摘要:微藻營(yíng)養(yǎng)豐富,目前市售產(chǎn)品主要以高溫干燥處理后的微藻粉制得,然而干燥過(guò)程會(huì)導(dǎo)致活性成分大量流失,營(yíng)養(yǎng)價(jià)值大打折扣,因此,基于新鮮微藻開發(fā)的鮮食產(chǎn)品極具市場(chǎng)價(jià)值。在鮮食微藻保藏過(guò)程中,防腐且保留藻細(xì)胞活性是面臨的首要問(wèn)題。天然抑菌劑因?yàn)榫G色安全已經(jīng)被應(yīng)用于水產(chǎn)品、肉制品、奶制品等食品中,具有良好的防腐保鮮效果。文章分析了幾種天然抑菌劑的抑菌機(jī)制及其應(yīng)用現(xiàn)狀,并分析了將其應(yīng)用于鮮食微藻的可行性。
關(guān)鍵詞:鮮食微藻;天然抑菌劑;微藻防腐;保鮮
中圖分類號(hào):TS202.3""""" 文獻(xiàn)標(biāo)志碼:A"""" 文章編號(hào):1000-9973(2024)11-0195-05
Feasibility Analysis of Application of Natural Antimicrobial Agents in
Fresh-Eating Microalgae
LIU Ya-nan1, ZHOU Zhen-zhen2*, ZHANG Jun-jie1, CONG Wei2, DUAN Rui1
(1.School of Ocean Food and Biological Engineering, Jiangsu Ocean University, Lianyungang 222005,
China; 2.Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China)
Abstract: Microalgae is rich in nutrients. At present, commercially available products are mainly made from microalgae powder after high-temperature drying treatment. However, the drying process can lead to a significant loss of active components, greatly reducing its nutritional value. Therefore, fresh-eating products developed based on fresh microalgae are of great market value. During the preservation of fresh-eating microalgae, anti-corrosion and retaining algal cell activity is the primary issue. Natural antimicrobial agents have been applied in aquatic products, meat products, dairy products and other foods due to their green and safe nature, and have good anti-corrosion and preservation effects. In this paper, the antimicrobial mechanism and the application status of several natural antimicrobial agents are analyzed, and the feasibility of applying them to fresh-eating microalgae is analyzed.
Key words: fresh-eating microalgae; natural antimicrobial agent; anti-corrosion of microalgae; preservation
