摘" " 要:【目的】探究不同紅藍(lán)光LED組合對枳幼苗生長發(fā)育的影響?!痉椒ā恳詿o補(bǔ)光為對照(CK),采用紅藍(lán)光比例為RB1∶2(紅藍(lán)光質(zhì)比為1∶2,下同)、RB4∶1、RB6∶1、RB8∶1等4個不同比例紅藍(lán)光對枳幼苗進(jìn)行補(bǔ)光處理,并比較其形態(tài)和生理生化變化?!窘Y(jié)果】經(jīng)過補(bǔ)光處理210 d后,與CK相比,4個補(bǔ)光處理在株高、莖粗、總根長、平均根直徑、根尖數(shù)和干物質(zhì)積累量方面均表現(xiàn)顯著提升,而根冠比略有降低;葉長和葉寬呈下降趨勢,但其長寬比相近;分枝數(shù)增加,分枝高度降低;光合參數(shù)優(yōu)化改善,其中RB6∶1的氣孔導(dǎo)度和凈光合速率達(dá)到最高水平。在CK和4個補(bǔ)光處理中,RB6∶1的MDA含量最低,顯示出較強(qiáng)的抗性。經(jīng)過補(bǔ)光處理120 d后,4個補(bǔ)光處理的葉片花青苷含量顯著高于CK;在補(bǔ)光處理90~210 d期間,SPAD值逐漸增大,而色差a*值逐漸減小,并且花青苷含量逐漸降低?!窘Y(jié)論】在長沙地區(qū),從11月上旬至次年3月上旬和3月上旬至6月上旬分別采用RB8:1、RB6:1的補(bǔ)光方案,可以實(shí)現(xiàn)枳幼苗生長效果的最佳化,并達(dá)到莖粗增長量的最大化。
關(guān)鍵詞:枳;莖粗;LED補(bǔ)光組合;生長形態(tài);氧化酶活性
中圖分類號:S666.4 文獻(xiàn)標(biāo)志碼:A 文章編號:1009-9980(2024)12-2498-14
Effects of different LED red and blue light quality treatments on the growth of Poncirus trifoliata seedlings
ZHOU Zhengrong, ZHAO Heguo, SU Hanying, LUO Xuzhao, SUN Ziqing, MA Xianfeng, ZHU Yichi*
(Engineering Research Center of Horticultural Crop Germplasm Innovation and New Variety Breeding, Ministry of Education/National Center for Citrus Improvement-Changsha/College of Horticulture, Hunan Agricultural University, Changsha 4101258, Hunan, China)
Abstract: 【Objective】 Citrus is the predominant fruit crop in China, with a plantation area of 2 923 000 hm2 and a yield of 55 956 000 tons annually as of 2021. The breeding cycle of citrus virus-free container seedlings frequently spans two years, from the initial rootstock sowing to grafting and subsequent nursery cultivation. The protracted breeding cycle leads to a disconnection between citrus seedling supply and demand, resulting in sporadic instances of inadequate availability. Therefore, the citrus seedlings are insufficient to meet the demand of updating and iteration of citrus orchards in China. The extended breeding period also escalates the production costs of citrus virus-free container seedlings, impeding its widespread adoption. Furthermore, limited light exposure is observed during the early spring and autumn/winter seasons in most citrus producing regions. The use of greenhouses for seedling production exacerbates the light deprivation experienced by citrus rootstocks. The implementation of supplemental lighting stands out as a viable strategy to improve the light condition, which may be a key initiative to accelerate the citrus rootstock breeding cycle and promote resilient citrus rootstocks. The mechanism by which the mixed red and blue light spectrum modulates the photosynthesis and photomorphogenesis of Poncirus trifoliata seedlings remains unclear. The objective of this study was to determine the optimal supplemental light conditions to improve the growth and development of P. trifoliata seedlings. These results will provide a theoretical insight for accelerating the cycle of citrus virus-free container seedling breeding and improving seedling quality. 【Methods】 P. trifoliata seedlings obtained from Dongkou of Hunan province were used as the experimental material. Five light-supplementing treatments were designed, including RB4:1 (red to blue light ratio of 4∶1), RB6∶1, RB8∶1, RB1∶2, and no light supplementation (CK). Seedlings with similar growth potential were selected and transplanted in 14 rows, each containing 7 plants, thereby yielding a total of 98 plants for each treatment. The supplementary light was positioned directly above the P. trifoliata seedlings, and its intensity was maintained at 150 μmol·m-2·s-1 by adjusting its distance from the average height of the seedlings. The seeds were sown in the seedbed on August 12, 2021, and then it transplanted into nutrient bags on September 20, 2021. Supplemental light was applied on November 12, 2021, with a cycle of 6:00 AM to 10:00 PM, and ended on June 12, 2022. The supplemental light cycle was completed on June 12, 2022. Plant height and stem thickness were measured monthly between December 2021 and June 2022. SPAD and Chromatic Aberration a* values were measured in February, April, May and June 2022. Anthocyanin content was measured monthly from March to June 2022. In June 2022, measurements were taken for leaf length, leaf width, leaf area, total root length, average root diameter, root volume, root surface area, number of root tips, LAI value, fresh weight, dry weight, dry weight of underground part, dry weight of above ground part, root-crown ratio, photosynthetic parameters, chlorophyll fluorescence parameters, soluble protein content, soluble sugar content, superoxide dismutase (SOD) activity, peroxidase (POD) activity, catalase (CAT) activity, and malondialdehyde (MDA) content. 【Results】After 210 days of supplemental light treatment, all four treatments resulted in higher plant height, stem thickness, total root length, average root diameter, number of root tips and dry matter accumulation as compared to the control. The root-crown ratio exhibited a slight decrease. Leaf length and width displayed a declining trend, but the aspect ratio of the leaf remained unchanged. The number of branches increased whereas the branch height decreased. The photosynthetic parameters were enhanced with RB6 demonstrating the highest stomatal conductance and net photosynthetic rate. The MDA content of RB6∶1 was significantly lower than that of other treatments. Additionally, the soluble protein content, soluble sugar content and the antioxidant enzyme activities (SOD, POD and CAT) of RB6∶1 were significantly higher than those of the control, which may indicate the plants with strong resistance. After 120 days of supplemental light treatment, the anthocyanin contents of RB4∶1, RB6∶1, RB8∶1 and RB1∶2 were significantly higher than that of the control in leaves. Between 90 and 210 days of the supplemental light treatment, the SPAD values of the four treatments as a whole gradually increased, while their Chromatic Aberration a* and anthocyanin contents gradually decreased. This study focused on the stem thickness of the seedlings. RB8∶1 showed the fastest growth between 30 and 120 days of supplemental light treatment. In addition, RB6∶1 exhibited the highest stem thickness between 120 and 210 days of treatment, reaching 2.46 mm. At the end of 210 days of treatment, RB6∶1 exhibited the greatest stem thickness at 5.03 mm. 【Conclusion】 In the Changsha region, optimal growth and maximum stem diameter growth of P. trifoliata seedlings can be achieved by using RB8∶1 and RB6∶1 light supplementation from early November to early March and from early March to early June, respectively.
