• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      南亞熱帶鄉(xiāng)土樹種與桉樹人工林土壤真菌群落多樣性和功能類群的比較

      2024-12-08 00:00:00席守鴻,明安剛,譚玲,何江,覃林
      廣西植物 2024年7期

      摘要: 營(yíng)造鄉(xiāng)土樹種人工林和桉樹人工林是我國(guó)南亞熱帶森林經(jīng)營(yíng)的常見模式。為探究土壤真菌群落多樣性及功能對(duì)鄉(xiāng)土樹種和桉樹人工林的響應(yīng)特征與機(jī)制,該研究以南亞熱帶4個(gè)鄉(xiāng)土樹種人工林[馬尾松(Pinus massoniana)、火力楠(Michelia macclurei)、米老排(Mytilaria laosensis)、紅錐(Castanopsis hystrix)]和外來樹種尾巨桉(Eucalyptus urophylla × E. grandis)人工林為對(duì)象,基于各林分土壤(0~20 cm)真菌18S rRNA高通量測(cè)序數(shù)據(jù),利用FUNGuild數(shù)據(jù)庫,比較分析鄉(xiāng)土樹種與尾巨桉人工林土壤真菌群落多樣性和功能類群的差異特性及影響的主導(dǎo)土壤環(huán)境因子。結(jié)果表明:(1)5個(gè)研究林分的土壤真菌優(yōu)勢(shì)門均為子囊菌門和擔(dān)子菌門,但不同鄉(xiāng)土樹種林分與尾巨桉林的土壤真菌優(yōu)勢(shì)目存在差異。(2)尾巨桉林土壤真菌群落α多樣性高于鄉(xiāng)土樹種人工林,其群落組成結(jié)構(gòu)也與鄉(xiāng)土樹種人工林存在顯著差異(P<0.05)。(3)4個(gè)鄉(xiāng)土樹種人工林土壤的腐生營(yíng)養(yǎng)型的相對(duì)豐度高于尾巨桉林,并且火力楠林和米老排林土壤叢枝菌根真菌的相對(duì)豐度明顯高于尾巨桉林,尾巨桉林土壤共生營(yíng)養(yǎng)型以及外生菌根真菌和木材腐生菌的相對(duì)豐度明顯高于鄉(xiāng)土樹種人工林。(4)pH是導(dǎo)致尾巨桉林與鄉(xiāng)土樹種人工林土壤真菌群落多樣性和功能類群差異的主要土壤環(huán)境因子。綜上認(rèn)為,在南亞熱帶地區(qū)將尾巨桉林改建成火力楠林或米老排林可提高土壤養(yǎng)分水平,提升土壤生態(tài)功能。

      關(guān)鍵詞: 土壤真菌群落, Illumina MiSeq高通量測(cè)序, FUNGuild數(shù)據(jù)庫, 鄉(xiāng)土樹種人工林, 桉樹人工林

      中圖分類號(hào): Q948文獻(xiàn)標(biāo)識(shí)碼: A文章編號(hào): 1000-3142(2024)07-1232-13

      Comparison of soil fungal community diversity andfunctional groups between native tree species andEucalyptus plantations in south subtropical China XI Shouhong1, MING Angang2,3, TAN Ling1, HE Jiang1, QIN Lin1*

      ( 1. Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China;2. Experiment Center of Tropical Forestry, Chinese Academy of Forestry, Pingxiang 532600, Guangxi, China;3. Guangxi Youyiguan Forest Ecosystem National Observation and Research Station, Pingxiang 532600, Guangxi, China )

      Abstract: Planting native tree species plantations and Eucalyptus plantations is a common model of forest management in south subtropical China. To explore the response characteristics and mechanisms of soil fungal community diversity and function to native tree species and Eucalyptus plantations. four native tree species plantations(Pinus massoniana, Michelia macclurei, Mytilaria laosensis, Castanopsis hystrix) and exotic tree species Eucalyptus urophylla × E. grandis(EUG) plantations in south subtropical China were studied. Based on 18S rRNA high-throughput sequencing data of fungi in soil (0-20 cm) of each stand and FUNGuild database, the differences of diversity and functional group of soil fungal communities between native tree species and EUG plantations were compared and analyzed, as well as the dominant soil environmental factors affecting them. The results were as follows: (1)The dominant phyla of soil fungi in five stands were both Ascomycota and Basidiomycota, but there were differences in the dominant orders of soil fungi between different native tree species and EUG plantations. (2)The α diversity of soil fungal community in EUG plantation was higher than that in native tree plantations, and the community composition structure was significantly different from the native tree plantations(P<0.05). (3)The relative abundance of saprotroph in the native tree plantations was higher than that of EUG plantation, and the relative abundance of soil arbuscular mycorrhizal fungi in Michelia macclurei and Mytilaria laosensis plantations was significantly higher than that of EUG plantation. The relative abundance of soil symbiotroph, ectomycorrhizal fungi and wood saprotroph in EUG plantation was significantly higher than that in the native tree plantations. (4)pH was the crucial soil environmental factor that led to the difference of soil fungal community diversity and functional group between EUG and native tree plantations. In general, there were significant differences in the structure and function of soil fungal community between native tree species and EUG plantations, which indicated that different stand types had great effects on soil fungal community and function. In conclusion, the soil nutrient level can be improved by converting the EUG plantation into native tree species plantations in south subtropical China, and the soil ecological function can be improved by choosing Michelia macclurei plantation or Mytilaria laosensis plantation as native tree species plantation.