收稿日期:2024-05-28
基金項(xiàng)目:國(guó)家重點(diǎn)研發(fā)計(jì)劃(2022YFD1300703)
作者簡(jiǎn)介:劉亞楠(1999—),女,碩士,研究方向:農(nóng)(水)產(chǎn)品貯藏與保鮮。
*通信作者:周真真(1991—),女,助理研究員,博士,研究方向:微藻產(chǎn)品加工與應(yīng)用。
微藻胞內(nèi)營(yíng)養(yǎng)豐富,作為可食用資源已有幾百年的歷史[1]。螺旋藻中蛋白質(zhì)含量高達(dá)60%~70%,含有全部必需氨基酸,且與人體所需的比例極為接近[2],蛋白核小球藻中蛋白質(zhì)含量高達(dá)60%,多糖含量約為25%,可用作優(yōu)質(zhì)的營(yíng)養(yǎng)補(bǔ)充劑。
為了便于保存和運(yùn)輸,目前市場(chǎng)上的微藻多為干燥狀態(tài),主要通過(guò)噴霧干燥的方式將采收的微藻泥脫水。高溫能快速達(dá)到干燥的效果且去除雜菌,但會(huì)導(dǎo)致胞內(nèi)的熱敏性成分損失高達(dá)70%[3-6]。為了較完整地保留微藻的營(yíng)養(yǎng)成分,開發(fā)鮮食微藻產(chǎn)品逐漸引起人們的關(guān)注。
鮮食微藻是將采收后的濕藻泥不經(jīng)干燥直接制成可食用形態(tài)。濕藻很難常溫儲(chǔ)存,一方面,藻細(xì)胞代謝會(huì)消耗胞內(nèi)營(yíng)養(yǎng);另一方面,濕藻由于營(yíng)養(yǎng)全面會(huì)不斷富集環(huán)境中的細(xì)菌和霉菌,導(dǎo)致藻泥腐敗。冷凍保存雖然可以解決上述問(wèn)題,但解凍后細(xì)胞破碎,胞內(nèi)物質(zhì)溶出,難以制成鮮藻產(chǎn)品。因此,在適宜的存儲(chǔ)溫度下添加抑菌劑有望解決微藻的存儲(chǔ)保鮮問(wèn)題。
1 微藻制品中微生物污染的來(lái)源及種類
1.1 微生物污染的來(lái)源
微藻的微生物污染主要來(lái)源于培養(yǎng)過(guò)程和采收過(guò)程。微藻的規(guī)?;囵B(yǎng)主要采用開放式和半開放式,無(wú)法避免環(huán)境中的浮游植物、細(xì)菌和原生動(dòng)物等的污染,且微藻能通過(guò)光合作用產(chǎn)生胞外多糖和蛋白質(zhì)等有機(jī)質(zhì),進(jìn)而富集環(huán)境中的微生物,導(dǎo)致污染嚴(yán)重[7],微藻的采收主要采用自然沉降法、離心法和過(guò)濾法等。自然沉降法是濃縮藻液在自然環(huán)境中依靠重力將上清液與藻細(xì)胞分離[8],此過(guò)程中的微生物污染類似培養(yǎng)過(guò)程;離心法是將藻液高速旋轉(zhuǎn)達(dá)到分離效果,配合過(guò)濾洗滌,去除一部分微生物,但該過(guò)程可能會(huì)受到空氣中微生物的污染[9];過(guò)濾法是將藻液通過(guò)帶孔的膜進(jìn)行分離,培養(yǎng)液通過(guò)膜而藻細(xì)胞被截留[10],根據(jù)藻細(xì)胞和污染物的尺寸選擇膜孔徑,從而除去部分污染物,但無(wú)法保證完全無(wú)菌。此外,鮮藻產(chǎn)品加工過(guò)程中由于加工者的操作不當(dāng)可能會(huì)發(fā)生交叉污染,如金黃色葡萄球菌(Staphylococcus aureus)等致病菌的污染[11],通過(guò)嚴(yán)格要求加工者規(guī)范操作,保障生產(chǎn)車間的衛(wèi)生安全,可以降低此類污染發(fā)生的概率。
1.2 微生物的種類