Key words: Poncirus trifoliata; Stem diameter; LED fill light combination; Growth form; Oxidase activity
柑橘是世界第一大水果,也是我國第一大水果[1]。2020年,世界柑橘種植面積1007萬hm2,產(chǎn)量1.58億t[2];2022年,我國柑橘種植面積299.58萬hm2,產(chǎn)量6 003.89萬t[3]。作為多年生果樹,一旦種下,多年不需要重新種植,在柑橘產(chǎn)業(yè)中選擇合適的種苗是至關(guān)重要的環(huán)節(jié)。由于新建和重建柑橘果園以及病樹和蟲樹砍伐后補(bǔ)栽等原因,我國每年對柑橘種苗的需求量巨大。無病毒容器苗具有成活率高、長勢好、根系發(fā)達(dá)、不帶病毒、投產(chǎn)早和果實(shí)品質(zhì)優(yōu)良等優(yōu)點(diǎn),受到政府和專家的極力推薦,逐漸被柑橘企業(yè)和種植戶廣泛接受。一般情況下,無病毒容器苗從8月開始播種砧木,翌年9—10月進(jìn)行嫁接,并在第三年秋冬季出圃,整個過程耗時兩年,繁育周期較長。正是由于這一較長的繁育周期,使得柑橘種苗供求銜接不緊,需求供應(yīng)不足或供應(yīng)需求疲軟的情況時有發(fā)生,導(dǎo)致一些柑橘無病毒容器苗圃舉步維艱、生存困難。另外,較長的繁育周期也使得育苗成本較高,在一定程度上阻礙了柑橘無病毒容器苗的推廣。尋找更高效的途徑提高育苗水平、降低育苗成本已經(jīng)成為柑橘產(chǎn)業(yè)發(fā)展的迫切需求。
在我國柑橘產(chǎn)區(qū),初春和秋冬季節(jié)光照較弱,加之柑橘無病毒容器苗的繁育全程在大棚內(nèi)進(jìn)行,進(jìn)一步減弱了柑橘砧木獲得的光照。補(bǔ)光是改善光照條件的有效途徑[4],是縮短柑橘砧木繁育周期、培育粗壯柑橘砧木可以優(yōu)先考慮的措施。研究表明,植物的光合作用在藍(lán)光區(qū)(波峰440 nm)和紅光區(qū)(波峰620 nm)達(dá)到峰值[5]。紅藍(lán)光質(zhì)對植物生長發(fā)育、生理活動以及葉片光合速率的影響已經(jīng)成為國內(nèi)外專家學(xué)者研究的重要內(nèi)容。枳作為一種優(yōu)良的柑橘砧木,具有適應(yīng)性廣、抗性強(qiáng)等優(yōu)點(diǎn),在圃時間14個月左右,占了整個柑橘種苗繁育時間的50%以上。由于自然界中大多數(shù)植物生長初期被迫在遮陰條件下,較高的植物會吸收光譜中大部分紅光和藍(lán)光,導(dǎo)致了光照質(zhì)量的下降[6]。人工添加紅藍(lán)光補(bǔ)光可有效改善幼苗所處的光環(huán)境,在一定程度上促進(jìn)幼苗的生長。
發(fā)光二極管(light emitting diode,LED)具有光譜精準(zhǔn)可調(diào)、光利用效率和功率轉(zhuǎn)換效率高等優(yōu)點(diǎn),廣泛應(yīng)用于黃瓜[7]、番茄[8–10]、辣椒[11]、楊梅[12]、葡萄[13–15]和火龍果[16]等園藝作物。補(bǔ)光在柑橘栽培的應(yīng)用上少有報道,已有研究表明,150 μmol·m-2·s-1光照度下,LED燈RB1∶1(紅藍(lán)光質(zhì)比為1∶1)更利于金秋砂糖橘新梢生長、物質(zhì)積累和光合作用[17],RGB4∶1∶1(紅綠藍(lán)光質(zhì)比為4∶1∶1)更有利于紅橘的生長[18];150 μmol·m-2·s-1光照度下,LED燈RYB4∶1∶1(紅黃藍(lán)光質(zhì)比為4∶1∶1)最有利于枳幼苗的物質(zhì)合成與地上部生長[19];適宜先鋒橙幼苗生長的LED光質(zhì)為RB4∶1 [20],適宜紅橘幼苗生長的 LED 光質(zhì)為RB1∶1[18]。目前,LED光對柑橘育苗的影響研究主要在培養(yǎng)室內(nèi)進(jìn)行,將LED光應(yīng)用于柑橘大棚育苗的研究較少。湖南農(nóng)業(yè)大學(xué)柑橘科研團(tuán)隊(duì)2020年在塑料大棚內(nèi)進(jìn)行了LED補(bǔ)光對枳幼苗生長影響的初步研究,結(jié)果表明,LED紅藍(lán)復(fù)合光較LED白光更有利于枳幼苗的生長。
有關(guān)紅藍(lán)光如何調(diào)節(jié)枳幼苗葉片光合作用和植物光形態(tài)發(fā)生的機(jī)制研究較少,適宜枳生長發(fā)育的紅藍(lán)光補(bǔ)光條件還有待探尋。筆者通過在初春和秋冬季節(jié)在長沙地區(qū)育苗大棚內(nèi)對枳幼苗進(jìn)行補(bǔ)光,希望通過比較不同比例紅藍(lán)復(fù)合光處理下枳幼苗形態(tài)和生理生化差異,篩選出促進(jìn)枳幼苗生長發(fā)育的最適宜補(bǔ)光條件,以期加快枳幼苗莖的生長,提早嫁接時間,促進(jìn)柑橘無病毒容器苗的推廣。
1 材料和方法
1.1 材料
試驗(yàn)在湖南農(nóng)業(yè)大學(xué)長安基地(28°09′ N,113°13′ E)進(jìn)行,供試枳(Poncirus trifoliata)來源于湖南洞口。選取飽滿的枳嫩籽5000粒,經(jīng)1%次氯酸鈉消毒10 min后,于2021年8月12日播種于苗床育苗基質(zhì)中,9月20日選取生長勢相同、平均株高為7 cm的枳幼苗1215株移栽到育苗袋。緩苗后,控水保持土壤濕潤,每月施加一次柑橘專用的由湖南金葉眾望科技股份有限公司生產(chǎn)的金葉2代復(fù)合肥料(N-P2O5-K2O,18-9-18),培養(yǎng)基質(zhì)購買于湖南省湘暉農(nóng)業(yè)技術(shù)開發(fā)有限公司。
1.2 試驗(yàn)設(shè)計(jì)
試驗(yàn)設(shè)計(jì)不補(bǔ)光(對照)和RB4∶1(紅藍(lán)光質(zhì)比為4∶1,下同)、RB6∶1、RB8∶1、RB1∶2等4個補(bǔ)光處理,共5個處理(圖1)。每個處理選擇生長勢一致、平均株高為11 cm、平均直徑為2 mm(播種后90 d)的枳幼苗14行,每行7株,共98株。在枳幼苗正上方懸掛補(bǔ)光燈,通過調(diào)節(jié)補(bǔ)光燈到枳幼苗平均高度處的距離使補(bǔ)光光照度保持在150 μmol·m-2·s-1。2021年11月12日開始補(bǔ)光,每天補(bǔ)光時間段為06:00—22:00,2022年6月12日結(jié)束。試驗(yàn)所用補(bǔ)光燈由深圳承越科技有限公司提供,紅光波段峰值為660 nm,藍(lán)光波段峰值為445 nm,紅藍(lán)光波長設(shè)置參考劉敏竹等[18]對紅橘幼苗的研究。
1.3 試驗(yàn)方法
1.3.1" " 株高、莖粗、分支高度、葉面積、葉片LAI、根系測量" " 補(bǔ)光處理后每隔30 d,每個處理隨機(jī)選擇14株枳幼苗,采用卷尺測量株高,每株測量2次取平均值;采用游標(biāo)卡尺測量莖粗,每株測量2次取平均值。補(bǔ)光處理210 d后,采用卷尺測量土面到第一個側(cè)枝處的高度為分枝高度,每株測量2次取平均值;每個處理隨機(jī)選擇20株枳幼苗,每株取中上部成熟葉片1片,采用圖像處理軟件ImageJ(版本:FIJI)測量葉長、葉寬和葉面積;每個處理隨機(jī)選取4個長勢均勻的測量點(diǎn),采用LAI-2200C冠層分析儀(美國LI-COR公司)測量LAI,3次重復(fù);每個處理隨機(jī)選取4株枳幼苗,采用GYX-A植物根系分析儀(浙江托普云農(nóng)科技股份有限公司)分析根系掃描圖片獲得總根長、根平均直徑、根體積、根表面積、投影面積和根尖數(shù)。
1.3.2" " 鮮質(zhì)量、干質(zhì)量測量" " 補(bǔ)光處理210 d后,每個處理隨機(jī)選擇5株枳幼苗,采用電子天平測量地上部分、地下部分干質(zhì)量和鮮質(zhì)量;地下部分干質(zhì)量與地上部分干質(zhì)量的比值為根冠比。