      Key words: soil fungal community, Illumina MiSeq high-throughput sequencing, FUNGuild database, native tree species plantation, Eucalyptus plantation

      真菌是土壤微生物的重要組分,在植物營(yíng)養(yǎng)、分解有機(jī)質(zhì)和介導(dǎo)疾病等方面發(fā)揮著關(guān)鍵作用(van der Heijden et al., 2016;Aslani et al., 2022)。土壤真菌群落多樣性是評(píng)價(jià)土壤質(zhì)量的重要指標(biāo)(Martin et al., 2012;秦紅等,2017;于天赫等,2021)。在森林生態(tài)系統(tǒng)中,樹木種類會(huì)影響土壤真菌群落物種組成,這是因?yàn)闃浞N的凋落物及其根系分泌物對(duì)土壤性質(zhì)有很大影響(陳秀波等,2019),而土壤性質(zhì)的改變驅(qū)動(dòng)土壤真菌群落結(jié)構(gòu)和功能的響應(yīng)(梁雪等,2017;Wu et al., 2019)。為了深入了解土壤生態(tài)系統(tǒng)的功能,必須重視土壤真菌群落的功能多樣化(Barbi et al., 2016)。土壤真菌存在明顯的功能分化:腐生真菌作為土壤有機(jī)質(zhì)的重要分解者,其分解過程影響元素的循環(huán)速率(Frey, 2019);菌根真菌通過與植物共生形成菌根為植物提供營(yíng)養(yǎng)元素;病原真菌則通過感染植物組織獲得能量,從而影響森林健康(Maron et al., 2011)。有研究發(fā)現(xiàn),由真菌驅(qū)動(dòng)的生態(tài)系統(tǒng)過程在不同林分類型中存在差異(Chen et al., 2019),當(dāng)土壤性質(zhì)和樹種組成等外界因素發(fā)生變化時(shí),土壤真菌群落的多樣性及功能會(huì)發(fā)生改變(Snajdr et al., 2013;Tedersoo et al., 2014)。因此,深入了解不同樹種人工林土壤真菌群落多樣性和功能特征及其影響機(jī)制可為人工造林的樹種選擇提供科學(xué)參考,同時(shí)對(duì)評(píng)估人工林土壤質(zhì)量具有重要意義。

      中國(guó)人工林面積以7 954.28萬hm2而居世界首位(董愛榮等,2004)。我國(guó)南亞熱帶地區(qū)氣候條件優(yōu)越,20世紀(jì)80年代以來,大規(guī)模多代連栽外來速生樹種桉樹(Eucalyptus)人工林,這為地區(qū)經(jīng)濟(jì)發(fā)展做出了重大貢獻(xiàn),但導(dǎo)致了諸如土壤地力衰退、生物多樣性喪失和生態(tài)系統(tǒng)穩(wěn)定性降低等生態(tài)問題(鄧富春等,2013)。隨著森林經(jīng)營(yíng)思想從追求木材產(chǎn)量的單一目標(biāo)轉(zhuǎn)向提升生態(tài)系統(tǒng)服務(wù)質(zhì)量和效益的多目標(biāo),營(yíng)造高價(jià)值鄉(xiāng)土闊葉林,如米老排(Mytilaria laosensis)、火力楠(Michelia macclurei)、山白蘭(Paramichelia bailonii)、紅錐(Castanopsis hystrix)等,已成為我國(guó)亞熱帶地區(qū)人工林經(jīng)營(yíng)的發(fā)展態(tài)勢(shì)(Wan et al., 2015;彭雯等,2018;You et al., 2020)。近年來,不同學(xué)者對(duì)南亞熱帶地區(qū)鄉(xiāng)土樹種與桉樹人工林土壤微生物量氮與可溶性氮特征(覃林等,2017)、土壤磷組分含量和吸附性能(鄭威等,2020)以及土壤細(xì)菌群落多樣性(譚宏偉等,2014;覃鑫浩等,2021)等進(jìn)行了研究。目前,關(guān)于該地區(qū)鄉(xiāng)土樹種與桉樹人工林土壤真菌群落多樣性和功能還知之甚少,這在一定程度上制約了人工造林樹種選擇的科學(xué)決策。

