摘" " 要:【目的】在全基因組水平上鑒定柑橘屬橙類、寬皮柑橘類、柚類的Hsf家族成員及其在柑橘果實日灼形成和熱脅迫中的表達特性,并挖掘可能參與柑橘果實日灼發(fā)生過程中的關(guān)鍵Hsf基因?!痉椒ā繎?yīng)用生物信息學(xué)方法對柑橘屬Hsf家族成員進行鑒定,并對其進化發(fā)育、結(jié)構(gòu)特征、順式作用元件和共線性進行分析;同時還分析了柑橘轉(zhuǎn)錄組和日灼果皮不同組織及熱處理滑皮金柑果皮中Hsf的表達模式?!窘Y(jié)果】從甜橙、克里曼丁橘、晚白柚基因組中分別鑒定出14、20、16個Hsf基因,進化發(fā)育分析將其分為HSF A~C 3個簇,同一簇成員具有相似且保守的結(jié)構(gòu)特征,片段復(fù)制事件在柑橘Hsf家族擴張中起主導(dǎo)作用。茉莉酸甲酯響應(yīng)元件(TGACG-motif、CGTCA-motif)、脫落酸響應(yīng)元件(ABRE)及干旱誘導(dǎo)響應(yīng)元件(MBS)在Hsfs啟動子中分布最為廣泛。大多數(shù)CsHsfs成員在奉節(jié)臍橙外果皮或中果皮中特異表達。CsHsf1/5/6/8/11在溫州蜜柑日灼與正常果皮之間、熱處理與對照金柑果皮之間顯著差異表達。尤其是CsHsf5在多個柑橘組織表達譜及溫州蜜柑日灼果皮和熱處理金柑果皮中均顯著上調(diào)表達,推測其可能在柑橘果實日灼過程中有重要的功能。【結(jié)論】鑒定并分析了柑橘屬Hsf成員,明晰了其在日灼果皮及熱處理果皮組織中的表達特性,為系統(tǒng)解析柑橘屬Hsfs基因功能及柑橘果實日灼分子機制研究提供理論基礎(chǔ)。
關(guān)鍵詞:柑橘屬;Hsf;家族分析;日灼
中圖分類號:S666 文獻標(biāo)志碼:A 文章編號:1009-9980(2024)12-2408-17
Genome-wide identification of citrus heat stress transcription factors and their expression characteristics in citrus sunburned peel
HU Yawei1, 2, 3, PENG Miao1, 3, YANG Can4, LI Ronghua5, LIU Xin1, 2, 3, CHEN Yuewen1, 2, 3, YANG Changyao1, 2, 3, YANG Jinlei1, 2, 3, LU Jiawei1, LU Xiaopeng1, 2, 3*, YANG Junfeng1, 2, 3*
(1College of Horticulture, Hunan Agricultural University, Changsha 410128, Hunan, China; 2National Center for Citrus Improvement- Changsha, Changsha 410128, Hunan, China; 3Yuelushan Laboratory, Changsha 410128, Hunan, China; 4Citrus Science Research Institute of Xiangxi Tujia and Miao Autonomous Prefecture, Jishou 416000, Hunan, China; 5Agriculture and Rural Bureau of Yizhang County of Hunan, Yizhang 424200, Hunan, China)
Abstract: 【Objective】 The purpose of this study was to identify the members of the Hsf gene family in citrus species, including sweet orange, mandarin, and pomelo at the whole-genome level, and to investigate the expression characteristics of CsHsfs in sunburned fruit peel of satsuma mandarin and heat-stressed peel of kumquat, as well as to explore the key Hsf genes possibly involved in citrus fruit sunburn occurrence. 【Methods】 The Hsf family in citrus was identified, and its physicochemical properties, evolutionary development, structural features, cis-acting elements, collinearity, transcriptome, and expression patterns in different tissues of sunburned fruit peel and heat-treated kumquat peel were analyzed. 【Results】 In this study, 14, 20, and 16 Hsf genes were identified from the genomes of sweet orange, clementine mandarin, and wanbai pomelo, respectively. Physicochemical property analysis revealed that the protein lengths and molecular weights were similar among the three citrus varieties, with protein lengths ranging from 271 to 517 amino acids for sweet orange, 208 to 505 amino acids for clementine mandarin, and 261 to 516 amino acids for wanbai pomelo. The molecular weight ranges were 30.1 to 56.3 ku for sweet orange, 24.1 to 56.2 ku for clementine mandarin, and 30.1 to 56.1 ku for wanbai pomelo. Subcellular localization prediction indicated that all the 50 Hsf genes from the three citrus species were localized in the cell nucleus, consistent with their transcription factor characteristics. Additionally, evolutionary analysis of Hsf genes of sweet orange, clementine mandarin, wanbai pomelo, as well as Arabidopsis, which categorized into three clusters (HSFA, HSFB, and HSFC). The number of members in each cluster followed the pattern of HSFA gt; HSFB gt; HSFC, with the fewest members in cluster C, where each species had only one member. Gene structure analysis revealed that members within the same cluster exhibited similar and conserved structural features. Additionally, certain motifs were specific to particular clusters; for instance, motifs 6, 8, and 17 were exclusively present in cluster-A members, while motif 15 was unique to cluster-B members. Motif 5 was found only in cluster-A and cluster-B members, whereas motif 4 occurred solely in clusters-A and clusters-C. Furthermore, the majority of members contained only 2 exons, with a few exceptions such as CsHsf9, CcHsf1, CcHsf4, CcHsf16, and CgHsf14, which harbored 3 exons. The analysis of cis-acting elements revealed that among the 9 hormone-responsive elements, the methyl jasmonate-responsive elements (TGACG-motif, CGTCA-motif), and abscisic acid-responsive elements (ABRE) were the most abundant in the Hsfs promoters. Specifically, CsHsf2, CsHsf4, CcHsf3, CcHsf13, and CgHsf10 contained 8-12 methyl jasmonate-responsive elements, while CsHsf2, CsHsf6, CsHsf8, CsHsf9, CcHsf4, and CgHsf7 contained 8-9 ABA-responsive elements. Among the 5 stress-responsive elements, the drought-inducible response element (MBS) was the most prominent in the Hsfs promoters. Notably, CsHsf8, CsHsf11, CsHsf13, CcHsf11, CcHsf12, CcHsf14, CcHsf15, CcHsf18, and CgHsf9 contained 3-5 MBS elements. The collinearity analysis revealed that segmental duplication events played a predominant role in the expansion of the citrus Hsf family. Three segmental duplication events were identified in each of the sweet orange, clementine mandarin, and wanbai pomelo species. Specifically, in sweet orange, these events involved CsHsf5/7, CsHsf8/13, and CsHsf10/14; in clementine mandarin, they involved CcHsf9/10, CcHsf13/18, and CcHsf15/17; and in wanbai pomelo, they involved CgHsf6/7, CgHsf8/16, and CgHsf10/12. Additionally, interspecies collinearity relationships were observed, with 11, 15, 16, 17, 20, and 20 collinear gene pairs identified between sweet orange and Arabidopsis, clementine mandarin and Arabidopsis, Wanbai pomelo and Arabidopsis, sweet orange and clementine mandarin, sweet orange and Wanbai pomelo, and clementine mandarin and Wanbai pomelo, respectively. Transcriptome analysis revealed that the majority of CsHsf members exhibited specific expression in the outer peel or mesocarp of Fengjie navel oranges. Additionally, nearly all CsHsf members showed differential expression compared to normal untreated leaves after exposure to light and heat stress in trifoliate orange leaflets. Specifically, CsHsf4, CsHsf5, CsHsf9, CsHsf10, CsHsf11, and CsHsf13 were significantly upregulated at different stages in the mesocarp of rough-skinned large fruits compared to normal fruits, with CsHsf5 showing upregulation throughout the entire fruit development period of peel roughing-disordered large fruits compared to normal fruits. RT-qPCR analysis revealed significant differential expression of nearly all CsHsf genes in the sunburned peel of satsuma mandarin compared to normal peel, and CsHsf1, CsHsf5, CsHsf6, and CsHsf8 exhibited significant differential expression between heat-stressed and control kumquat peel. Finally, through comparison of expression patterns in multiple tissues and under stress conditions in leaves or citrus peels, CsHsf5 was found to be enriched in the sunburned peel of satsuma mandarin, heat-stressed kumquat peel, and peel roughing-disordered large fruits. Therefore, CsHsf5 was selected as a key candidate gene possibly involved in citrus fruit sunburn occurrence. 【Conclusion】 This study identified and analyzed the members of the Hsf gene family in citrus species, clarifying their expression patterns in sunburned peel and heat-stressed peel tissues. These findings would provide a theoretical foundation for systematically unraveling the functions of Hsf genes in citrus and the molecular mechanisms underlying citrus fruit sunburn.