不同藻種培養(yǎng)過(guò)程中污染的微生物種類不同。研究表明,螺旋藻培養(yǎng)液中的污染主要來(lái)源于細(xì)菌和原生動(dòng)物,主要細(xì)菌為變形菌門(Proteobacteria)、擬桿菌門(Bacteroidetes)和厚壁菌門(Firmicutes)等,原生動(dòng)物種類主要是褶皺臂尾輪蟲(Brachionus plicatilis)和異葉足變形蟲(Euplaesiobystra hypersalinica)[12]。蛋白核小球藻培養(yǎng)液中污染的細(xì)菌主要有寄生細(xì)菌吸血弧菌(Vampirovibrio chlorellavorus)[13]、假單胞菌屬(Pseudomonas)[14]、梭狀芽孢桿菌(Clostridium)[15]、非硫紫色細(xì)菌(Rhodopseudomonas sp.)[16];且容易被其他藍(lán)藻污染,如銅綠微囊藻(Microcystis aeruginosa)產(chǎn)的微囊藻毒素(microcystin)對(duì)人體有毒[17],不能食用;此外,還有原生動(dòng)物如纖毛蟲等的污染,但可過(guò)濾去除[7]。
濕藻存儲(chǔ)時(shí),除了自身攜帶的伴生菌外,還會(huì)受到環(huán)境中其他腐敗菌的污染。在一項(xiàng)連續(xù)兩年對(duì)新鮮和干燥的可食用海藻Alariaes culenta和Saccharina latissimi進(jìn)行微生物存在評(píng)估的研究中,發(fā)現(xiàn)鮮藻儲(chǔ)存時(shí)主要的腐敗菌為假單胞菌屬(Pseudomonas)、芽孢桿菌屬(Bacillus)、葡萄球菌屬(Staphylococcus)和微球菌屬(Micrococcus),并且檢測(cè)出了酵母菌屬(Saccharomyces)[18]。因此,采用抑菌劑控制濕藻中的微生物對(duì)于延長(zhǎng)其保藏期具有重要的意義。
2 天然抑菌劑的抑菌機(jī)制和在食品中的應(yīng)用
在選擇生鮮產(chǎn)品時(shí),消費(fèi)者對(duì)天然、綠色、健康、無(wú)污染、有“清潔標(biāo)簽”的食品越來(lái)越感興趣[19]。從植物、動(dòng)物或微生物中提取的天然抗菌劑具有綠色天然、安全無(wú)毒和廣譜抗菌的特性,正在成為食品保鮮的首選[20]。
2.1 ε-聚賴氨酸的抑菌機(jī)制及應(yīng)用
ε-聚賴氨酸(ε-PL)是L-賴氨酸的-α-羧基與-ε-氨基通過(guò)酰胺鍵連接而成的天然強(qiáng)效抑菌物質(zhì),由白色鏈霉菌(Streptomyces albus)發(fā)酵產(chǎn)生[21-22]。ε-PL帶正電荷,可以與細(xì)胞膜上帶負(fù)電荷的磷脂分子頭部以靜電作用相結(jié)合[23],破壞細(xì)胞膜的完整性,使菌體自溶死亡,還可能進(jìn)入細(xì)胞質(zhì)與遺傳物質(zhì)作用影響其正常功能[24]。ε-PL是一種廣譜抑菌劑,對(duì)多種細(xì)菌、酵母菌和真菌有抑制作用[25-27]。
ε-PL作為符合GB 2760—2014的食品添加成分,目前已有廣泛的應(yīng)用。ε-PL能有效地抑制冷鮮鳙魚片中假單胞菌(Pseudomonas)和希瓦氏菌(Shewanella)的繁殖[28]。噴灑1 000 mg/L的ε-PL可將贛南臍橙的保鮮期延長(zhǎng)至180 d,壞果率僅為38.89%[29]。此外,還可與其他抗菌物質(zhì)復(fù)配制成更高效的抑菌劑。Hu等[30]將ε-PL和大豆蛋白復(fù)配制成靜電復(fù)合物并應(yīng)用于柑橘的保鮮,僅需2.5 mg/L ε-PL即可抑制大腸桿菌(Escherichia coli)、金黃色葡萄球菌(S. aureus)的活性。尹卓凡[31]研究表明,與單獨(dú)使用ε-PL相比,香芹酚/ε-PL納米乳液的抗菌活性更高,對(duì)金黃色葡萄球菌(S. aureus)、腸出血性大腸桿菌(Enterohemorrhagic E.coli)和黑曲霉(Aspergillus niger)有明顯的抑制作用,對(duì)芒果的保鮮效果良好。綜上,單獨(dú)或復(fù)配使用ε-PL可以有效提高生鮮食品的防腐保鮮效果。
2.2 溶菌酶的抑菌機(jī)制及應(yīng)用