1.3.3" " 光和參數(shù)、葉綠素?zé)晒鈪?shù)、葉綠素含量、色差、花青苷含量測量" " 補(bǔ)光處理210 d后,每個處理隨機(jī)選擇3株枳幼苗,每株取植株中上部2022年萌生的葉3片,采用LI-6400XT便攜式光合儀(美國LI-COR公司)測定光合參數(shù),采用Fluor Pen FP110手持式葉綠素?zé)晒鈨x(捷克FluorCam公司)測定葉綠素?zé)晒鈪?shù)。補(bǔ)光處理90 d后,每個處理隨機(jī)選擇10株枳幼苗,每株取植株下部2021年萌生的葉1片;補(bǔ)光處理150、180、210 d后,每個處理隨機(jī)選擇10株枳幼苗,每株取植株中上部2022年萌生的葉1片,采用美能達(dá)SPAD-502Plus葉綠素儀(日本美能達(dá)公司)測定SPAD值,采用NR110+型色差儀(廣東三恩時科技有限公司)測定色差a*值。在補(bǔ)光處理150 d后,每個處理隨機(jī)選擇4株枳幼苗,每株取植株下部2021年萌生的葉2片;在補(bǔ)光處理150、180、210 d后,每個處理隨機(jī)選取4株枳幼苗,每株取植株中上部2022年萌生的葉2片,采用Huang等[21]的方法測定花青苷含量。
1.3.4" " 生理指標(biāo)測量" " 采用考馬斯亮藍(lán)法測定可溶性蛋白含量[22],采用蒽酮比色法測定可溶性糖含量[22],采用NBT 法測定超氧化物歧化酶(SOD)活性[21],采用愈創(chuàng)木酚法測定過氧化物酶(POD)活性[20],采用過氧化氫分解量法測定過氧化氫酶(CAT)活性[20],采用蘇州科銘生物技術(shù)有限公司的丙二醛含量試劑盒(貨號MDA-1-Y)測定丙二醛(MDA)含量。
1.4 數(shù)據(jù)分析
采用Excel 2019進(jìn)行數(shù)據(jù)匯總與顯著性分析,使用Chiplot Online(https://www.chiplot.online/)繪圖。
2 結(jié)果與分析
2.1 不同比例紅藍(lán)光處理對枳幼苗形態(tài)變化的影響
2.1.1" " 對株高的影響" " 由表1可知,處理后的120 d內(nèi),枳幼苗株高增長量較小。比較處理第30天、第60天、第90天后的3次測量結(jié)果,4個補(bǔ)光處理的株高與對照無顯著差異。處理120 d后,RB8∶1的株高顯著高于對照和其他處理。處理后120~210 d,枳幼苗株高增長迅速;處理210 d后,RB4∶1、RB6∶1的株高分別比對照高15.75%、19.38%,差異顯著;RB8∶1、RB1∶2的株高分別比對照高8.72%、3.42%,無顯著差異。
根據(jù)表1數(shù)據(jù),可以將試驗(yàn)期間枳幼苗株高的增長分為兩個階段,第一個階段是緩慢增長階段,即處理后第30天至第120天,在此階段RB8∶1的株高均值最高,RB6∶1的株高均值最低。第二個階段是迅速增長階段,即處理后第120天至第210天,在此階段,RB6∶1的株高增長量最大;處理210 d后,其株高均值顯著高于對照、RB8∶1、RB1∶2。
2.1.2" " 對莖粗的影響" " 由表2可知,處理后的前120 d內(nèi),枳幼苗莖粗增長量較小,RB8∶1的莖粗增長量最高,對照最低,分別為0.40 mm、0.30 mm。處理120 d后,RB8∶1莖粗值最大,顯著高于對照和RB1∶2。處理后120~210 d,枳幼苗莖粗增長迅速;補(bǔ)光210 d后,RB4∶1、RB6∶1、RB8∶1、RB1∶2的莖粗分別是對照的110.78%、115.37%、114.68%、113.53%,均顯著高于對照,RB6∶1莖粗值最大。
2.1.3" " 對分枝數(shù)和葉片的影響" " 由表3可知,4個補(bǔ)光處理的分枝數(shù)均高于對照,差異顯著(RB4∶1除外),RB4∶1、RB6∶1、RB8∶1、RB1∶2的分枝數(shù)分別是對照的162.5%、218.75%、225.00%、212.50%。各補(bǔ)光處理分枝高度均顯著低于對照,分別是對照的62.82%、44.04%、59.09%、51.26%,RB6∶1的分枝高度最低。
4個補(bǔ)光處理的葉片數(shù)均顯著高于對照,RB6∶1的葉片數(shù)最多。RB4∶1、RB6∶1、RB8∶1葉長、葉寬和葉面積與對照均無顯著差異;對照的葉面積最大,RB4∶1的葉長、葉寬最接近對照;RB1∶2的葉長、葉寬和葉面積均顯著小于對照。各補(bǔ)光處理的葉片長寬比與對照接近,均無顯著差異。以上數(shù)據(jù)表明補(bǔ)光處理促進(jìn)了枳幼苗的分枝,降低了分枝高度,促進(jìn)葉片數(shù)的增加,抑制葉片增大,對葉片長寬比無明顯影響。
2.1.4" " 對葉面積指數(shù)的影響" " 由圖2可知,各補(bǔ)光處理促進(jìn)了葉面積指數(shù)的增大,RB6∶1、RB8∶1的葉面積指數(shù)分別比對照高34.45%、27.73%,差異顯著。RB4∶1、RB1∶2的葉面積指數(shù)分別比對照高16.39%、7.17%,無顯著差異。
2.1.5" " 對根系形態(tài)的影響" " 由表4可知,各補(bǔ)光處理均促進(jìn)了根系生長。RB6∶1的總根長、根體積、總根表面積、投影面積的值均最大,顯著高于對照;平均根直徑、根尖數(shù)與對照無顯著差異。RB4∶1、RB8∶1、RB1∶2的總根長、平均根直徑、根體積、總根表面積、投影面積、根尖數(shù)均高于對照,但無顯著差異。
2.2 不同比例紅藍(lán)光處理對枳幼苗生物量的影響
由表5可知,各補(bǔ)光處理均促進(jìn)了生物量的積累,RB6∶1、RB8∶1的鮮質(zhì)量、干質(zhì)量、地上部分干質(zhì)量、地下部分干質(zhì)量均顯著大于對照。RB4∶1、RB1∶2的鮮質(zhì)量、干質(zhì)量、地上部分干質(zhì)量、地下部分干質(zhì)量均大于對照,但無顯著差異。RB4∶1的根冠比與對照相近;RB6∶1、RB8∶1、RB1∶2的根冠比均小于對照,但無顯著差異。
2.3 不同比例紅藍(lán)光處理對枳幼苗葉色的影響
由表6可知,各處理葉片的葉綠素相對含量整體上呈上升趨勢。用于測定處理90 d后SPAD值的葉片為2021年萌生的葉,各處理SPAD值均小于對照,其中RB4∶1、RB6∶1、RB8∶1顯著低于對照。用于測定處理150、180、210 d后SPAD值的葉片為2022年萌生的葉。處理150 d后,4個補(bǔ)光處理的SPAD值均低于對照,但無顯著差異。處理180、210 d后,各補(bǔ)光處理的SPAD值均高于對照,其中RB1∶2的SPAD值均為最大,顯著高于對照。
由表6可知,各處理葉片的色差a*值呈先下降后上升的趨勢。用于測定處理90 d后色差a*值的葉片為2021年萌生的葉,用于測定處理150、180、210 d后色差a*值的葉片為2022年萌生的葉。處理90 d后,4個補(bǔ)光處理的色差a*值均顯著高于對照,葉片偏紅,對照葉片偏綠,RB6∶1的a*值最大。處理150、180、210 d后,色差a*值均為負(fù)數(shù),葉色呈現(xiàn)為綠色;處理150 d后,4個補(bǔ)光處理的a*值均大于對照,但無顯著差異;處理180 d后,RB1∶2的a*值顯著大于對照,RB4∶1、RB8∶1的a*值小于對照,均無顯著差異;處理210 d后,4個補(bǔ)光處理的a*值均小于對照,但無顯著差異。
2.4 不同比例紅藍(lán)光處理對枳幼苗光合作用的影響
2.4.1" " 對光合參數(shù)的影響" " 由表7可知,4個補(bǔ)光處理的凈光合速率、氣孔導(dǎo)度、胞間二氧化碳濃度和蒸騰速率與對照均無顯著差異,但RB6∶1氣孔導(dǎo)度和凈光合速率最大,光合性能最好。RB4∶1、RB6∶1、RB8∶1、RB1∶2的凈光合速率分別是對照的87.51%、101.06%、80.12%、76.08%,氣孔導(dǎo)度分別是對照的100.00%、102.78%、100.00%、94.44%,胞間二氧化碳濃度分別是對照的102.39%、100.65%、102.91%、103.04%,蒸騰速率分別是對照的103.70%、97.70%、98.98%、92.09%。
2.4.2" " 對葉綠素?zé)晒鈪?shù)的影響" " 由表8可知,各處理的原始熒光(Fo)無顯著差異。RB4∶1、RB6∶1的最大熒光(Fm)分別是對照的96.33%、100.78%,無顯著差異;RB8∶1、RB1∶2的Fm分別是對照的85.94%、85.39%,顯著低于對照。4個補(bǔ)光處理的可變熒光(Fv)均低于對照,其中RB4∶1、RB6∶1與對照無顯著差異;RB8∶1、RB1∶2顯著低于對照。4個補(bǔ)光處理的電子傳遞活性(Fm/Fo)均低于對照,RB4∶1、RB6∶1、RB8∶1與對照無顯著差異;RB1∶2的Fm/Fo是對照的85.26%,差異顯著。4個補(bǔ)光處理的最大光合潛能(Fv/Fo)均低于對照,RB4∶1、RB6∶1、RB8∶1與對照無顯著差異;RB1∶2的Fv/Fo是對照的81.88%,差異顯著。RB4∶1、RB6∶1的最大量子產(chǎn)額(Fv/Fm)與對照無顯著差異;RB1∶2、RB8∶1的Fv/Fm均是對照的96.30%,差異顯著。