Key words: Citrus; Hsf transcription factor; Family analysis; Sunburn
中國柑橘生產(chǎn)規(guī)模居世界首位,其中以鮮食柑橘為主,外觀品質(zhì)是影響鮮食柑橘商品性的關(guān)鍵因素。柑橘果實日灼主要引起果皮組織的灼傷,降低柑橘外觀品質(zhì)。柑橘果皮由外果皮(有色層)、中果皮(白皮層)和內(nèi)果皮發(fā)育而來的囊衣共同組成,柑橘果實的日灼癥狀主要發(fā)生在有色層,輕則果皮褪綠轉(zhuǎn)色,重則形成傷斑。在柑橘產(chǎn)區(qū)中,幾乎所有柑橘品種都會發(fā)生日灼,極大地降低了經(jīng)濟效益。但對于柑橘果實日灼發(fā)生的內(nèi)在機制以及傷斑的形成仍不清楚。Barber和Sharpe[1]首次提出了紫外線輻射、熱和受熱組織光動力學(xué)是造成果實日灼病害的直接原因。Rabinowitch等[2]也認(rèn)為日灼與果實表面溫度及果實耐熱性密切相關(guān),并提出溫度“閾值”這一概念。Liu等[3]認(rèn)為環(huán)境溫度過高會造成葉片受損及果實發(fā)生日灼現(xiàn)象。由此可見,高溫是柑橘果實日灼產(chǎn)生的重要原因。
在植物中,熱應(yīng)激轉(zhuǎn)錄因子(heat shock transcription factor,Hsf)是響應(yīng)高溫應(yīng)激反應(yīng)的主要調(diào)節(jié)因子,且屬于進化保守的一類基因家族。Hsf家族成員有5個保守結(jié)構(gòu)域:DNA結(jié)合域(DBD)、低聚結(jié)構(gòu)域(OD)、C-末端活化域(CTAD)、核定位信號(NLS)以及核出口信號(NES)[4-6]。在這些結(jié)構(gòu)域中,DBD位于Hsf蛋白的N端,該結(jié)構(gòu)域的特征是疏水性以及中心螺旋-轉(zhuǎn)彎-螺旋基序結(jié)構(gòu),其獨特結(jié)構(gòu)和特性是高度選擇相互作用元件的關(guān)鍵,經(jīng)熱應(yīng)激環(huán)境活化后的Hsf可識別HSP基因上游啟動子區(qū)域的熱應(yīng)激元件(HSEs,nGAAnnTTCn或nTTCnnGAAn)并進行轉(zhuǎn)錄[7];OD是由15~80個氨基酸殘基組成連接到DBD的一段序列,OD結(jié)構(gòu)域的A/B區(qū)插入的氨基酸殘基的有無及數(shù)量作為Hsf的分簇標(biāo)準(zhǔn);CTAD包含一個阻遏物結(jié)構(gòu)域(LFGV肽[8]),直接調(diào)節(jié)熱應(yīng)激反應(yīng);NLS和NES負(fù)責(zé)調(diào)節(jié)Hsf蛋白的跨核轉(zhuǎn)運[9]。Hsf位于熱應(yīng)激信號傳遞途徑的下游,當(dāng)植物處在熱環(huán)境中時,Hsf可激活HSP,還可激活其他應(yīng)激反應(yīng)蛋白如抗壞血酸、過氧化物酶和過氧化氫酶等,以清除熱脅迫產(chǎn)生的活性氧來抵御高溫[10-12]。
Hsf在參與調(diào)節(jié)植物的生長和發(fā)育中發(fā)揮重要作用。在番茄中,HsfA1a通過增強抗氧化能力、蛋白質(zhì)修復(fù)和降解的功能來提高其花粉活力[13]。在擬南芥中,HsfA9可控制種子發(fā)育過程中熱激蛋白的表達[14-15]。在煙草中,過表達HsfA9則可以促進煙草的早期發(fā)育,具體表現(xiàn)為光合色素的提前積累和子葉的提前展開[16]。在小麥中,不育和可育花藥中TaHsfA2b顯著差異表達,推測其可能參與小麥的花藥發(fā)育[17]。在矮牽牛中發(fā)現(xiàn),PhHsf19正向調(diào)節(jié)PhPAL2的表達,從而表明PhHsf19可能在調(diào)節(jié)苯類/苯丙類生物合成中發(fā)揮作用[18]。在柑橘中,果實發(fā)育和成熟過程中CrHsfB2a和CrHsfB5可以參與熱處理下的檸檬酸降解[19]。
Hsf同樣參與植物抵御高溫等逆境脅迫,包括植物的信號接收與傳遞[20]、基因表達調(diào)控[15,21]及抗逆性[7]等。Scharf等[6]首次在番茄中克隆并鑒定了3種由熱應(yīng)激誘導(dǎo)出的Hsf,開啟了Hsf在植物中的表征與功能研究。在擬南芥中,Hsf在高溫等逆境方面發(fā)揮重要作用,HsfA2過表達株系耐熱性顯著增強,且鹽脅迫和滲透脅迫同樣誘導(dǎo)HsfA2、HsfA6b和HsfA4的表達[20,22-24]。芹菜AgHSFa6-1異源過表達擬南芥可上調(diào)擬南芥下游基因AtHSP98.7、AtHSP70-1、AtBOB1、AtCPN60B、AtADH2、AtAPX1、AtGOLS1的表達,顯著提高植株耐熱性[25]。水稻OsHsfB2b作為負(fù)調(diào)控因子參與水稻鹽脅迫過程,OsHsfB2b過表達植株的耐旱性和耐鹽性顯著降低,而OsHsfB2b-RNAi植株則顯著增強[26]。在獼猴桃中,鹽處理可以強烈誘導(dǎo)AeHsfA2b/2c和AeHsfB1c/1d/2c/3b的表達,且AeHsfA2b在擬南芥中異源過表達增強了AtRS5、AtGolS1和AtGolS2的表達,顯著提高了植株對鹽脅迫的耐受性[27]。在蘋果中,HsfA8a介導(dǎo)了ABA途徑的耐旱性,并通過調(diào)節(jié)類黃酮合成從而增強植株的耐旱功能[7]。
本研究中基于橙類(Citrus sinensis)、寬皮柑橘類(Citrus reticulata)、柚類(Citrus maxima)的全基組序列鑒定柑橘屬Hsf家族基因,并在基因組水平上對系統(tǒng)進化發(fā)育、基因結(jié)構(gòu)、啟動子順式作用元件、共線性以及組織表達譜等進行分析,并進一步對溫州蜜柑日灼果皮組織(有色層和白皮層)及熱處理金柑果皮中進行qRT-PCR檢測,旨在對柑橘Hsfs進行全基因組鑒定,并挖掘可能在柑橘果實日灼發(fā)生中發(fā)揮作用關(guān)鍵Hsfs基因,為今后柑橘Hsfs基因功能研究及產(chǎn)業(yè)上解決柑橘日灼問題提供理論參考。
1 材料和方法
1.1 植物材料
日灼果實材料來源于湖南省寧鄉(xiāng)市左家山村果園(28.47°N,112.65°E)大分四號溫州蜜柑,根據(jù)湖南省寧鄉(xiāng)市天氣狀況,于2022年8月中旬日灼高發(fā)期取樣,樣品取至少15株樹的外膛正常果(normal fruit,NF)、輕度日灼果(light sunburn fruit,LSF)和重度日灼果(severe sunburn fruit,SSF),果實采摘后立即對果皮進行分離,并區(qū)分外果皮(epicarp,EP)和中果皮(albedo,AL)。除分離正常果外果皮(normal epicarp of normal fruit,NEN)和中果皮(normal albedo of normal fruit,NAN)、輕度日灼果日灼面外果皮(sunburn epicarp of light sunburn fruit,SEL)和中果皮(sunburn albedo of light sunburn fruit,SAL)、重度日灼果日灼面外果皮(sunburn epicarp of severe sunburn fruit,SES)和中果皮(sunburn albedo of severe sunburn fruit,SAS)外,并分離重度日灼果正常面外果皮(normal epicarp of severe sunburn fruit,NES)和中果皮(normal albedo of severe sunburn fruit,NAS),每分離6個果作一個混樣,3個生物學(xué)重復(fù),樣品經(jīng)過液氮速凍并于-80 ℃冰箱保存。