溶菌酶是一種能水解細(xì)菌黏多糖的堿性酶,主要從動(dòng)物乳汁和禽類蛋白中提取。其肽鏈中Glu-35和Asp-52所構(gòu)成的活性中心可以水解細(xì)菌細(xì)胞壁中N-乙酰氨基葡萄糖(NAG)和N-乙酰氨基胞壁酸(NAM)殘基構(gòu)成的β-(1,4)-糖苷鍵,使不溶性的黏多糖骨架結(jié)構(gòu)斷裂,進(jìn)而導(dǎo)致細(xì)胞破裂[32-33]。
研究表明,濃度為0.4%的溶菌酶可抑制霉菌和酵母菌的生長(zhǎng),可用于高品質(zhì)酸奶的生產(chǎn)[33]。溶菌酶在果蔬和水產(chǎn)品等保鮮中的應(yīng)用研究也有許多報(bào)道。Xu等[35]將獼猴桃在0.08%溶菌酶中浸泡2 min儲(chǔ)存20 d后,腐爛發(fā)生率降低60%。三文魚保鮮存儲(chǔ)時(shí),在新鮮三文魚的表面涂抹濃度為0.1%~0.7%的溶菌酶可抑制菌落總數(shù)的增長(zhǎng)[36]。從溶菌酶與陰離子防御肽(GMAP2)的研究中發(fā)現(xiàn),與抗革蘭氏陽(yáng)性菌活性水平相比,溶菌酶對(duì)革蘭氏陰性菌的作用較弱,而與GMAP2聯(lián)用可以協(xié)同對(duì)抗革蘭氏陰性菌[37]。因此,溶菌酶需要與其他防腐劑聯(lián)用以提高在食品中的抗菌效果。將溶菌酶與殼聚糖聯(lián)用于草莓的保鮮中發(fā)現(xiàn),活性比游離溶菌酶增強(qiáng)了256%,金黃色葡萄球菌(S. aureus)和單核細(xì)胞增生李斯特氏菌(Listeria monocytogenes)的抑菌圈增加1 mm左右[38]。溶菌酶和納米纖維素聯(lián)用可顯著增強(qiáng)抗細(xì)菌和真菌的活性[39],與植酸聯(lián)用時(shí)可將草魚片的保質(zhì)期延長(zhǎng)2 d[40]。
2.3 納他霉素的抑菌機(jī)制及應(yīng)用
納他霉素是由納他鏈霉菌(Streptomyces natalensis)產(chǎn)生的一種天然多烯大環(huán)內(nèi)酯類生物殺菌劑,對(duì)人體毒性較低,被美國(guó)食品藥品監(jiān)督管理局(FDA)認(rèn)定為“普遍認(rèn)為安全(GRAS)”的物質(zhì)[41]。目前已在40多個(gè)國(guó)家被批準(zhǔn)作為食品添加劑。納他霉素通過(guò)與霉菌(酵母菌)等真菌細(xì)胞膜上的甾醇,尤其是麥角甾醇,結(jié)合形成復(fù)合物,改變細(xì)胞膜的通透性,從而殺死細(xì)胞[42],對(duì)細(xì)胞膜上無(wú)甾醇的細(xì)菌和病毒無(wú)效。
納他霉素通常用于食品的表面處理,通過(guò)噴灑或浸泡即可有效地抑制霉菌和酵母菌。使用500 mg/L納他霉素可將酸腐病發(fā)生率降低近30%[44]。含70%納他霉素的薄膜可有效降低奶酪表面黑曲霉的生長(zhǎng)速度[45]。納他霉素濃度高于2.23 mg/L時(shí)可以顯著抑制導(dǎo)致藍(lán)莓腐敗的鏈格孢霉菌(Alternaria)的分生孢子萌發(fā)和生長(zhǎng),從而延長(zhǎng)藍(lán)莓的保藏期。食品保鮮不僅要抑制真菌,而且需抑制細(xì)菌。因此,將納他霉素與細(xì)菌抑菌劑如ε-PL和溶菌酶等聯(lián)合使用,可以擴(kuò)展抑菌范圍,從而增強(qiáng)防腐保鮮效果。例如Wu等[46]將納他霉素與ε-PL復(fù)配后應(yīng)用于番茄炒蛋中可有效抑制假單胞菌(Pseudomonas)、不動(dòng)桿菌(Acinetobacter)、鐮刀菌(Fusarium)和曲霉(Aspergillus)等典型的腐敗/病原微生物。
2.4 乳酸鏈球菌素的抑菌機(jī)制及應(yīng)用
乳酸鏈球菌素由34個(gè)氨基酸殘基組成,是乳酸菌產(chǎn)生的一種天然抗菌肽[47]。抑菌機(jī)理基于細(xì)菌膜水平產(chǎn)生雙重作用機(jī)制:一方面,帶正電的乳酸鏈球菌素與帶負(fù)電的細(xì)菌細(xì)胞膜表面通過(guò)靜電相互作用,形成一定孔徑的通道,細(xì)胞質(zhì)內(nèi)小分子和離子通過(guò)孔道流失,導(dǎo)致細(xì)胞溶解死亡。另一方面,乳鏈菌肽的N末端與位于細(xì)菌細(xì)胞質(zhì)膜上的肽聚糖前體脂質(zhì)Ⅱ相互作用,使乳鏈菌肽的C末端穿過(guò)細(xì)菌細(xì)胞質(zhì)膜,抑制肽聚糖合成[48]。
