李?lèi)?,李邵,何芬,周新? 世界設(shè)施園藝智能化裝備發(fā)展對(duì)中國(guó)的啟示研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(2):183-195.
QI Fei,LI Kai,LI Shao,HE Fen,ZHOU Xinqun. Development of intelligent equipment for protected horticulture in world and enlightenment to China[J]. Transactions of the Chinese Society of Agricultural Engineering,2019,35(2):183-195.
[107] 趙立虹,薛梅. 智能化農(nóng)機(jī)裝備助力設(shè)施園藝發(fā)展探析[J]. 農(nóng)業(yè)裝備與車(chē)輛工程,2021,59(9):153-155.
ZHAO Lihong,XUE Mei. Analysis on development of protected horticulture with intelligent agricultural machinery equipment[J]. Agricultural Equipment amp; Vehicle Engineering,2021,59(9):153-155.
[108] 古寧寧. “農(nóng)藝-農(nóng)機(jī)-設(shè)施” 深度融合推動(dòng)設(shè)施園藝高效發(fā)展[J]. 農(nóng)業(yè)工程技術(shù),2024,44(3):12-14.
GU Ningning. Deep integration of agronomy,agricultural machinery, and facilities to promote efficient development of facility horticulture[J]. Agricultural Engineering Technology,2024,44(3):12-14.
[109] 宋衛(wèi)堂,李明. 以“農(nóng)藝-農(nóng)機(jī)-設(shè)施” 深度融合推動(dòng)設(shè)施園藝高效發(fā)展[J]. 農(nóng)業(yè)工程技術(shù),2020,40(1):44-47.
SONG Weitang,LI Ming. Promote the efficient development of protected horticulture through the deep integration of agriculture-agricultural machinery-facilities[J]. Agricultural Engineering Technology,2020,40(1):44-47.
[110] 王連泉,王旭東. 智能化機(jī)械裝備在設(shè)施農(nóng)業(yè)中的應(yīng)用及創(chuàng)新[J]. 中國(guó)農(nóng)機(jī)裝備,2024(7):66-68.
WANG Lianquan,WANG Xudong. Application and innovation of intelligent machinery and equipment in facility agriculture[J]. China Agricultural Machinery Equipment,2024(7):66-68.
[111] 郭娜,田素博,須暉,關(guān)旭生,李天來(lái). 設(shè)施園藝植保裝備及其精準(zhǔn)施藥技術(shù)研究進(jìn)展[J]. 農(nóng)機(jī)化研究,2022,44(11):1-10.
GUO Na,TIAN Subo,XU Hui,GUAN Xusheng,LI Tianlai. Research progress on precision spraying technology and equipment of protected horticulture[J]. Journal of Agricultural Mechanization Research,2022,44(11):1-10.