熱處理材料來源于湖南農(nóng)業(yè)大學(xué)國家柑橘改良中心長沙分中心試驗棚內(nèi)滑皮金柑,樣品選擇綠熟期無傷斑和病蟲害的健康果實,樣品采摘后分別進行常溫(25 ℃)和高溫(45 ℃)處理,處理時長為0、2、4、6 h,處理結(jié)束后立即分離總果皮,每6個果一個混樣,3個生物學(xué)重復(fù),樣品經(jīng)過液氮速凍并于-80 ℃冰箱保存。
1.2 分析方法
1.2.1 柑橘Hsf家族成員鑒定和相關(guān)生物信息學(xué)分析 分別從擬南芥數(shù)據(jù)庫(http://www.arabidopsis.org)和甜橙數(shù)據(jù)庫(http://citrus.hzau.edu.cn/)下載擬南芥(Arabidopsis thaliana)、甜橙[C. sinensis.(L.) Osbeck]、克里曼丁橘(C. clementina Hort. ex. Tanaka)和晚白柚[C. maxima (Burm.) Merr. ‘Wanbaiyou’]基因組數(shù)據(jù)和gff注釋文件。首先,獲得擬南芥的Hsf家族成員蛋白序列,并利用TBtools[28]軟件從gff文件獲取蛋白信息,以擬南芥Hsf成員蛋白作為模板,與甜橙、克里曼丁橘和晚白柚的蛋白組并進行雙向比對,e-value≤1e?5作為柑橘Hsfs候選基因。其次,從Pfam數(shù)據(jù)庫(http://pfam.xfam.prg)下載Hsf的隱馬爾科夫模型(PF03330)和(PF00447)文件,使用LINUX虛擬機系統(tǒng)利用hmmsearch搜索工具對甜橙、克里曼丁橘、晚白柚Hsf成員進行篩選(設(shè)定閾值為E<1e-5),手動刪除冗余序列,然后,使用ExPASy(https://www.expasy.org/)進一步分析Hsf蛋白序列的理化特征,包括分子質(zhì)量、等電點和蛋白長度等信息。最后,通過在線網(wǎng)站Cell-PLoc2.0(http://www.csbio.sjtu.edu.cn/bioinf/Cell-PLoc-2/)預(yù)測Hsfs蛋白的亞細(xì)胞定位。
基于甜橙基因組數(shù)據(jù)庫下載的甜橙、克里曼丁橘、晚白柚gff注釋文件,使用MEME(Multiple EM for Motif Elicitation,https://meme-suite.orgmeme tools meme)工具在線分別分析CsHsfs、CgHsfs、CcHsfs蛋白序列保守基序數(shù)量、長度和序列信息,最高基序選擇20。使用TBtools[28]軟件Gene Structure View(Advanced)程序進行基因結(jié)構(gòu)及蛋白基序的可視化。
基于甜橙、克里曼丁橘、晚白柚的蛋白序列,利用MEGA 5.0軟件將甜橙、克里曼丁橘、晚白柚及擬南芥的Hsfs蛋白序列進行多重序列比對,最后用鄰接法構(gòu)建系統(tǒng)進化樹,采用默認(rèn)參數(shù)。
使用TBtools[28]軟件提取甜橙、克里曼丁橘、晚白柚基因組中上游2000 bp的啟動子序列,然后利用在線預(yù)測網(wǎng)站PlantCARE(http://bioinformatics.psb.ugent.be/we-btools/plantcare/html/)預(yù)測CsHsfs、CgHsfs、CcHsfs啟動子區(qū)域順式作用元件,預(yù)測結(jié)果用Excel進行統(tǒng)計,用TBtools[28]軟件HeatMap程序繪制熱圖,并使用TBtools[28]軟件Simple BioSequence Viewer程序?qū)樖阶饔迷植歼M行可視化。
根據(jù)甜橙、克里曼丁橘及晚白柚基因組文件,使用TBtools[28]軟件Fasta Stats程序獲得染色體信息。利用TBtools[28]軟件One StepMCScanX-Super Fast等程序分析CsHsfs、CgHsfs、CcHsfs物種內(nèi)共線性關(guān)系,篩選壓設(shè)為30,并使用TBtools[28]軟件Advanced Circos程序?qū)Y(jié)果進行可視化。根據(jù)甜橙、克里曼丁橘、晚白柚及擬南芥基因及gff注釋文件,使用TBtools[28]軟件One StepMCScanX-Super Fast程序獲取染色體分布信息及物種間共線性關(guān)系,并使用TBtools[28]軟件Dual systeny plot for MCScanX程序?qū)Y(jié)果進行可視化。
1.2.2 CsHsf家族成員的不同組織表達譜分析 基于已發(fā)表的轉(zhuǎn)錄組數(shù)據(jù),分別獲得了奉節(jié)臍橙[29]不同果實發(fā)育時期[50、80、120、155、180、220 DAF(days after flowering,DAF)]的外果皮、中果皮、囊衣(segment membrane,SM)、汁胞(juice sacs,JS),光熱脅迫條件下枳橙(C. sinensis × Poncirus trifoliata)[30]葉片,溫州蜜柑(C. unshiu)[31]不同發(fā)育時期(30、80、170 DAF)粗皮大果(peel roughing-disordered large fruits,PD)的轉(zhuǎn)錄組數(shù)據(jù),并對其FPKM值進行分析,然后使用TBtools[28]軟件HeatMap程序繪制熱圖。
1.2.3 溫州蜜柑日灼及正常果皮厚度測定 選擇日灼面在果實赤道線附近的日灼果實和正常果實,采用體式顯微鏡進行果皮厚度測定,每個果實延赤道線切開,正常果實隨機測6個點,日灼果實日灼面和對立正常面各測3個點,依次為正常果果皮(normal peel of normal fruit,NPN)、輕度日灼果正常面果皮(normal peel of light sunburn fruit,NPL)、輕度日灼果日灼面果皮(sunburn peel of light sunburn fruit,SPL)、重度日灼果正常面果皮(normal peel of severe sunburn fruit,NPS)和重度日灼果日灼面果皮(sunburn peel of severe sunburn fruit,SPS),10個果實作為一個重復(fù),共3個生物學(xué)重復(fù)。