僅添加12 mg/L的乳酸鏈球菌素即可抑制干酪中的蠟狀芽孢桿菌(Bacillus cereus)和金黃色葡萄球菌(S. aureus)[49]。應(yīng)用于火腿表面時(shí),乳酸鏈球菌素可使金黃色葡萄球菌(S. aureus)和單核細(xì)胞增生李斯特氏菌(Listeria monocytogenes)分別減少約5.53,5.62 log10 CFU/cm2[50]。乳酸鏈球菌素能有效地抑制革蘭氏陽(yáng)性菌和芽孢的生長(zhǎng)和繁殖,而對(duì)革蘭氏陰性菌、霉菌和酵母菌的抑制作用不明顯。根據(jù)此特性可以與納他霉素和溶菌酶等生物防腐劑配制成更廣譜的抑菌劑制品。趙長(zhǎng)青等[51]將0.50 g/kg乳酸鏈球菌素與0.50 g/kg溶菌酶復(fù)配后用于豬肉干的儲(chǔ)存,在3個(gè)月的貯藏期內(nèi)未檢測(cè)出霉菌和金黃色葡萄球菌。也有研究表明,2.5%乳酸鏈球菌素和50%植酸具有協(xié)同作用,可有效減少冷藏牛肉中革蘭氏陽(yáng)性菌如大腸桿菌的數(shù)量[52]。
3 天然抑菌劑在鮮食微藻中應(yīng)用的潛力
3.1 鮮食螺旋藻
螺旋藻是螺旋狀多細(xì)胞藍(lán)藻,為原核生物,沒(méi)有細(xì)胞膜,細(xì)胞壁主要由粗蛋白和纖維素組成[53]。篩選鮮食螺旋藻抑菌劑時(shí),要求抑菌劑不能破壞螺旋藻的細(xì)胞活性,根據(jù)上述生物防腐劑的抑菌機(jī)制,ε-PL能抑制鮮食螺旋藻中的雜菌,且不破壞螺旋藻細(xì)胞活性,因此有望成為鮮食螺旋藻的抑菌劑。
溶菌酶殺菌的作用位點(diǎn)與螺旋藻細(xì)胞壁的結(jié)構(gòu)不一致,因此也不影響螺旋藻活性。螺旋藻泥存儲(chǔ)過(guò)程中污染的酵母和霉菌使用適宜濃度的納他霉素即可有效地清除。此外,溶菌酶和乳酸鏈球菌素在理論上也不會(huì)影響螺旋藻活性,可與ε-PL和納他霉素聯(lián)用,提高抑菌效率。
3.2 鮮食小球藻
蛋白核小球藻屬于真核細(xì)胞,具有細(xì)胞膜結(jié)構(gòu),細(xì)胞膜的陰離子可能與ε-PL反應(yīng)導(dǎo)致藻細(xì)胞裂解死亡,因此ε-PL不適用于小球藻。
納他霉素屬于內(nèi)酯類抗生素,會(huì)迫使小球藻細(xì)胞脂質(zhì)過(guò)氧化程度加劇,影響小球藻細(xì)胞中葉綠素合成、DNA復(fù)制與修復(fù)相關(guān)基因的表達(dá)[54]。因此,納他霉素不適合作為蛋白核小球藻的抑菌劑。
溶菌酶主要作用于細(xì)胞壁的肽聚糖,而蛋白核小球藻的細(xì)胞壁成分主要為幾丁質(zhì),因此不會(huì)抑制蛋白核小球藻的生長(zhǎng),可以應(yīng)用于蛋白核小球藻的鮮食產(chǎn)品中。但由于其抑菌范圍有限,必須配合使用其他廣譜性的抑菌劑,例如脫氫乙酸鈉等,才能達(dá)到食品抑菌效果。已有研究表明,脫氫乙酸鈉可以降低培養(yǎng)過(guò)程中對(duì)無(wú)菌性的要求,且促進(jìn)微藻生長(zhǎng)[55]。
雖然目前天然抑菌劑在微藻產(chǎn)品中應(yīng)用的研究還比較少,但隨著研究的深入,天然抑菌劑將在鮮食微藻產(chǎn)品的開發(fā)中發(fā)揮重要的作用。
參考文獻(xiàn):
[1]VILLAR-COS S, GUZMN SNCHEZ J L, ACIN G, et al. Research trends and current requirements and challenges in the industrial production of Spirulina as a food source[J].Trends in Food Science amp; Technology,2024,143(2):104280.