2.5 不同比例紅藍(lán)光LED補(bǔ)光對枳幼苗抗性的影響
2.5.1" " 對可溶性蛋白、可溶性糖含量的影響" " 由圖3可知,RB4∶1、RB6∶1的可溶性蛋白含量與對照無顯著差異;RB8∶1、RB1∶2的可溶性蛋白含量顯著高于對照,分別是對照的130.12%、143.17%,RB1∶2的可溶性蛋白含量最高。RB4∶1、RB1∶2的可溶性糖含量與對照無顯著差異;RB6∶1、RB8∶1的可溶性糖含量顯著高于對照,分別是對照的146.41%、171.66%,RB8∶1的可溶性糖含量最高。
2.5.2" " 對花青苷含量的影響" " 由表9可知,處理120 d后,各處理葉片的花青苷含量均顯著高于對照,分別是對照的250.00%、220.63%、188.89%、225.40%,RB4∶1的花青苷含量最高。處理后150~210 d,各處理葉片的花青苷含量呈下降趨勢,各補(bǔ)光處理葉片的花青苷含量略高于對照,但無顯著差異。
2.5.3" " 對抗氧化酶活性與MDA含量的影響" " 由表10可知,RB4∶1的MDA含量是對照的88.70%,RB8∶1、RB1∶2的MDA含量分別是對照的120.78%、104.54%,均無顯著差異;RB6∶1的MDA含量最低,顯著低于對照,是對照的60.93%。
4個補(bǔ)光處理的SOD活性均顯著高于對照,分別是對照的108.68%、108.98%、111.34%、122.14%,RB1∶2最高。RB4∶1、RB6∶1、RB8∶1的CAT活性與對照無顯著差異;RB1∶2的CAT活性是對照的113.80%,差異顯著。4個補(bǔ)光處理的POD活性與對照無顯著差異,RB4∶1的POD活性最低,RB6∶1的POD活性最高。
3 討 論
3.1 不同比例紅藍(lán)光LED補(bǔ)光對枳幼苗形態(tài)建成的影響
不同光質(zhì)處理會誘導(dǎo)植物發(fā)生不同的形態(tài)和生理變化,營養(yǎng)生長可以直觀反映植物的生長狀態(tài)[23]。紅光照射促進(jìn)菊花幼苗的株高增長、干鮮質(zhì)量積累[24],也有利于花生幼苗的主根生長和側(cè)根形成[25]。藍(lán)光可以誘導(dǎo)煙草莖的伸長[26],但會抑制黃瓜[27]和番茄[28-29]莖的生長,同時降低兩者幼苗的葉面積。使用不同光質(zhì)處理草莓時,發(fā)現(xiàn)藍(lán)光會顯著抑制其根系發(fā)育[30]。而紅藍(lán)復(fù)合光綜合了紅光和藍(lán)光的優(yōu)點(diǎn),更能促進(jìn)植物的營養(yǎng)生長。株高和莖粗是衡量砧木狀況的重要指標(biāo),本研究4個補(bǔ)光處理的株高和莖粗均高于對照,說明補(bǔ)光能促進(jìn)枳幼苗的生長,與前人在黃瓜[27]、番茄[28-29]、楊梅[12]和越橘[31]上的研究結(jié)果相似。本研究發(fā)現(xiàn),可以將試驗(yàn)期間枳幼苗莖的增粗分為兩個階段,第一個階段是緩慢增長階段,即處理后30~120 d,在此階段,RB8∶1的莖粗一直最大,對照的莖粗一直最小;處理120 d后,RB8∶1莖粗和莖粗增長量最大。第二個階段是迅速增長階段,即處理后120~210 d,在此階段,RB6∶1的莖粗增長量最高,為2.46 mm;處理210 d后,RB4∶1、RB6∶1、RB8∶1、RB1∶2的莖粗都顯著高于對照,其中,RB6∶1、RB8∶1的莖粗達(dá)到5 mm以上,說明在氣溫升高后,RB6∶1促進(jìn)枳幼苗莖增粗效果更好。有研究發(fā)現(xiàn),越橘[31]在RB3∶1處理下莖粗增長最快。藍(lán)莓在RB4∶1處理下株高和莖粗顯著增加[32],牛角椒在RB5∶1處理下凈光合速率和干物質(zhì)積累量最高[33],與本研究RB8∶1、RB6∶1可獲得較佳的枳幼苗生長效果不同,可能是物種差異所致。
4個補(bǔ)光處理均促進(jìn)了分枝,這可能是因?yàn)檠a(bǔ)光處理獲得的光照度較對照高,較高的光照度促進(jìn)側(cè)芽生長和分枝[34-36],從而進(jìn)一步促進(jìn)分枝高度下降,葉片數(shù)增多。補(bǔ)光處理有抑制葉面積的趨勢,但葉片長寬比幾乎不變,這符合最優(yōu)分配理論的觀點(diǎn),弱光下的植物往往傾向于增加光獲取構(gòu)件的投資,分配更多的光合產(chǎn)物用于構(gòu)建地上部分[37],但這一結(jié)果與很多前人在蔬菜[38-40]上的研究結(jié)果相反,可能是植物種類不同所致。4個補(bǔ)光處理的葉面積指數(shù)均高于對照,RB6∶1、RB8∶1與對照差異顯著,RB4∶1、RB1∶2與對照無顯著差異,這與分枝數(shù)和葉片數(shù)的差異趨勢基本一致。
4個補(bǔ)光處理的總根長、平均根直徑、根體積、總根表面積、投影面積、根尖數(shù)都要高于對照,與前人在黃瓜[41]、番茄[42]、水稻[43]上的研究結(jié)果相似。RB6∶1的總根長、根體積、總根表面積、投影面積的值均最大;4個補(bǔ)光處理的鮮質(zhì)量、地上部分干質(zhì)量、地下部分干質(zhì)量均高于對照,與前人在金錢蓮[44]和甜椒[39]上的研究結(jié)果相似,其中RB6∶1干物質(zhì)積累量最高;表明4個補(bǔ)光處理中RB6∶1促進(jìn)枳幼苗干物質(zhì)積累的效果更加明顯,這可能是RB6∶1通過促進(jìn)地下部分的生長,促進(jìn)根系對養(yǎng)分的吸收,從而促進(jìn)了地上部分莖的增粗。4個補(bǔ)光處理的根冠比小于或等于對照,與前人在黃瓜[45]上的研究結(jié)果相似,表明補(bǔ)光處理有促進(jìn)干物質(zhì)向地上部分分配的趨勢。
3.2 不同比例紅藍(lán)光LED補(bǔ)光對枳幼苗葉色的影響
葉綠素是吸收光能的主要色素,直接影響植株光合作用的光能利用率。SPAD值表示植物葉綠素的相對含量或者是植物綠色程度的一個參數(shù)值[46-47]。處理180 d和210 d后,4個補(bǔ)光處理的SPAD值均高于對照,這與前人在番茄[48]、越橘[31]、甜瓜[40]上的研究結(jié)果基本一致,說明補(bǔ)光會促進(jìn)SPAD值的增大。色差儀所測的a*值為紅綠度,-a表示向綠色方向變化,+a表示向紅色方向變化[48]。補(bǔ)光處理90 d后,4個處理的a*值均為正數(shù),葉片偏向紅色;補(bǔ)光180 d后,4個處理的a*值均為負(fù)數(shù),葉片呈現(xiàn)綠色?;ㄇ嘬帐菦Q定植物花、果實(shí)、種皮和葉片等顏色的重要色素之一,也能在一定程度上反映植物受到脅迫的狀態(tài)。部分植物葉片在正常衰老時花青苷含量會增加,當(dāng)植物葉片遭遇低溫、干旱等環(huán)境脅迫時也會產(chǎn)生應(yīng)激反應(yīng),導(dǎo)致花青苷含量的增加[49]。各補(bǔ)光處理在處理120 d后,葉片花青苷含量增加,這可能是因?yàn)楣庹諘r間的延長和光照度的增加導(dǎo)致植株受到了光脅迫[49],促進(jìn)了花青苷的積累?;ㄇ嘬蘸繌亩镜酱文甏合募局饾u降低,可能與低溫會誘導(dǎo)花青素苷合成相關(guān)基因的表達(dá)、高溫會抑制花青素苷合成相關(guān)基因的表達(dá)有關(guān)[50-53]。補(bǔ)光處理后的90 d內(nèi),SPAD值較小,a*值主要為正值,花青苷含量較高;補(bǔ)光處理150 d以后的SPAD值較大,a*值主要為負(fù)值,花青苷含量較低,這與2022年4月前葉片偏紅色,2022年4月后葉片呈現(xiàn)綠色相吻合。
3.3 不同比例紅藍(lán)光LED補(bǔ)光對枳幼苗光合作用的影響