1.2.4 CsHsfs基因在溫州蜜柑日灼果皮中表達模式分析 采用RNAprep植物試劑盒(天根,北京,中國)分別提取大分四號溫州蜜柑不同果皮樣品RNA,用酶標(biāo)儀測定RNA的質(zhì)量與濃度。使用Evo-M-MLV反轉(zhuǎn)錄試劑盒(艾科瑞,湖南,中國)合成cDNA,使用Talent熒光定量檢測試劑盒(SYBR Green,天根,中國)和CFX96(Bio-Rad,Hercules,CA,USA)實時PCR檢測系統(tǒng)進行定量PCR。以柑橘Actin作內(nèi)參基因,qRT-PCR擴增程序為:預(yù)變性95 ℃ 3 min,變性95 ℃ 5 s,退火58 ℃ 10 s,延伸72 ℃ 15 s,40個循環(huán)。
1.3 數(shù)據(jù)統(tǒng)計分析
將獲得的數(shù)據(jù)整理于Excel中并進行處理,使用SPSS 20.0進行差異顯著性分析,利用SigmaPlot 10.0軟件作圖。
2 結(jié)果與分析
2.1 柑橘Hsfs成員的鑒定與理化性質(zhì)分析
通過同源性搜索和結(jié)構(gòu)域確認(rèn),分別從橙類(甜橙)、寬皮柑橘類(克里曼丁橘)、柚類(晚白柚)鑒定得到了14、20、16個Hsf家族成員,并分別命名為CsHsf1~14、CcHsf1~20、CgHsf1~16。進一步探究柑橘屬Hsfs蛋白長度、等電點及分子質(zhì)量等特征,發(fā)現(xiàn)甜橙蛋白序列長度為271 aa(CsHsf1)~517 aa(CsHsf12),對應(yīng)的等電點范圍為4.80(CsHsf5)~8.09(CsHsf4),分子質(zhì)量范圍為30.1 ku(CsHsf1)~56.3 ku(CsHsf12);克里曼丁的蛋白序列長度范圍為208 aa(CcHsf8)~505 aa(CcHsf14),對應(yīng)的等電點范圍為4.65(CcHsf6、CcHsf7)~9.56(CcHsf8),分子質(zhì)量范圍為24.1 ku(CcHsf8)~56.2 ku(CcHsf14);柚的蛋白序列長度范圍為261 aa(CgHsf13)~516 aa(CgHsf14),對應(yīng)的等電點范圍為4.65(CgHsf3)~8.09(CgHsf5),分子質(zhì)量范圍為29.8 ku(CgHsf13)~56.1 ku(CgHsf14)。亞細(xì)胞定位預(yù)測顯示,柑橘屬3個Hsf家族成員均定位在細(xì)胞核,與其轉(zhuǎn)錄因子特征一致(表1)。
2.2 柑橘Hsfs基因的多序列比對、系統(tǒng)發(fā)育分析和分類
為了進一步明確Hsf家族成員的親緣進化關(guān)系,對3類柑橘品種及擬南芥的Hsf家族成員進行系統(tǒng)發(fā)育分析。結(jié)果(圖1)顯示,甜橙、克里曼丁、晚白柚及擬南芥Hsf家族成員主要分為3個簇:HSF A~C。甜橙、克里曼丁橘、晚白柚Hsfs家族成員均為A簇數(shù)目最多,分別有9個、12個、10個;B簇其次,分別為4個、7個、5個成員;C簇最少,每個物種成員均只有1個。這些結(jié)果表明,柑橘Hsfs在進化過程中都比較保守。
2.3 柑橘Hsfs的基因結(jié)構(gòu)和保守基序分析
為了研究柑橘Hsfs基因的結(jié)構(gòu)特征,在3個柑橘屬的Hsfs蛋白序列中共鑒定出20個不同的基序,長度從15到50個氨基酸不等(表2)。基序1、2組裝構(gòu)成了保守的DBD蛋白結(jié)構(gòu)域,基序5和7的全序列組裝在一起形成了完整的ACD區(qū)域(圖2-B)。整體而言,同簇中的Hsfs成員之間具有高度保守的基序特征。所有柑橘Hsfs成員都包含基序1、基序2。此外,有些基序是某些簇所特有的,如基序6、8、17僅在A簇成員中出現(xiàn),而基序15僅在B簇成員中出現(xiàn),基序5僅在A、B簇成員中出現(xiàn),基序4僅在A、C兩簇成員中出現(xiàn)。
通過基因結(jié)構(gòu)分析發(fā)現(xiàn),同一簇Hsfs成員間基因結(jié)構(gòu)也比較保守,大多數(shù)成員結(jié)構(gòu)域均包含2個外顯子,少數(shù)包含3個外顯子(圖2-C)。A簇中,除CsHsf9/11、CcHsf4/15包含3個外顯子外,其余都包含2個外顯子;B簇中除CcHsf16含有3個外顯子外,其余基因均含有2個外顯子;而C簇所有成員都只含有2個外顯子。
2.4 柑橘Hsfs基因啟動子區(qū)順式作用元件的分析
為了進一步明確柑橘Hsfs家族成員的調(diào)控模式及潛在功能,對甜橙類、寬皮橘類以及柚類Hsfs基因啟動子順式作用元件進行分析。結(jié)果顯示,柑橘Hsfs基因家族成員檢測到9種激素類和5種脅迫類順式作用元件(圖3)。激素類響應(yīng)元件包括生長素(auxin,IAA)響應(yīng)元件(TGA-element、AuxRR-core)、赤霉素(gibberellic acid,GA)響應(yīng)元件(GARE-motif、P-box、TATC-box)、茉莉酸甲酯(Methyl Jasmonate,MeJA)響應(yīng)元件(TGACG-motif、CGTCA-motif)、ABA響應(yīng)元件(ABRE)、水楊酸響應(yīng)元件(TCA-element)。其中,MeJA響應(yīng)元件和ABA響應(yīng)元件分布最多,特別是CsHsf2/4、CcHsf3/13、CgHsf5含有8~12個MeJA元件,CsHsf2/6/8、CcHsf4、CgHsf7/9含有8~9個ABA元件。Hsfs基因啟動子中脅迫響應(yīng)元件包括TC-rich repeats、WUN-motif、MBS、LTR、ARE。其中,MBS、ARE元件分布最多,特別是CsHsf8/11/13、CcHsf11/12/14/15/18、CgHsf9含有3~5個MBS元件,CcHsf6/7/9/10含有3個ARE元件。
2.5 柑橘Hsfs基因共線性分析
3個柑橘品種Hsfs家族成員在9條染色體上呈不均勻分布特征。其中甜橙除8號染色體不存在CsHsfs成員外,其余8條染色體都有分布;而克里曼丁橘除了4、8號染色體不存在CcHsfs外,其余成員分布較為集中,特別是1、2號染色體,分別分布了4個和5個CcHsfs成員;晚白柚同樣有兩條染色體(4、7號)上不存在CgHsfs成員,其中9號染色體,分布了5個CgHsf成員(圖4-A)。
通過MCscan分析,鑒定了柑橘Hsf家族的串聯(lián)重復(fù)和片段重復(fù)基因?qū)?。種內(nèi)共線性分析發(fā)現(xiàn),甜橙類、橘類、柚類中均沒有串聯(lián)重復(fù)事件序列(圖4-A)。但3個柑橘品種內(nèi)均存在3個片段重復(fù)事件,其中甜橙中分別為CsHsf5/7、CsHsf8/13和CsHsf10/14;克里曼丁中分別為CcHsf2/4、CcHsf10/20和CcHsf12/18;柚子中分別為CgHsf6/7、CgHsf8/16和CgHsf10/12(圖4-A)。結(jié)果表明片段重復(fù)在基因進化中起主導(dǎo)作用。