[2]TAVAKOLI S, HONG H, WANG K, et al. Ultrasonic-assisted food-grade solvent extraction of high-value added compounds from microalgae Spirulina platensis and evaluation of their antioxidant and antibacterial properties[J].Algal Research,2021,60:102493.
[3]LARROSA A P Q, COMITRE A A, VAZ L B, et al. Influence of air temperature on physical characteristics and bioactive compounds in vacuum drying of Arthrospira spirulina[J].Journal of Food Process Engineering,2017,40(2):12359.
[4]COSTA B R, ROCHA S F, RODRIGUES M C K, et al. Physicochemical characteristics of the Spirulina sp. dried in heat pump and conventional tray dryers[J].International Journal of Food Science amp; Technology,2016,50(12):2614-2620.
[5]PAPADAKI S, KYRIAKOPOULOU K, STRAMARKOU M, et al. Environmental assessment of industrially applied drying technologies for the treatment of Spirulina platensis[J].Journal of Environmental Science, Toxicology and Food Technology,2017,11(1):41-46.
[6]FBIO F N, MARIANA D, GIUSTINO T. Drying and Quality of Microalgal Powders for Human Alimentation[M]//MILADA V. Microalgae—From Physiology to Application,Rijeka:Intech Open,2019:4.
[7]WANG H, ZHANG W, CHEN L, et al. The contamination and control of biological pollutants in mass cultivation of microalgae[J].Bioresource Technology,2013,128:745-750.
[8]YIN Z H, ZHU L D, LI S X, et al. A comprehensive review on cultivation and harvesting of microalgae for biodiesel production: environmental pollution control and future directions[J].Bioresource Technology,2020,301(6):122804.
[9]LIU Z Y, HAO N H, HOU Y Y, et al. Technologies for harvesting the microalgae for industrial applications:current trends and perspectives[J].Bioresource Technology,2023,387(14):129631.
[10]UDAYAN A, SIROHI R, SREEKUMAR N, et al. Mass cultivation and harvesting of microalgal biomass: current trends and future perspectives[J].Bioresource Technology,2022,344(15):126406.
[11]AIYEGORO O A. Microbial Contamination of Processed meat[M]//DIKEMAN M. Encyclopedia of Meat Sciences (Third Edition), Oxford: Elsevier,2024:484-490.
[12]YUAN D N, YAO M M, WANG L, et al. Effect of recycling the culture medium on biodiversity and population dynamics of bio-contaminants in Spirulina platensis mass culture systems[J].Algal Research,2019,44:101718.
[13]HIRAYAMA A, SUEYOSHI M N, NAKANO T, et al. Development of large-scale microalgae production in the Middle East[J].Bioresource Technology,2022,343(4):126036.
[14]ZHOU W L, QIAO X T, SUN J F, et al. Ecological effect of Z-QS01 strain on Chlorella vulgaris and its response to UV-B radiation stress[J].Procedia Environmental Sciences,2011,11(6):741-748.
[15]MU R M, FAN Z Q, PEI H Y, et al. Isolation and algae-lysing characteristics of the algicidal bacterium B5[J].Journal of Environmental Sciences,2007,19(11):1336-1340.
[16]HAN D X, BI Y H, HU Z Y. Industrial Production of Microalgal Cell-Mass and Secondary Products-Species of High Potential: Nostoc[M]//Handbook of Microalgal Culture: Biotechnology and Applied Phycology,Oxford:Wiley-Blackwell,2004:304-311.
[17]LIN S Q, PAN J L, LI Z H, et al. Characterization of an algicidal bacterium Brevundimonas J4 and chemical defense of Synechococcus sp. BN60 against bacterium J4[J].Harmful Algae,2014,37:1-7.
[18]LYTOU A E, SCHOINA E, LIU Y, et al. Quality and safety assessment of edible seaweeds Alaria esculenta and Saccharina latissima cultivated in Scotland[J].Foods,2021,10(9):2210.