4個補(bǔ)光處理與對照的光合參數(shù)無顯著差異,這與前人在草莓[30]上的研究結(jié)果基本一致。但由于4個補(bǔ)光處理的葉片數(shù)顯著多于對照,以及補(bǔ)光處理的枳幼苗處理光照度高于對照,故補(bǔ)光處理總的光合產(chǎn)物應(yīng)高于對照,這一推論與4個補(bǔ)光處理的生物量顯著高于對照的結(jié)果相吻合。葉綠素?zé)晒鈾z測被廣泛用于植物的光合生理和逆境脅迫生理研究,葉綠素?zé)晒鈪?shù)指標(biāo)能夠反映植物葉片光系統(tǒng)Ⅱ?qū)饽艿奈?、傳遞和耗散等狀況[52]。4個補(bǔ)光處理與對照的Fo無顯著差異,說明葉綠素含量沒有顯著差異,這與同月所測RB4∶1、RB6∶1、RB8∶1和對照的SPAD值的差異顯著性一致,僅同月所測RB1∶2的SPAD值顯著高于其他處理和對照,可能與SPAD值與葉綠素含量的相關(guān)性有關(guān)。Fo的上升能有效避免PSⅡ活性中心發(fā)生不可逆轉(zhuǎn)的毀壞,RB6∶1的Fo最高,說明其光合性能較好[53]。RB8∶1、RB1∶2的Fm、Fv顯著低于對照,說明RB8∶1、RB1∶2可能受到了一定的光抑制,PSⅡ電子傳遞最大潛能小于對照。RB1∶2的Fm/Fo、Fv/Fo顯著低于對照,說明RB1∶2的PSⅡ潛在光化學(xué)活性和光合能力相對較差。一般植物在不受脅迫的情況下,F(xiàn)v/Fm的值在0.80~0.84之間[54],RB8∶1、RB1∶2的Fv/Fm均為0.78,說明枳幼苗在測量時間點(diǎn)可能受到了輕微光脅迫,RB4∶1、RB6∶1補(bǔ)光組合較為理想。
3.4 不同比例紅藍(lán)光LED補(bǔ)光對枳幼苗抗性的影響
可溶性蛋白、可溶性糖是重要的滲透調(diào)節(jié)物質(zhì)和營養(yǎng)物質(zhì),能有效調(diào)節(jié)細(xì)胞的滲透壓,可以作為衡量植物抗性的判定指標(biāo)[55-57]。除RB4∶1的可溶性蛋白含量低于對照外,其余補(bǔ)光處理的可溶性蛋白和可溶性糖含量均高于對照,這一結(jié)果與前人在番茄[48]、黃瓜[58]上的研究結(jié)果基本一致,說明補(bǔ)光有助于枳幼苗抗性的增強(qiáng)。
植物在生長發(fā)育過程中,因?yàn)榇x和逆境環(huán)境會產(chǎn)生活性氧。光作為一種調(diào)節(jié)因子,可以激活植物體內(nèi)的抗氧化防御系統(tǒng),進(jìn)而合成抗氧化物。SOD、POD、CAT與其他酶類相互協(xié)作,能有效清除活性氧,使植物體內(nèi)活性氧維持在一個低水平上,從而防止活性氧引起的膜脂過氧化及其他傷害過程。4個補(bǔ)光處理的SOD活性均顯著高于對照,RB6∶1、RB1∶2的CAT活性和POD活性也高于對照,與前人在番茄[48]、黃瓜[7]上的研究結(jié)果基本一致。
MDA是膜脂過氧化的產(chǎn)物,其含量是鑒定逆境對膜傷害的重要指標(biāo)。RB6∶1的MDA含量顯著低于對照和其他處理,說明RB6∶1膜損傷程度最低,抗逆性最強(qiáng)。RB6∶1和RB4∶1的MDA含量低于對照,與前人在番茄[48]、黃瓜[7]上的研究結(jié)果基本一致,紅藍(lán)光補(bǔ)光處理可以提高抗氧化酶活性和降低MDA含量。RB8∶1、RB1∶2的MDA含量高于對照,這可能與RB8∶1、 RB1∶2受到了輕微光脅迫有關(guān)。
4 結(jié) 論
在長沙地區(qū),11月上旬至次年3月上旬,4個補(bǔ)光處理中,RB8∶1最有利于枳幼苗莖粗增加;3月上旬至6月上旬氣溫上升,4個補(bǔ)光處理中,RB6∶1可顯著增加枳幼苗莖粗,提高光合性能,增強(qiáng)抗性,是最適宜的紅藍(lán)光補(bǔ)光組合。
參考文獻(xiàn) References:
[1] 朱亦赤,李娜,李大志,龍桂友,鄧子牛. 影響柑桔生產(chǎn)者價格變動的主要因素分析[J]. 中國南方果樹,2021,50(2):177-184.
ZHU Yichi,LI Na,LI Dazhi,LONG Guiyou,DENG Ziniu. The main factors affecting the variation of price of Citrus fruit from producer[J]. South China Fruits,2021,50(2):177-184.
[2] 奎國秀,祁春節(jié). 基于社會網(wǎng)絡(luò)分析的世界柑橘貿(mào)易格局演化研究[J]. 世界農(nóng)業(yè),2022(6):18-30.
KUI Guoxiu,QI Chunjie. Study on the evolution of world citrus trade pattern based on social network analysis[J]. World Agriculture,2022(6):18-30.
[3] FAO. FAO database[DB/OL]. [2024-03-22]. https://www.fao.org/faostat/en/#data/qcl.
[4] WANG S Y,F(xiàn)ANG H,XIE J M,WU Y,TANG Z Q,LIU Z C,LV J,YU J H. Physiological responses of cucumber seedlings to different supplemental light duration of red and blue LED[J]. Frontiers in Plant Science,2021,12:709313.
[5] 任毛飛,毛桂玲,劉善振,王慰親,鄭華斌,唐啟源. 光質(zhì)對植物生長發(fā)育、光合作用和碳氮代謝的影響研究進(jìn)展[J]. 植物生理學(xué)報,2023,59(7):1211-1228.
REN Maofei,MAO Guiling,LIU Shanzhen,WANG Weiqin,ZHENG Huabin,TANG Qiyuan. Research progress on the effects of light quality on plant growth and development,photosynthesis,and carbon and nitrogen metabolism[J]. Plant Physiology Journal,2023,59(7):1211-1228.
[6] PASHKOVSKIY P,KRESLAVSKI V D,IVANOV Y,IVANOVA A,KARTASHOV A,SHMAREV A,STROKINA V,KUZNETSOV V V,ALLAKHVERDIEV S I. Influence of light of different spectral compositions on the growth,photosynthesis,and expression of light-dependent genes of Scots pine seedlings[J]. Cells,2021,10(12):3284.
[7] 陳琦,潘好芹,亓延鳳,李婷婷,楊鳳娟,宋少恒. 不同LED補(bǔ)光對日光溫室黃瓜生長、產(chǎn)量及品質(zhì)的影響[J]. 北方園藝,2022(21):50-57.
CHEN Qi,PAN Haoqin,QI Yanfeng,LI Tingting,YANG Fengjuan,SONG Shaoheng. Effects of different LED light supplements on growth,yield and quality of cucumber in solar greenhouse[J]. Northern Horticulture,2022(21):50-57.
[8] 馬肖靜,劉勇鵬,黃松,張嬋,孫凱樂,王永,申順善,孫治強(qiáng),樸鳳植,張濤. 不同LED光照強(qiáng)度夜間補(bǔ)光對番茄幼苗生長發(fā)育的影響[J]. 植物生理學(xué)報,2022,58(12):2411-2420.
MA Xiaojing,LIU Yongpeng,HUANG Song,ZHANG Chan,SUN Kaile,WANG Yong,SHEN Shunshan,SUN Zhiqiang,PIAO Fengzhi,ZHANG Tao. Effects of different LED illumination intensity at night on the growth and development of tomato seedlings[J]. Plant Physiology Journal,2022,58(12):2411-2420.
[9] 蘇澤陽,楊再強(qiáng),龍宇蕓,張瑤,姜雨函,徐若涵. 寡照條件下補(bǔ)光頻率對番茄幼苗葉片光合特性的影響[J]. 中國農(nóng)業(yè)氣象,2022,43(9):720-731.