此外,構(gòu)建了3種類型柑橘品種間及其與模式植物擬南芥間的共線性關(guān)系。結(jié)果表明,甜橙、克里曼丁橘、晚白柚與擬南芥Hsf成員分別存在11、15、16對共線性關(guān)系,而甜橙與克里曼丁橘、甜橙與晚白柚、克里曼丁橘和晚白柚分別存在17、20、20對共線性關(guān)系。其中,CsHsf13、CcHsf18和CgHsf12分別互為同源基因,且同時與擬南芥3個基因(AtHsfA6b、AtHsfA7b、AtHsfA6a)存在共線性關(guān)系;同樣,CsHsf8、CcHsf12和CgHsf9分別互為同源基因,且同時擬南芥兩個基因(AtHsfA6b、AtHsfA7b)存在共線性關(guān)系(圖4-B)。
2.6 柑橘轉(zhuǎn)錄組及CsHsfs表達譜分析
為了挖掘在柑橘果實日灼發(fā)生過程中的CsHsfs關(guān)鍵候選基因,對奉節(jié)臍橙不同發(fā)育時期的不同果實組織的時空轉(zhuǎn)錄組、光熱處理枳橙葉片轉(zhuǎn)錄組以及溫州蜜柑粗皮大果轉(zhuǎn)錄組進行分析。果實時空表達分析顯示,不同CsHsfs基因在柑橘果實不同組織中表達模式特異,其中大部分CsHsfs基因在外果皮或中果皮特異性表達,如CsHsf2、CsHsf7主要在外果皮中表達,CsHsf5/8/10/11/12主要在中果皮表達,且表達量基本隨著果實發(fā)育呈下降趨勢(圖5-A)。在溫州蜜柑中,CsHsf9、CsHsf11在30 DAF粗皮大果中表達量較正常果高,CsHsf4、CsHsf10在80 DAF粗皮大果中表達量較正常果高,CsHsf5、CsHsf13則在170 DAF較正常果上調(diào)表達,特別是CsHsf5在不同果實發(fā)育時期粗皮大果中較正常果上調(diào)表達(圖5-C),暗示在粗皮大果發(fā)育時期可能受多個基因分別控制調(diào)節(jié)。在光熱脅迫處理枳橙葉片后,CsHsf2/7/8受到光脅迫顯著誘導(dǎo),CsHsf4/9/12受到熱脅迫顯著誘導(dǎo),而CsHsf1/5/6/10/11/13受到光熱脅迫協(xié)同誘導(dǎo)(圖5-B)。
2.7 CsHsfs在溫州蜜柑日灼果皮中的表達模式
于柑橘果實日灼高發(fā)期(8—9月)對田間日灼果實進行監(jiān)測發(fā)現(xiàn),日灼果實表面溫度大幅度升高,造成果皮變黃甚至形成黑色傷斑,從而引起果實日灼面一側(cè)生長受阻,果實形態(tài)發(fā)生改變;解剖發(fā)現(xiàn)日灼果皮褪色深入內(nèi)部,外皮層部分油胞破裂,果皮水分減少,白皮層松軟,絮狀化嚴(yán)重,同時觀察發(fā)現(xiàn),日灼果皮明顯增厚,統(tǒng)計分析得出輕度日灼、重度日灼相較于正常果皮分別增厚了46.12%和52.63%(圖6-A~B)。
為了明確CsHsfs在溫州蜜柑日灼果皮中的表達模式,對不同程度日灼果果皮(外果皮、中果皮)進行qRT-PCR分析。結(jié)果顯示,多數(shù)CsHsfs基因在日灼果皮與正常果皮中存在顯著差異表達,其中CsHsf6、CsHsf8、CsHsf11在外果皮和中果皮中均顯著上調(diào)表達6倍以上;CsHsf4在外果皮和中果皮中顯著下調(diào)表達超過90%。另外,CsHsf5、CsHsf7、CsHsf10、CsHsf14在中果皮中分別上調(diào)表達了12.8、26.2、16.1和7.8倍,而CsHsf3在中果皮中下調(diào)表達了92.7%(圖6-C)。
2.8 CsHsfs在滑皮金柑熱處理果皮中的表達模式
基于CsHsfs在3個轉(zhuǎn)錄組中的表達模式,篩選到9個(CsHsf1/2/5/6/8/10/11/12/13)在柑橘果皮特異性表達或枳橙葉片中高度響應(yīng)光熱誘導(dǎo)的基因,同時基于CsHsfs在日灼果皮中的表達分析,篩選到7個(CsHsf1/2/5/6/8/9/11)在日灼果外果皮及中果皮中顯著上調(diào)表達的基因,二者取交集,最后篩選到CsHsf1/5/6/8/11五個基因,并分別在常溫處理(CK)和熱處理(heat stress,HS)0、2、4、6 h滑皮金柑果皮中進行定量表達分析。結(jié)果顯示,這5個基因積極響應(yīng)熱脅迫的誘導(dǎo),其中CsHsf5、CsHsf6、CsHsf11在熱處理下均顯著上調(diào)表達,且CsHsf5和CsHsf11都在熱處理2 h表達量達到峰值,之后緩慢下降;而CsHsf1和CsHsf8在熱處理下顯著下調(diào)表達(圖7)。
3 討 論
日灼在多數(shù)作物中都有發(fā)生,并嚴(yán)重影響作物的生長和發(fā)育,因此在柑橘[32]、蘋果[33]、葡萄[34]和番茄[2]等作物中都有相關(guān)研究,且被認(rèn)為是高溫和光照共同作用的結(jié)果,然而關(guān)于日灼分子方面相關(guān)研究甚少。Hsf作為非生物脅迫尤其是高溫脅迫的重要調(diào)節(jié)因子極有可能參與日灼的發(fā)生。Hsfs廣泛存在于所有植物中,目前在芹菜[25]、丹參[35]、菜豆[36]、紫花苜蓿[37]、桃[38]等物種中Hsfs家族均有報道。然而,關(guān)于柑橘屬Hsfs家族研究較少,因此本研究首次對柑橘屬橙類(甜橙)、寬皮橘類(克里曼丁橘)、柚類(晚白柚)3個物種Hsf家族進行系統(tǒng)全面地分析,并對其在柑橘果實日灼果皮中的表達模式進行分析。
筆者在本研究中分別從甜橙、克里曼丁橘和晚白柚基因組中鑒定了14、20、16個Hsf基因成員,并根據(jù)系統(tǒng)發(fā)育分析將它們分為HSF A、B、C3個簇。3個柑橘屬Hsf家族成員的分布遵循與其他物種相似的模式,與C簇相比,A簇和B簇的Hsfs成員數(shù)量更多,此外,3個柑橘種A簇和B簇Hsfs成員數(shù)量均較擬南芥少,這表明3個柑橘屬和擬南芥在早期分化后,柑橘Hsfs成員可能經(jīng)歷了全基因組復(fù)制事件[9]。多數(shù)物種中Hsfs基因家族擴增主要為片段重復(fù)事件[27,39]。在本研究中,3個柑橘屬的Hsfs基因家族所有的基因重復(fù)事件都來源于片段復(fù)制,這似乎意味著片段重復(fù)才是Hsfs家族擴張的原因。此外,表達分析發(fā)現(xiàn),具有共線性關(guān)系的基因?qū)σ话惚憩F(xiàn)出相似的表達模式。例如,CsHsf5/7、CsHsf10/14分別為甜橙中兩組共線性基因?qū)?,且這4個基因均在日灼果皮尤其是中果皮中顯著上調(diào)表達。在擬南芥中,作為CsHsf5的同源基因AtHsfA2能夠提高高溫脅迫下種子的發(fā)芽率并增強其抗氧化能力[40],CsHsf7的同源基因AtHsfC1也提高了擬南芥植株的耐熱性[41];而作為CsHsf14和CsHsf10在擬南芥的同源基因AtHsfB2a和AtHsfB2b同樣被熱處理強烈誘導(dǎo)[42],說明柑橘中CsHsf5和CsHsf7、CsHsf10和CsHsf14可能發(fā)揮著相似的功能。