[19]GRANT A Q, PARVEEN S. All natural and clean-label preservatives and antimicrobial agents used during poultry processing and packaging[J].Journal of Food Protection,2017,80(4):540-544.
[20]CHEN Y, MIAO W H, LI X X, et al. The structure, properties, synthesis method and antimicrobial mechanism of ε-polylysine with the preservative effects for aquatic products[J].Trends in Food Science amp; Technology,2023,139:104131.
[21]ZHANG Y Z, ZHAO C Q, ZHAO X X, et al. Application of ε-polylysine in extending the storage period of pork jerky[J].Food Science amp; Nutrition,2021,9(6):3250-3257.
[22]莊孝東,白森萌,李博彥,等.ε-聚賴氨酸微生物生產(chǎn)及其應(yīng)用研究進(jìn)展[J].中國(guó)抗生素雜志,2023,48(10):1081-1095.
[23]常森林.ε-聚賴氨酸的發(fā)酵生產(chǎn)、提取純化及修飾改性的研究[D].北京:中國(guó)科學(xué)院大學(xué),2022.
[24]WEI M L, GE Y H, LI C Y, et al. Antifungal activity of epsilon-poly-L-lysine on Trichothecium roseum in vitro and its mechanisms[J].Physiological and Molecular Plant Pathology,2018,103:23-27.
[25]LIU K W, ZHOU X J, FU M R. Inhibiting effects of epsilon-polylysine (ε-PL) on Pencillium digitatum and its involved mechanism[J].Postharvest Biology amp; Technology,2017,123:94-101.
[26]ZHANG L M, LI R C, DONG F, et al. Physical, mechanical and antimicrobial properties of starch films incorporated with ε-poly-L-lysine[J].Food Chemistry,2015,166:107-114.
[27]CHANG S S, LU W Y, PARK S H, et al. Control of foodborne pathogens on ready-to-eat roast beef slurry by ε-polylysine[J].International Journal of Food Microbiology,2010,141(3):236-241.
[28]LIU X C, LI D P, LI K F, et al. Monitoring bacterial communities in ε-polylysine-treated bighead carp (Aristichthys nobilis) fillets using culture-dependent and culture-independent techniques[J].Food Microbiology,2018,76:257-266.
[29]陳秋映,楊美艷,高向陽(yáng),等.ε-聚賴氨酸對(duì)贛南臍橙保鮮效果的研究[J].食品工業(yè),2021,42(12):143-147.
[30]HU Q Y, JIN Y Y, XIAO Y W, et al. ε-Polylysine and soybean protein isolate form nanoscale to microscale electrostatic complexes in solution: properties, interactions and as antimicrobial edible coatings on citrus[J].International Journal of Biological Macromolecules,2023,253(1):126616.
[31]尹卓凡.香芹酚/ε-聚賴氨酸抗菌納米乳液的制備及其在芒果保鮮中的應(yīng)用[D].長(zhǎng)春:吉林大學(xué),2023.
[32]曹濤,劉同軍,王艷君.微生物溶菌酶的研究及應(yīng)用[J].中國(guó)調(diào)味品,2011,36(3):23-26,32.
[33]AWAD D A B, EL-HADARY A, OSMAN A, et al. Yogurt fortified with enzyme-modified egg white lysozyme impact on sensory, physicochemical, and microbiological properties and potential for functional product development[J].Journal of Agriculture and Food Research,2023,14(4):100670.
[34]王武,王碧,白瑜,等.改造溶菌酶抑菌活性研究進(jìn)展[J].中國(guó)畜牧獸醫(yī),2023,50(3):942-951.
[35]XU F X, LIU S Y, LIU Y F, et al. Effectiveness of lysozyme coatings and 1-MCP treatments on storage and preservation of kiwifruit[J].Food Chemistry,2019,288:201-207.
[36]WANG Z X, HU S F, GAO Y P, et al. Effect of collagen-lysozyme coating on fresh-salmon fillets preservation[J].LWT-Food Science and Technology,2017,75:59-64.
[37]ZDYBICKA-BARABAS A, MAK P, KLYS A, et al. Synergistic action of Galleria mellonella anionic peptide 2 and lysozyme against Gram-negative bacteria[J].Biochimica et Biophysica Acta (BBA)-Biomembranes,2012,1818(11):2623-2635.