SU Zeyang,YANG Zaiqiang,LONG Yuyun,ZHANG Yao,JIANG Yuhan,XU Ruohan. Effect of light supplementation frequency on photosynthetic characteristics of tomato seedling leaves under weak light[J]. Chinese Journal of Agrometeorology,2022,43(9):720-731.
[10] 齊振宇,王婷,??电?,劉玥,王明欽,喻景權(quán),周艷虹,夏曉劍. 設(shè)施番茄不同葉位補(bǔ)光對植株形態(tài)、光合及激素合成的影響[J]. 園藝學(xué)報,2021,48(8):1504-1516.
QI Zhenyu,WANG Ting,SANG Kangqi,LIU Yue,WANG Ming-qin,YU Jingquan,ZHOU Yanhong,XIA Xiaojian. Effects of supplemental lighting at different positions on tomato plant morphology,photosynthesis and endogenous hormone biosynthesis under low-light environment[J]. Acta Horticulturae Sinica,2021,48(8):1504-1516.
[11] 董桑婕,葛詩蓓,李嵐,賀麗群,范飛軍,齊振宇,喻景權(quán),周艷虹. 不同光質(zhì)補(bǔ)光對辣椒幼苗生長、叢枝菌根共生和磷吸收的影響[J]. 園藝學(xué)報,2022,49(8):1699-1712.
DONG Sangjie,GE Shibei,LI Lan,HE Liqun,F(xiàn)AN Feijun,QI Zhenyu,YU Jingquan,ZHOU Yanhong. Effects of supplemental lighting on growth,root colonization by arbuscular mycorrhizal fungi and phosphorus uptake in pepper seedlings[J]. Acta Horticulturae Sinica,2022,49(8):1699-1712.
[12] 任海英,甘振,戚行江,王劍,鄭錫良,張淑文,俞浙萍. 補(bǔ)光對設(shè)施栽培楊梅營養(yǎng)生長和果實(shí)品質(zhì)的影響[J]. 果樹學(xué)報,2022,39(6):1072-1080.
REN Haiying,GAN Zhen,QI Xingjiang,WANG Jian,ZHENG Xiliang,ZHANG Shuwen,YU Zheping. Effects of light supplement on vegetative growth and fruit quality of bayberry(Myrica rubra) in facility cultivation[J]. Journal of Fruit Science,2022,39(6):1072-1080.
[13] 劉帥,張亞紅,劉鑫,袁苗,擺虹霞,黃嘉俊. 不同光源補(bǔ)光對設(shè)施紅地球葡萄果實(shí)品質(zhì)的影響[J]. 江蘇農(nóng)業(yè)學(xué)報,2021,37(4):949-956.
LIU Shuai,ZHANG Yahong,LIU Xin,YUAN Miao,BAI Hong-xia,HUANG Jiajun. Effects of different supplementary light sources on fruit quality of Red Globe grape under protected cultivation[J]. Jiangsu Journal of Agricultural Sciences,2021,37(4):949-956.
[14] 劉帥,徐偉榮,張亞紅,劉鑫,郭松濤,胡莉. 基于轉(zhuǎn)錄組研究補(bǔ)光對設(shè)施‘紅地球’葡萄萌芽的影響[J]. 果樹學(xué)報,2021,38(3):305-317.
LIU Shuai,XU Weirong,ZHANG Yahong,LIU Xin,GUO Songtao,HU Li. Effects of supplementary light on the bud burst of ‘Red Globe’ grape under protected cultivation based on transcriptome sequencing[J]. Journal of Fruit Science,2021,38(3):305-317.
[15] 黃秋鳳,陳立,李敏,謝蜀豫,曹慕明,李瑋,黃羽,管敬喜,黃竟,陳國品. 夜間延時補(bǔ)光調(diào)控對巨峰葡萄春果生長發(fā)育及光合特性的影響[J]. 南方農(nóng)業(yè)學(xué)報,2021,52(8):2227-2233.
HUANG Qiufeng,CHEN Li,LI Min,XIE Shuyu,CAO Mu-ming,LI Wei,HUANG Yu,GUAN Jingxi,HUANG Jing,CHEN Guopin. Effects of late time illumination delayed regulation at night on growth and photosynthetic characteristics of spring berry of Kyoho grape[J]. Journal of Southern Agriculture,2021,52(8):2227-2233.
[16] 謝佐沐,蔡英健,余若瑩,俞超,汪財(cái)生,付美,郭斌. 不同光質(zhì)補(bǔ)光對火龍果莖生理特性及開花結(jié)果的影響[J]. 廣西植物,2022,42(2):191-198.
XIE Zuomu,CAI Yingjian,YU Ruoying,YU Chao,WANG Caisheng,F(xiàn)U Mei,GUO Bin. Effects of different supplemental light qualities on physiological characteristics,flowering and fruiting of pitaya stem[J]. Guihaia,2022,42(2):191-198.
[17] 楊超,劉敏竹,李強(qiáng),韓濤,彭良志,凌麗俐,付行政,淳長品,曹立,何義仲. 發(fā)光二極管(LED)光質(zhì)對金秋砂糖橘幼苗生長發(fā)育和光合特性的影響[J]. 浙江農(nóng)業(yè)學(xué)報,2022,34(1):89-97.
YANG Chao,LIU Minzhu,LI Qiang,HAN Tao,PENG Liangzhi,LING Lili,F(xiàn)U Xingzheng,CHUN Changpin,CAO Li,HE Yizhong. Effects of different light-emitting diode (LED) light quality on growth,development and photosynthetic characteristics of Jinqiu Shatangju seedlings[J]. Acta Agriculturae Zhejiangensis,2022,34(1):89-97.
[18] 劉敏竹,李強(qiáng),楊超,韓濤,凌麗俐,付行政,淳長品,曹立,何義仲. LED光質(zhì)對紅橘幼苗生長發(fā)育和葉綠素?zé)晒馓匦缘挠绊慬J]. 中國南方果樹,2021,50(2):1-7.
LIU Minzhu,LI Qiang,YANG Chao,HAN Tao,LING Lili,F(xiàn)U Xingzheng,CHUN Changpin,CAO Li,HE Yizhong. Effects of different light quality of LED on growth,development and chlorophyll fluorescence characteristics of Citrus tangerine seedlings[J]. South China Fruits,2021,50(2):1-7.
[19] 李思靜,易曉曈,李有芳,王君秀,凌麗俐,彭良志. 不同LED光質(zhì)對枳殼幼苗生長發(fā)育的影響[J]. 光譜學(xué)與光譜分析,2018,38(3):708-714.
LI Sijing,YI Xiaotong,LI Youfang,WANG Junxiu,LING Lili,PENG Liangzhi. Effects of different LED light qualities on the growth of trifoliate orange seedlings[J]. Spectroscopy and Spectral Analysis,2018,38(3):708-714.
[20] 李思靜. 不同LED光對先鋒橙和紅橘幼苗生長發(fā)育及生理特性的影響[D]. 重慶:西南大學(xué), 2019.
LI Sijing. Effects of different LED light on the growth and physiological characteristics of Pioneer orange and Tangerine seedlings[D]. Chongqing:Southwest University,2019.
[21] HUANG D,WANG X,TANG Z Z,YUAN Y,XU Y T,HE J X,JIANG X L,PENG S,LI L,BUTELLI E,DENG X X,XU Q. Subfunctionalization of the Ruby2-Ruby1 gene cluster during the domestication of Citrus[J]. Nature Plants,2018,4(11):930-941.
[22] 王濤,黃濤,孫李勇,彭大慶,朱長紅,陳小溪,李淑嫻. 不同激素處理和扦插時間對幼化烏桕嫩枝扦插生根的影響[J]. 中南林業(yè)科技大學(xué)學(xué)報,2024,44(3):44-55.
WANG Tao,HUANG Tao,SUN Liyong,PENG Daqing,ZHU Changhong,CHEN Xiaoxi,LI Shuxian. Effects of different hormone treatment and cutting times on rooting of Sapium sebiferum softwood cutting after juvenile treatment[J]. Journal of Central South University of Forestry amp; Technology,2024,44(3):44-55.
[23] 許大全,高偉,阮軍. 光質(zhì)對植物生長發(fā)育的影響[J]. 植物生理學(xué)報,2015,51(8):1217-1234.
XU Daquan,GAO Wei,RUAN Jun. Effects of light quality on plant growth and development[J]. Plant Physiology Journal,2015,51(8):1217-1234.
[24] 魏星,顧清,戴艷嬌,徐志剛. 不同光質(zhì)對菊花組培苗生長的影響[J]. 中國農(nóng)學(xué)通報,2008,24(12):344-349.
WEI Xing,GU Qing,DAI Yanjiao,XU Zhigang. Different light qualities on growth of Chrysanthemum (Dendranthema morifolium) plantlets in virto[J]. Chinese Agricultural Science Bulletin,2008,24(12):344-349.