植物在生長發(fā)育過程中,需要整合不同組織或環(huán)境信號來調(diào)節(jié)基因表達,轉(zhuǎn)錄起始調(diào)控便是其中重要的一環(huán),順式作用元件作為轉(zhuǎn)錄因子特異結(jié)合的位點,其重要性不言而喻。柑橘Hsfs基因啟動子上含有多個MeJA和ABA響應(yīng)元件,MeJA和ABA作為植物重要的信號傳導(dǎo)激素,調(diào)控植物抵御多種逆境。多數(shù)研究證明,Hsfs參與包括MeJA和ABA在內(nèi)的多種信號途徑下的非生物脅迫響應(yīng)[36,43-44],在擬南芥中,ABA處理顯著增強了HsfA6b的轉(zhuǎn)錄活性,且轉(zhuǎn)錄激活必須結(jié)合其上游啟動子上ABRE元件[20]。外源MeJA處理多年生黑麥草,顯著增強了Hsf-HSPs響應(yīng)熱脅迫的網(wǎng)絡(luò)調(diào)控[45]。作為多種信號通路的關(guān)鍵組成部分[7],Hsf極有可能通過調(diào)控HSP或其他脅迫誘導(dǎo)基因的表達,從而在抵御高溫等脅迫中發(fā)揮重要作用。HSP作為分子伴侶廣泛存在于原核和真核生物體內(nèi),參與高溫、寒冷、干旱、鹽脅迫、病原菌侵染等多種非生物脅迫[46-48],當(dāng)生物體受到環(huán)境脅迫時,HSP基因被誘導(dǎo)表達或其蛋白通過折疊、組裝、移位、降解等方式維持細(xì)胞內(nèi)穩(wěn)態(tài),從而減輕脅迫對生物體的傷害[49-50]。因此,推測當(dāng)柑橘果實等受到高溫等逆境脅迫后,可能通過激活MeJA和ABA信號途徑,從而結(jié)合Hsfs啟動子上的順式作用元件促進Hsfs的轉(zhuǎn)錄,進而誘導(dǎo)下游HSP及抗氧化酶等基因表達,以幫助植株抵御高溫等脅迫環(huán)境。組織表達譜聚類分析顯示,在囊衣和汁胞中主要是A簇成員特異性表達;在枳橙葉片中,單獨響應(yīng)熱誘導(dǎo)的也主要為A簇成員,表明CsHsfs家族演化和基因表達聚類具有一定關(guān)聯(lián)性。
CsHsfs在脅迫下的表達模式及組織表達譜很大程度上反映了其基因功能。在蘿卜中,8個RsHSF基因在皮層、形成層和木質(zhì)部高度表達,推測參與蘿卜的生長發(fā)育[51]。在本研究中,CsHsf5、CsHsf8、CsHsf11在奉節(jié)臍橙果實果皮組織尤其在中果皮中特異表達,CsHsf5粗皮大果在整個發(fā)育時期較正常果均持續(xù)上調(diào)表達,表明CsHsfs可能參與柑橘果皮的發(fā)育。日灼表型顯示,溫州蜜柑日灼區(qū)域果皮黃化甚至褐化,明顯是遭受脅迫所致;表達分析也顯示多數(shù)CsHsfs在溫州蜜柑日灼果皮與熱處理的滑皮金柑果皮中都顯著上調(diào)表達,表明果實日灼受到熱因素的影響。在擬南芥中,HsfB1和HsfB2b作為熱誘導(dǎo)型抑制因子,其雙突變植株相較于野生型表現(xiàn)出更強的耐熱性[52];另外,Baniwal等[53]研究發(fā)現(xiàn)AtHsfA5可通過與AtHsfA4結(jié)合從而抑制其轉(zhuǎn)錄活性,可能參與調(diào)控病原體感染或由ROS引發(fā)的細(xì)胞死亡。在本研究中,CsHsf3、CsHsf4在日灼果中果皮顯著下調(diào)表達,暗示這2個基因同樣可能作為轉(zhuǎn)錄抑制因子參與調(diào)控日灼的發(fā)生。這些結(jié)果都表明Hsf極有可能參與調(diào)控柑橘果皮日灼的發(fā)生。
筆者在本研究中發(fā)現(xiàn)CsHsf5不僅在柑橘果皮中特異性表達,同時積極響應(yīng)熱脅迫的誘導(dǎo),并且在溫州蜜柑日灼果皮中顯著上調(diào)表達;在擬南芥中,CsHsf5同源基因AtHsfA2因響應(yīng)多種脅迫(熱、鹽、滲透脅迫等)被廣泛報道[22-23,54]。最新研究發(fā)現(xiàn),熱處理后的擬南芥幼苗中不僅果膠甲酯酶活性顯著增強,同時伴隨著AtHsfA2和AtHSP22高度表達[55],表明AtHsfA2積極響應(yīng)熱誘導(dǎo)并且可能參與果膠甲酯酶的合成。因此,推測CsHsf5在柑橘中極有可能發(fā)揮類似的功能,即可能在調(diào)控果皮發(fā)育及緩解日灼/熱脅迫中發(fā)揮重要作用,下一步將圍繞CsHsf5-HSP介導(dǎo)的柑橘高溫響應(yīng)或果皮發(fā)育機制進行研究。
4 結(jié) 論
筆者在本研究中首先對柑橘屬橙類、寬皮柑橘類、柚類的Hsfs家族成員進行鑒定,分別得到了14個CsHsfs、20個CcHsfs、16個CgHsfs成員,并分為HSF A~C3個簇;其次,柑橘Hsfs啟動子中茉莉酸甲酯響應(yīng)元件(TGACG-motif、CGTCA-motif)、脫落酸響應(yīng)元件(ABRE)及干旱誘導(dǎo)響應(yīng)元件(MBS)分布最為廣泛;最后,Hsfs基因表達分析發(fā)現(xiàn)多數(shù)CsHsf成員在柑橘果皮中特異性表達,且在日灼果與正常果果皮中顯著差異表達;尤其是CsHsf5在多個柑橘組織表達譜及溫州蜜柑日灼果皮和熱處理金柑果皮中均顯著上調(diào)表達,推測其可能在抵御柑橘果實日灼發(fā)生中有重要作用。
參考文獻References:
[1] BARBER H N,SHARPE P J H. Genetics and physiology of sunscald of fruits[J]. Agricultural Meteorology,1971,8:175-191.
[2] RABINOWITCH H D,KEDAR N,BUDOWSKI P. Induction of sunscald damage in tomatoes under natural and controlled conditions[J]. Scientia Horticulturae,1974,2(3):265-272.
[3] LIU C Y,SU Y,LI J Y,JIA B T,CAO Z,QIN G H. Physiological adjustment of pomegranate pericarp responding to sunburn and its underlying molecular mechanisms[J]. BMC Plant Biology,2022,22(1):169.
[4] GUO M,LIU J H,MA X,LUO D X,GONG Z H,LU M H. The plant heat stress transcription factors (HSFs):Structure,regulation,and function in response to abiotic stresses[J]. Frontiers in Plant Science,2016,7:114.
[5] SCHARF K D,BERBERICH T,EBERSBERGER I,NOVER L. The plant heat stress transcription factor (Hsf) family:Structure,function and evolution[J]. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms,2012,1819(2):104-119.