[38]NIU X D, ZHU L, XI L J, et al. An antimicrobial agent prepared by N-succinyl chitosan immobilized lysozyme and its application in strawberry preservation[J].Food Control,2020,108(6):106829.
[39]JEBALI A, HEKMATIMOGHADDAM S, BEHZADI A, et al. Antimicrobial activity of nanocellulose conjugated with allicin and lysozyme[J].Cellulose,2013,20:2897-2907.
[40]SUN X H, HONG H, JIA S L, et al. Effects of phytic acid and lysozyme on microbial composition and quality of grass carp (Ctenopharyngodon idellus) fillets stored at 4 ℃[J].Food Microbiology,2020,86(9):103313.
[41]ZHANG C L, GONG H S, LIU Y L. Effects of postharvest coating using chitosan combined with natamycin on physicochemical and microbial properties of sweet cherry during cold storage[J].International Journal of Biological Macromolecules,2022,214:1-9.
[42]SAITO S, WANG F, XIAO C L. Natamycin as a postharvest treatment to control gray mold on stored blueberry fruit caused by multi-fungicide resistant Botrytis cinerea[J].Postharvest Biology and Technology,2022,187:111862.
[43]WANG X H, SONG X J, ZHANG D J, et al. Preparation and characterization of natamycin-incorporated agar film and its application on preservation of strawberries[J].Food Packaging and Shelf Life,2022,32:100863.
[44]FERNNDEZ G, SBRES M, LADO J, et al. Postharvest sour rot control in lemon fruit by natamycin and an Allium extract[J].International Journal of Food Microbiology,2022,368:109605.
[45]FANG M H, WANG J L, FANG S, et al. Fabrication of carboxymethyl chitosan films for cheese packaging containing gliadin-carboxymethyl chitosan nanoparticles co-encapsulating natamycin and theaflavins[J].International Journal of Biological Macromolecules,2023,246:125685.
[46]WU W F, LI Y R, ZHU X Y, et al. Antimicrobial activity enabled by chitosan-ε-polylysine-natamycin and its effect on microbial diversity of tomato scrambled egg paste[J].Food Chemistry:X,2023,19:100872.
[47]UCAR Y, OZOGUL Y, DURMU M, et al.The effects of nisin on the growth of foodborne pathogens and biogenic amine formation: in vivo and in vitro studies[J].Food Bioscience,2021(2):101266.
[48]WU M J, MA Y, DOU X, et al.A review of potential antibacterial activities of nisin against Listeria monocytogenes: the combined use of nisin shows more advantages than single use[J].Food Research International,2023,164(1):112363.
[49]SEN C, RAY P R, HOSSAIN S, et al. Influence of nisin on water activity, textural and other quality attributes of paneer (Indian cottage cheese) during storage[J].Food and Humanity,2023,1(3):1134-1144.
[50]PATTANAYAIYING R, H-KITTIKUN A, CUTTER C N. Incorporation of nisin Z and lauric arginate into pullulan films to inhibit foodborne pathogens associated with fresh and ready-to-eat muscle foods[J].International Journal of Food Microbiology,2015,207:77-82.
[51]趙長(zhǎng)青,張益卓,代錦蘋,等.天然復(fù)配防腐劑對(duì)三種口味豬肉干貯藏品質(zhì)的影響[J].中國(guó)調(diào)味品,2023,48(12):7-15.
[52]ZHAO G, KEMPEN P J, ZHENG T, et al.Synergistic bactericidal effect of nisin and phytic acid against Escherichia coli O157:H7[J].Food Control,2023,144(10):109324.
[53]張立彬,甄二英,李振永.螺旋藻的營(yíng)養(yǎng)價(jià)值及培養(yǎng)[J].飼料研究,2006(1):31-32.
[54]李吉平.蛋白核小球藻對(duì)典型大環(huán)內(nèi)酯類抗生素脅迫的響應(yīng)及機(jī)制[D].南京:南京林業(yè)大學(xué),2023.
[55]王兆偉,彭小偉.一種微藻培養(yǎng)基及應(yīng)用:中國(guó),CN114621874B[P].2022-06-14.