[25] 閆萌萌,王銘倫,王洪波,王月福,趙長星. 光質(zhì)對花生幼苗根系生長與根系活力的影響[J]. 農(nóng)學(xué)學(xué)報,2013,3(8):17-20.
YAN Mengmeng,WANG Minglun,WANG Hongbo,WANG Yuefu,ZHAO Changxing. Effect of light quality on the growth and vitality of peanut seedling root system[J]. Journal of Agriculture,2013,3(8):17-20.
[26] 孟霖,徐宜民,宋文靜,王程棟,劉曉冰,梁盟,王樹聲. 紅藍(lán)單色光對水培煙草幼苗生長發(fā)育及生理特性的影響[J]. 中國煙草學(xué)報,2015,21(5):55-61.
MENG Lin,XU Yimin,SONG Wenjing,WANG Chengdong,LIU Xiaobing,LIANG Meng,WANG Shusheng. Effects of red and blue monochromatic lights on growth,development and physiological characters of hydroponic tobacco seedlings[J]. Acta Tabacaria Sinica,2015,21(5):55-61.
[27] 朱鹿坤,陳俊琴,趙雪雅,王正林,齊明芳. 紅藍(lán)綠LED延時補(bǔ)光對日光溫室黃瓜育苗的影響[J]. 沈陽農(nóng)業(yè)大學(xué)學(xué)報,2020,51(4):402-409.
ZHU Lukun,CHEN Junqin,ZHAO Xueya,WANG Zhenglin,QI Mingfang. Effect of extended photoperiod with red,blue and green LED supplementary lighting on the growth of cucumber seedlings in solar greenhouse[J]. Journal of Shenyang Agricultural University,2020,51(4):402-409.
[28] 劉志強(qiáng),朱新紅,劉勇鵬,王清,李春,張嬋,姜俊. 夜間不同LED補(bǔ)光時段對番茄幼苗生長生理指標(biāo)的影響[J]. 中國瓜菜,2022,35(8):79-85.
LIU Zhiqiang,ZHU Xinhong,LIU Yongpeng,WANG Qing,LI Chun,ZHANG Chan,JIANG Jun. LED lighting periods at night affects the growth and development of tomato seedlings[J]. China Cucurbits and Vegetables,2022,35(8):79-85.
[29] 黃志午,俞亦章,徐志剛,朱為民,錢春花. 冬季設(shè)施補(bǔ)光對蘇州地區(qū)巖棉培番茄生長的影響[J]. 江蘇農(nóng)業(yè)學(xué)報,2022,38(4):1034-1041.
HUANG Zhiwu,YU Yizhang,XU Zhigang,ZHU Weimin,QIAN Chunhua. Effects of winter facility light supplement on the growth of stone wool cultivated tomato in Suzhou area[J]. Jiangsu Journal of Agricultural Sciences,2022,38(4):1034-1041.
[30] 錢舒婷,李建明. 補(bǔ)光燈類型對設(shè)施草莓光合特性與產(chǎn)量的影響[J]. 西北農(nóng)林科技大學(xué)學(xué)報(自然科學(xué)版),2019,47(4):41-48.
QIAN Shuting,LI Jianming. Effects of supplement light type on photosynthetic characteristics and yield of strawberry in greenhouse[J]. Journal of Northwest A amp; F University (Natural Science Edition),2019,47(4):41-48.
[31] 王佳淇,何瑩鈺,韋曉桐,李永強(qiáng),楊莉,陳文榮,廖芳蕾,郭衛(wèi)東. LED補(bǔ)光組合對大棚越橘生長發(fā)育的影響[J]. 園藝學(xué)報,2020,47(6):1183-1193.
WANG Jiaqi,HE Yingyu,WEI Xiaotong,LI Yongqiang,YANG Li,CHEN Wenrong,LIAO Fanglei,GUO Weidong. Effects of LED supplemental light on the growth and development of blueberry in greenhouse[J]. Acta Horticulturae Sinica,2020,47(6):1183-1193.
[32] 施杰,楊海燕,吳文龍,閭連飛,樊蘇帆,李維林. 不同光質(zhì)對藍(lán)莓生長發(fā)育及生理特性的影響[J]. 北方園藝,2022(6):15-23.
SHI Jie,YANG Haiyan,WU Wenlong,Lü Lianfei,F(xiàn)AN Sufan,LI Weilin. Effects of different light quality on the growth and physiological characteristics of blueberry[J]. Northern Horticulture,2022(6):15-23.
[33] 張謹(jǐn)薇,高亞新,李恭峰,馬萬成,孟清波,李青云. LED光源不同光強(qiáng)對冀星9號辣椒幼苗生長和光合特性的影響[J]. 現(xiàn)代農(nóng)業(yè)科技,2022(3):61-66.
ZHANG Jinwei,GAO Yaxin,LI Gongfeng,MA Wancheng,MENG Qingbo,LI Qingyun. Effects of different LED light intensities on growth and photosynthetic characteristics of Jixing-9 pepper seedlings[J]. Modern Agricultural Science and Technology,2022(3):61-66.
[34] KAWAMURA K,TAKEDA H. Light environment and crown architecture of two temperate Vaccinium species:Inherent growth rules versus degree of plasticity in light response[J]. Canadian Journal of Botany,2002,80(10):1063-1077.
[35] SU H W,ABERNATHY S D,WHITE R H,F(xiàn)INLAYSON S A. Photosynthetic photon flux density and phytochrome B interact to regulate branching in Arabidopsis[J]. Plant,Cell amp; Environment,2011,34(11):1986-1998.
[36] 夏雨桐,王琛,郝寧,武濤. 植物分枝性研究進(jìn)展及其在蔬菜育種中的應(yīng)用[J]. 中國蔬菜,2022(1):31-40.
XIA Yutong,WANG Chen,HAO Ning,WU Tao. Research progress on plant branchiness and its application in vegetable breeding[J]. China Vegetables,2022(1):31-40.
[37] 唐玉瑞,趙成章,趙輝,候剛,馬敏,趙婷婷,王毓芳,曾紅霞. 不同光環(huán)境下洮河護(hù)岸林沙棘葉干重與葉面積、葉厚度間的關(guān)系[J]. 生態(tài)學(xué)雜志,2021,40(9):2745-2753.
TANG Yurui,ZHAO Chengzhang,ZHAO Hui,HOU Gang,MA Min,ZHAO Tingting,WANG Yufang,ZENG Hongxia. The relationship between leaf dry mass and leaf area,leaf thickness of Hippophae rhamnoides under different light conditions in Taohe River riparian forest[J]. Chinese Journal of Ecology,2021,40(9):2745-2753.
[38] 申寶營,李毅念,趙三琴,丁為民,惠娜,李潔. 暗期補(bǔ)光對黃瓜幼苗形態(tài)調(diào)節(jié)效果及綜合評價[J]. 農(nóng)業(yè)工程學(xué)報,2014,30(22):201-208.
SHEN Baoying,LI Yinian,ZHAO Sanqin,DING Weimin,HUI Na,LI Jie. Effect of dark period lighting regulation on cucumber seedling morphology and comprehensive evaluation analysis and comprehensive evaluation[J]. Transactions of the Chinese Society of Agricultural Engineering,2014,30(22):201-208.
[39] 段青青,張祿祺,張自坤. 不同生育期補(bǔ)光對溫室甜椒生長、產(chǎn)量及品質(zhì)的影響[J]. 植物生理學(xué)報,2021,57(4):950-962.
DUAN Qingqing,ZHANG Luqi,ZHANG Zikun. Effects of supplemental illumination at different growth stages on growth,yield and fruit quality of greenhouse sweet pepper[J]. Plant Physiology Journal,2021,57(4):950-962.
[40] 崔曉輝,郭小鷗,孫天宇,齊紅巖. LED補(bǔ)光對薄皮甜瓜幼苗生長及果實(shí)品質(zhì)的影響[J]. 植物生理學(xué)報,2017,53(4):657-667.
CUI Xiaohui,GUO Xiaoou,SUN Tianyu,QI Hongyan. Effects of LED supplementary lighting on seedling growth and fruit quality of oriental melon[J]. Plant Physiology Journal,2017,53(4):657-667.
[41] 閆曉花,郁繼華,頡建明. 補(bǔ)光時間及光質(zhì)對黃瓜幼苗生長及根系活力的影響[J]. 核農(nóng)學(xué)報,2016,30(6):1211-1217.
YAN Xiaohua,YU Jihua,XIE Jianming. Effects of supplemental light quality and durations of illumination on growth and root activity of cucumber seedling[J]. Journal of Nuclear Agricultural Sciences,2016,30(6):1211-1217.