[6] SCHARF K D,ROSE S,ZOTT W,SCH?FFL F,NOVER L. Three tomato genes code for heat stress transcription factors with a region of remarkable homology to the DNA-binding domain of the yeast HSF[J]. EMBO Journal,1990,9(13):4495-4501.
[7] WANG N,LIU W J,YU L,GUO Z W,CHEN Z J,JIANG S H,XU H F,F(xiàn)ANG H C,WANG Y C,ZHANG Z Y,CHEN X S. HEAT SHOCK FACTOR A8a modulates flavonoid synthesis and drought tolerance[J]. Plant Physiology,2020,184(3):1273-1290.
[8] FRAGKOSTEFANAKIS S,R?TH S,SCHLEIFF E,SCHARF K D. Prospects of engineering thermotolerance in crops through modulation of heat stress transcription factor and heat shock protein networks[J]. Plant,Cell amp; Environment,2015,38(9):1881-1895.
[9] WANG X M,SHI X,CHEN S Y,MA C,XU S B. Evolutionary origin,gradual accumulation and functional divergence of Heat shock factor gene family with plant evolution[J]. Frontiers in Plant Science,2018,9:71.
[10] OHAMA N,SATO H,SHINOZAKI K,YAMAGUCHI-SHINOZAKI K. Transcriptional regulatory network of plant heat stress response[J]. Trends in Plant Science,2017,22(1):53-65.
[11] AKERFELT M,MORIMOTO R I,SISTONEN L. Heat shock factors:Integrators of cell stress,development and lifespan[J]. Nature Reviews. Molecular Cell Biology,2010,11(8):545-555.
[12] CHARNG Y Y,LIU H C,LIU N Y,HSU F C,KO S S. Arabidopsis Hsa32,a novel heat shock protein,is essential for acquired thermotolerance during long recovery after acclimation[J]. Plant Physiology,2006,140(4):1297-1305.
[13] XIE D L,HUANG H M,ZHOU C Y,LIU C X,KANWAR M K,QI Z Y,ZHOU J. HsfA1a confers pollen thermotolerance through upregulating antioxidant capacity,protein repair,and degradation in Solanum lycopersicum L.[J]. Horticulture Research,2022,9:uhac163.
[14] KOTAK S,PORT M,GANGULI A,BICKER F,VON KOSKULL-D?RING P. Characterization of C-terminal domains of Arabidopsis heat stress transcription factors (Hsfs) and identification of a new signature combination of plant class A Hsfs with AHA and NES motifs essential for activator function and intracellular localization[J]. Plant Journal,2004,39(1):98-112.
[15] KOTAK S,VIERLING E,B?UMLEIN H,VON KOSKULL-D?RING P. A novel transcriptional cascade regulating expression of heat stress proteins during seed development of Arabidopsis[J]. The Plant Cell,2007,19(1):182-195.
[16] PRIETO-DAPENA P,ALMOGUERA C,PERSONAT J M,MERCHAN F,JORDANO J. Seed-specific transcription factor HSFA9 links late embryogenesis and early photomorphogenesis[J]. Journal of Experimental Botany,2017,68(5):1097-1108.
[17] YE J L,YANG X T,HU G,LIU Q,LI W,ZHANG L L,SONG X Y. Genome-wide investigation of heat shock transcription factor family in wheat (Triticum aestivum L.) and possible roles in anther development[J]. International Journal of Molecular Sciences,2020,21(2):608.
[18] FU J X,HUANG S Y,QIAN J Y,QING H S,WAN Z Y,CHENG H F,ZHANG C. Genome-wide identification of Petunia HSF genes and potential function of PhHSF19 in benzenoid/phenylpropanoid biosynthesis[J]. International Journal of Molecular Sciences,2022,23(6):2974.
[19] LIN Q,JIANG Q,LIN J Y,WANG D L,LI S J,LIU C R,SUN C D,CHEN K S. Heat shock transcription factors expression during fruit development and under hot air stress in Ponkan (Citrus reticulata Blanco cv. Ponkan) fruit[J]. Gene,2015,559(2):129-136.
[20] HUANG Y C,NIU C Y,YANG C R,JINN T L. The heat stress factor HSFA6b connects ABA signaling and ABA-mediated heat responses[J]. Plant Physiology,2016,172(2):1182-1199.
[21] SCHRAMM F,GANGULI A,KIEHLMANN E,ENGLICH G,WALCH D,VON KOSKULL-D?RING P. The heat stress transcription factor HsfA2 serves as a regulatory amplifier of a subset of genes in the heat stress response in Arabidopsis[J]. Plant Molecular Biology,2006,60(5):759-772.
[22] NISHIZAWA A,YABUTA Y,YOSHIDA E,MARUTA T,YOSHIMURA K,SHIGEOKA S. Arabidopsis heat shock transcription factor A2 as a key regulator in response to several types of environmental stress[J]. Plant Journal,2006,48(4):535-547.
[23] OGAWA D,YAMAGUCHI K,NISHIUCHI T. High-level overexpression of the Arabidopsis HsfA2 gene confers not only increased themotolerance but also salt/osmotic stress tolerance and enhanced callus growth[J]. Journal of Experimental Botany,2007,58(12):3373-3383.
[24] PéREZ-SALAMó I,PAPDI C,RIGó G,ZSIGMOND L,VILELA B,LUMBRERAS V,NAGY I,HORVáTH B,DOMOKI M,DARULA Z,MEDZIHRADSZKY K,B?GRE L,KONCZ C,SZABADOS L. The heat shock factor A4A confers salt tolerance and is regulated by oxidative stress and the mitogen-activated protein kinases MPK3 and MPK6[J]. Plant Physiology,2014,165(1):319-334.
[25] LI M Y,ZHANG R,ZHOU J,DU J G,LI X Y,ZHANG Y,CHEN Q,WANG Y,LIN Y X,ZHANG Y T,HE W,WANG X R,XIONG A S,LUO Y,TANG H R. Comprehensive analysis of HSF genes from celery (Apium graveolens L.) and functional characterization of AgHSFa6-1 in response to heat stress[J]. Frontiers in Plant Science,2023,14:1132307.
[26] XIANG J H,RAN J,ZOU J,ZHOU X Y,LIU A L,ZHANG X W,PENG Y,TANG N,LUO G Y,CHEN X B. Heat shock factor OsHsfB2b negatively regulates drought and salt tolerance in rice[J]. Plant Cell Reports,2013,32(11):1795-1806.
[27] LING C C,LIU Y Y,YANG Z C,XU J L,OUYANG Z Y,YANG J,WANG S H. Genome-wide identification of HSF gene family in kiwifruit and the function of AeHSFA2b in salt tolerance[J]. International Journal of Molecular Sciences,2023,24(21):15638.
[28] CHEN C J,CHEN H,ZHANG Y,THOMAS H R,F(xiàn)RANK M H,HE Y H,XIA R. TBtools:An integrative toolkit developed for interactive analyses of big biological data[J]. Molecular Plant,2020,13(8):1194-1202.
[29] FENG G Z,WU J X,XU Y H,LU L Q,YI H L. High-spatiotemporal-resolution transcriptomes provide insights into fruit development and ripening in Citrus sinensis[J]. Plant Biotechnology Journal,2021,19(7):1337-1353.
[30] BALFAGóN D,ZANDALINAS S I,DOS REIS DE OLIVEIRA T,SANTA-CATARINA C,GóMEZ-CADENAS A. Reduction of heat stress pressure and activation of photosystem II repairing system are crucial for Citrus tolerance to multiple abiotic stress combination[J]. Physiologia Plantarum,2022,174(6):e13809.
[31] 李菲菲,廉雪菲,尹韜,常媛媛,金燕,馬小川,陳岳文,葉麗,李云松,盧曉鵬. 柑橘果實囊衣發(fā)育與化渣性的形成[J]. 中國農(nóng)業(yè)科學(xué),2023,56(2):333-344.
LI Feifei,LIAN Xuefei,YIN Tao,CHANG Yuanyuan,JIN Yan,MA Xiaochuan,CHEN Yuewen,YE Li,LI Yunsong,LU Xiaopeng. The relationship between mastication and development of segment membranes in Citrus fruits[J]. Scientia Agricultura Sinica,2023,56(2):333-344.
[32] KIM M,PARK Y,YUN S K,KIM S S,JOA J,MOON Y E,DO G R. The anatomical differences and physiological responses of sunburned Satsuma mandarin (Citrus unshiu Marc.) fruits[J]. Plants,2022,11(14):1801.
[33] MORALES-QUINTANA L,WAITE J M,KALCSITS L,TORRES C A,RAMOS P. Sun injury on apple fruit:Physiological,biochemical and molecular advances,and future challenges[J]. Scientia Horticulturae,2020,260:108866.
[34] GAMBETTA J M,HOLZAPFEL B P,STOLL M,F(xiàn)RIEDEL M. Sunburn in grapes:A review[J]. Frontiers in Plant Science,2020,11:604691.
[35] QU R J,WANG S W,WANG X X,PENG J M,GUO J,CUI G H,CHEN M L,MU J,LAI C,HUANG L Q,WANG S,SHEN Y. Genome-wide characterization and expression of the Hsf gene family in Salvia miltiorrhiza (Danshen) and the potential thermotolerance of SmHsf1 and SmHsf7 in yeast[J]. International Journal of Molecular Sciences,2023,24(10):8461.
[36] ZHANG Q,GENG J,DU Y L,ZHAO Q,ZHANG W J,F(xiàn)ANG Q X,YIN Z G,LI J H,YUAN X K,F(xiàn)AN Y R,CHENG X,DU J D. Heat shock transcription factor (Hsf) gene family in common bean (Phaseolus vulgaris):Genome-wide identification,phylogeny,evolutionary expansion and expression analyses at the sprout stage under abiotic stress[J]. BMC Plant Biology,2022,22(1):33.
[37] MA J,ZHANG G Z,YE Y C,SHANG L X,HONG S D,MA Q Q,ZHAO Y,GU C H. Genome-wide identification and expression analysis of HSF transcription factors in alfalfa (Medicago sativa) under abiotic stress[J]. Plants,2022,11(20):2763.
[38] TAN B,YAN L,LI H N,LIAN X D,CHENG J,WANG W,ZHENG X B,WANG X B,LI J D,YE X,ZHANG L L,LI Z Q,F(xiàn)ENG J C. Genome-wide identification of HSF family in peach and functional analysis of PpHSF5 involvement in root and aerial organ development[J]. PeerJ,2021,9:e10961.
[39] LIU M Y,HUANG Q,SUN W J,MA Z T,HUANG L,WU Q,TANG Z Z,BU T L,LI C L,CHEN H. Genome-wide investigation of the heat shock transcription factor (Hsf) gene family in Tartary buckwheat (Fagopyrum tataricum) [J]. BMC Genomics,2019,20(1):871.
[40] PAN C L,ZHOU Y Y,YAO L X,YU L Y,QIAO Z,TANG M Q,WEI F. Amomum tsaoko DRM1 regulate seed germination and improve heat tolerance in Arabidopsis[J]. Journal of Plant Physiology,2023,286:154007.
[41] GUAN Q M,YUE X L,ZENG H T,ZHU J H. The protein phosphatase RCF2 and its interacting partner NAC019 are critical for heat stress-responsive gene regulation and thermotolerance in Arabidopsis[J]. The Plant Cell,2014,26(1):438-453.
[42] 大濱直彥,吉田拓実,溝井順哉,篠崎一雄,篠崎和子. シロイヌナズナの高溫ストレス応答における転寫因子HSFBの機能解析[C]. 日本植物生理學(xué)會年會およびシンポジウム,講演要旨集,2011:0815.
OHAMA N,YOSHIDA T,MIZOI J,SHINOZAKI K,SHINOZAKI K. Functional analysis of B-class heat shock transcription factors in Arabidopsis[C]. Plant and Cell Physiology Supplement,2011:0815.
[43] YU X X,ZHANG W J,ZHANG Y,ZHANG X J,LANG D Y,ZHANG X H. The roles of methyl jasmonate to stress in plants[J]. Functional Plant Biology,2019,46(3):197-212.
[44] HONG J H,SEAH S W,XU J. The root of ABA action in environmental stress response[J]. Plant Cell Reports,2013,32(7):971-983.
[45] NIE G,ZHOU J,JIANG Y W,HE J,WANG Y,LIAO Z C,APPIAH C,LI D D,F(xiàn)ENG G Y,HUANG L K,WANG X,ZHANG X Q. Transcriptome characterization of candidate genes for heat tolerance in perennial ryegrass after exogenous methyl Jasmonate application[J]. BMC Plant Biology,2022,22(1):68.
[46] YANG M L,ZHANG Y X,ZHANG H H,WANG H B,WEI T,CHE S Y,ZHANG L P,HU B Q,LONG H,SONG W Q,YU W W,YAN G R. Identification of MsHsp20 gene family in Malus sieversii and functional characterization of MsHsp16.9 in heat tolerance[J]. Frontiers in Plant Science,2017,8:1761.
[47] KIM J H,LIM S D,JANG C S. Oryza sativa heat-induced RING finger protein 1 (OsHIRP1) positively regulates plant response to heat stress[J]. Plant Molecular Biology,2019,99(6):545-559.
[48] ALSHAMERI A,AL-QURAINY F,GAAFAR A R,KHAN S,NADEEM M,ALANSI S. Identification of heat-responsive genes in guar [Cyamopsis tetragonoloba (L.) Taub.][J]. International Journal of Genomics,2020,2020:3126592.
[49] JACOB P,HIRT H,BENDAHMANE A. The heat-shock protein/chaperone network and multiple stress resistance[J]. Plant Biotechnology Journal,2017,15(4):405-414.
[50] PARK C J,SEO Y S. Heat shock proteins:A review of the molecular chaperones for plant immunity[J]. Plant Pathology Journal,2015,31(4):323-333.
[51] TANG M J,XU L,WANG Y,CHENG W W,LUO X B,XIE Y,F(xiàn)AN L X,LIU L W. Genome-wide characterization and evolutionary analysis of heat shock transcription factors (HSFs) to reveal their potential role under abiotic stresses in radish (Raphanus sativus L.)[J]. BMC Genomics,2019,20(1):772.
[52] IKEDA M,MITSUDA N,OHME-TAKAGI M. Arabidopsis HsfB1 and HsfB2b act as repressors of the expression of heat-inducible Hsfs but positively regulate the acquired thermotolerance[J]. Plant Physiology,2011,157(3):1243-1254.
[53] BANIWAL S K,CHAN K Y,SCHARF K D,NOVER L. Role of heat stress transcription factor HsfA5 as specific repressor of HsfA4[J]. Journal of Biological Chemistry,2007,282(6):3605-3613.
[54] LIN K F,TSAI M Y,LU C G,WU S J,YEH C H. The roles of Arabidopsis HSFA2,HSFA4a,and HSFA7a in the heat shock response and cytosolic protein response[J]. Botanical Studies,2018,59(1):15.
[55] PINEDA-HERNáNDEZ E,CRUZ-VALDERRAMA J E,GóMEZ-MAQUEO X,MARTíNEZ-BARAJAS E,GAMBOA-DEBUEN A. BIIDXI,a DUF642 cell wall protein that regulates pectin methyl esterase activity,is involved in thermotolerance processes in Arabidopsis thaliana[J]. Plants,2022,11(22):3049.