[42] 文蓮蓮,李巖,張聃丘,黃世杰,秦利杰,宋甲斌,韓吉書,魏珉. 冬季溫室補(bǔ)光時長對番茄幼苗生長、光合特性及碳代謝的影響[J]. 植物生理學(xué)報,2018,54(9):1490-1498.
WEN Lianlian,LI Yan,ZHANG Danqiu,HUANG Shijie,QIN Lijie,SONG Jiabin,HAN Jishu,WEI Min. Effects of supplemental light duration on the growth,photosynthetic characteristic and carbon metabolism of tomato seedlings in winter under solar greenhouse[J]. Plant Physiology Journal,2018,54(9):1490-1498.
[43] 劉萍,張粟,黃丹丹,張士秀. LED補(bǔ)光對水稻秧苗生長及產(chǎn)量因子的影響[J]. 黑龍江科學(xué),2020,11(10):4-9.
LIU Ping,ZHANG Su,HUANG Dandan,ZHANG Shixiu. Effect of light-emitting diodes on the seedling growth and yield factor of rice[J]. Heilongjiang Science,2020,11(10):4-9.
[44] 王偉,蘇明華,李惠華,常強(qiáng),曾碧玉,賴鐘雄. 藍(lán)光補(bǔ)光對福建金線蓮生長及藥用成分的影響[J]. 熱帶作物學(xué)報,2018,39(5):894-899.
WANG Wei,SU Minghua,LI Huihua,CHANG Qiang,ZENG Biyu,LAI Zhongxiong. Effects of blue light compensation on growth and accumulation of medicinal components in Anoectochilus roxburghii from Fujian province[J]. Chinese Journal of Tropical Crops,2018,39(5):894-899.
[45] 王冰華,孫風(fēng)清,李娟起,田永強(qiáng),高麗紅. 不同時段補(bǔ)光對日光溫室冬春茬黃瓜幼苗質(zhì)量的影響[J]. 中國蔬菜,2017(12):23-29.
WANG Binghua,SUN Fengqing,LI Juanqi,TIAN Yongqiang,GAO Lihong. Effects of supplementary light at different time on quality of cucumber seedlings in solar greenhouse[J]. China Vegetables,2017(12):23-29.
[46] 項(xiàng)倩,吳磊,徐若涵,楊再強(qiáng). 不同溫度下染病番茄葉片SPAD和葉綠素含量的相關(guān)性[J]. 北方園藝,2022(18):8-15.
XIANG Qian,WU Lei,XU Ruohan,YANG Zaiqiang. Correlation between SPAD and chlorophyll content in infected tomato leaves at different temperatures[J]. Northern Horticulture,2022(18):8-15.
[47] 陳曉娜,趙庚星,周雪,張穎,宿寶巍. 基于高光譜的小麥冠層葉綠素(SPAD值)估測模型[J]. 天津農(nóng)業(yè)科學(xué),2018,24(2):60-65.
CHEN Xiaona,ZHAO Gengxing,ZHOU Xue,ZHANG Ying,SU Baowei. Estimation model of wheat canopy chlorophyll content (SPAD value) based on hyperspectral technology[J]. Tianjin Agricultural Sciences,2018,24(2):60-65.
[48] 馬肖靜,劉志強(qiáng),劉勇鵬,張嬋,孫凱樂,黃松,孫治強(qiáng),樸鳳植,張濤. 不同紅藍(lán)光質(zhì)組合夜間補(bǔ)光對番茄幼苗生長生理指標(biāo)的影響[J]. 山東農(nóng)業(yè)科學(xué),2022,54(2):51-56.
MA Xiaojing,LIU Zhiqiang,LIU Yongpeng,ZHANG Chan,SUN Kaile,HUANG Song,SUN Zhiqiang,PIAO Fengzhi,ZHANG Tao. Effects of night light supplementation with different red and blue spectrum combinations on growth and physiological characters of tomato seedlings[J]. Shandong Agricultural Sciences,2022,54(2):51-56.
[49] 于士軍,何玲艷,萬國平,王偉,李向東,吳宗慶,曾婷婷,王維坤. 不同干燥方式對培養(yǎng)蟬花孢梗束品質(zhì)的影響[J]. 基因組學(xué)與應(yīng)用生物學(xué),2020,39(6):2712-2721.
YU Shijun,HE Lingyan,WAN Guoping,WANG Wei,LI Xiangdong,WU Zongqing,ZENG Tingting,WANG Weikun. Effects of different drying methods on the quality of cultured synnemata of Isaria cicadae[J]. Genomics and Applied Biology,2020,39(6):2712-2721.
[50] 胡可,韓科廳,戴思蘭. 環(huán)境因子調(diào)控植物花青素苷合成及呈色的機(jī)理[J]. 植物學(xué)報,2010,45(3):307-317.
HU Ke,HAN Keting,DAI Silan. Regulation of plant anthocyanin synthesis and pigmentation by environmental factors[J]. Chinese Bulletin of Botany,2010,45(3):307-317.
[51] 占麗英,王晶,林義章. 光影響植物花青苷合成研究[J]. 北方園藝,2016(12):197-201.
ZHAN Liying,WANG Jing,LIN Yizhang. Effect of light on anthocyanin synthesis in plant[J]. Northern Horticulture,2016(12):197-201.
[52] TRUEMAN S J,RICHARDSON D M. Propagation and chlorophyll fluorescence of Camptotheca acuminata cuttings[J]. Journal of Medicinal Plants Research,2011,5(1):1-6.
[53] 王香菲,張大毛,張霞,劉潔,李濤,李衛(wèi)東,于曉英,李炎林. 不同實(shí)生變異和常規(guī)檵木光合特性的比較[J]. 經(jīng)濟(jì)林研究,2020,38(3):216-224.
WANG Xiangfei,ZHANG Damao,ZHANG Xia,LIU Jie,LI Tao,LI Weidong,YU Xiaoying,LI Yanlin. Comparison of photosynthetic characteristics of different seed propagated variations and normal Loropetalum chinense[J]. Non-wood Forest Research,2020,38(3):216-224.
[54] 張大毛,張霞,王香菲,劉洋,楊期宏,李衛(wèi)東,于曉英,李炎林. 紅花檵木短枝和開花缺失型變異株系的光合特性[J]. 湖南農(nóng)業(yè)大學(xué)學(xué)報(自然科學(xué)版),2021,47(2):180-184.
ZHANG Damao,ZHANG Xia,WANG Xiangfei,LIU Yang,YANG Qihong,LI Weidong,YU Xiaoying,LI Yanlin. Photosynthetic characteristics of short-branched and flowering-deficient mutation lines of Loropetalum chinense var. rubrum[J]. Journal of Hunan Agricultural University (Natural Sciences),2021,47(2):180-184.
[55] 尹夢雅,楊艷,湯玉喜,李志輝,葉傳財(cái),秦平書,吳興華. 配方施肥對黃梔子幼苗生長和生理特性的影響[J]. 中南林業(yè)科技大學(xué)學(xué)報,2022,42(5):83-90.
YIN Mengya,YANG Yan,TANG Yuxi,LI Zhihui,YE Chuancai,QIN Pingshu,WU Xinghua. Effects of formula fertilization on the growth and physiological characteristics of Gardenia jasminoides seedlings[J]. Journal of Central South University of Forestry amp; Technology,2022,42(5):83-90.
[56] 杜旭,黃平升,楊梅. 不同磷肥對尾巨桉DH3229苗木生長及抗性生理的影響[J]. 森林與環(huán)境學(xué)報,2020,40(5):526-533.
DU Xu,HUANG Pingsheng,YANG Mei. Phosphorus fertilizers on the growth and resistance physiology of Eucalyptus urophylla × Eucalyptus grandis DH3229 seedlings[J]. Journal of Forest and Environment,2020,40(5):526-533.
[57] 孫常青,楊艷君,郭志利,屈非. 施肥和密度對雜交谷可溶性糖、可溶性蛋白及硝酸還原酶的影響[J]. 植物營養(yǎng)與肥料學(xué)報,2015,21(5):1169-1177.
SUN Changqing,YANG Yanjun,GUO Zhili,QU Fei. Effects of fertilization and density on soluble sugar and protein and nitrate reductase of hybrid foxtail millet[J]. Journal of Plant Nutrition and Fertilizer,2015,21(5):1169-1177.
[58] 閆曉花,郁繼華. LED補(bǔ)光對溫室黃瓜幼苗抗衰老及抗氧化酶系統(tǒng)的影響[J]. 中國沙漠,2016,36(2):392-398.
YAN Xiaohua,YU Jihua. Effects of supplemental LED light on photosynthetic pigment contents and antioxidant enzyme activities of cucumber seedling leaves[J]. Journal of Desert Research,2016,36(2):392-398.