      本研究以我國(guó)南亞熱帶地區(qū)的馬尾松(Pinus massoniana)、火力楠、米老排、紅錐4個(gè)鄉(xiāng)土樹種人工林和尾巨桉(Eucalyptus urophylla × E. grandis)人工林為對(duì)象,基于各林分土壤(0~20 cm)真菌18S rRNA高通量測(cè)序數(shù)據(jù)及FUNGuild功能預(yù)測(cè)方法,擬探討:(1)鄉(xiāng)土樹種人工林土壤真菌群落多樣性和功能類群是否與尾巨桉人工林有顯著差異;(2)影響土壤真菌多樣性和功能差異的主要土壤環(huán)境因子是否具有一致性。以期揭示桉樹人工林改建為鄉(xiāng)土樹種人工林后土壤真菌群落多樣性及功能的變化特征及其調(diào)控機(jī)制,為深入了解南亞熱帶地區(qū)鄉(xiāng)土樹種與外來樹種人工林土壤真菌群落的生態(tài)功能提供科學(xué)依據(jù)。

      1材料與方法

      1.1 研究區(qū)概況和土樣采集

      研究地點(diǎn)位于中國(guó)林業(yè)科學(xué)研究院熱帶林業(yè)實(shí)驗(yàn)中心(廣西憑祥,106°50′ E、22°10′ N)。該地區(qū)氣候類型為南亞熱帶季風(fēng)性半濕潤(rùn)-濕潤(rùn)氣候,年均氣溫21 ℃;年均降雨量1 500 mm,降雨主要集中在4—9月;海拔130~1 045 m,地貌類型以低山丘陵為主;地帶性土壤為花崗巖發(fā)育的山地紅壤(He et al., 2013)。

      該地區(qū)地帶性植被為亞熱帶常綠闊葉林,20世紀(jì)50年代在常綠闊葉林皆伐跡地上種植了杉木。米老排、火力楠、紅錐、馬尾松等鄉(xiāng)土樹種人工林于20世紀(jì)80年代在杉木人工林采伐跡地上營(yíng)造(初植密度均為2 500 plants·hm-2)。尾巨桉人工林于2008年在杉木人工林采伐跡地上種植(初植密度為2 500 plants·hm-2),2014年皆伐留樁形成二代萌芽林。2017年2月在每個(gè)研究林分內(nèi)隨機(jī)設(shè)置3塊20 m × 20 m的樣地進(jìn)行林分調(diào)查,各樣地之間的距離至少大于20 m。5個(gè)林分的立地條件和林分概況見表1。

      在上述各個(gè)樣地內(nèi)的左對(duì)角線上隨機(jī)選取3個(gè)樣點(diǎn),用內(nèi)徑為5 cm的土鉆取表層土壤(0~20 cm),之后將3個(gè)取樣點(diǎn)的土壤樣品混合為1個(gè)樣品,3個(gè)重復(fù),5個(gè)林分共計(jì)15個(gè)土壤樣品。土壤樣品裝入聚乙烯保鮮袋并用生物冰袋保存帶回實(shí)驗(yàn)室,土壤鮮樣過2 mm鋼篩后分3份:1份貯藏于-80 ℃冰箱內(nèi),用來提取土壤DNA;1份置于4 ℃冰箱內(nèi)保存,用于測(cè)定土壤硝態(tài)氮和氨態(tài)氮含量;1份經(jīng)自然風(fēng)干后過0.25 mm篩保存,用于測(cè)定土壤基本化學(xué)性質(zhì)。

      1.2 土壤理化性質(zhì)測(cè)定

      土壤含水量(soil water content,SWC)采用烘干法測(cè)定;土壤pH值采用水浸提(土∶水=1∶2.5,m/V)的pH計(jì)(Prtavo 907 MULTI pH,德國(guó))測(cè)定;土壤有機(jī)碳(soil organic carbon,SOC)含量采用重鉻酸鉀外加熱法測(cè)定;硝態(tài)氮(NO3--N)含量采用酚二磺酸比色法測(cè)定;銨態(tài)氮(NH4+-N)含量采用擴(kuò)散法測(cè)定;速效磷(available phosphorus,AP)含量采用雙酸浸提-鉬銻抗比色法測(cè)定(魯如坤,2000);總氮(total nitrogen,TN)和總磷(total phosphorus,TP)的含量采用H2SO4-HClO4消解,之后用SmartChem200全自動(dòng)化學(xué)元素分析儀(Alliance,法國(guó))測(cè)定。土壤碳氮比(C/N)為土壤有機(jī)碳與全氮含量之比。

      1.3 DNA提取、PCR擴(kuò)增和Illumina MiSeq測(cè)序

      采用PowerSoil DNA Isolation Kit(MoBio,USA)試劑盒提取土壤微生物總DNA,之后用1%瓊脂糖凝膠電泳檢測(cè)基因組DNA的完整性,用NanoDrop 2000微量紫外分光光度計(jì)(Thermo Fisher Scientific)測(cè)定DNA的純度和濃度。對(duì)真菌18S引物1196R(5′-TCTGGACCTGGTGAGTTTCC-3′)和SSU0817F(5′- TTAGCATGGAATAATRRAAT

      AGGA-3′)進(jìn)行PCR擴(kuò)增(Rousk et al., 2010)。PCR 擴(kuò)增采用TransStart Fastpfu DNA Polymerase,20 μL反應(yīng)體系為5×FastPfu Buffer 4 μL、dNTPs (2.5 mmol·L-1)2 μL、Forward Primer(5 μmol·L-1)0.8 μL、Reverse Primer(5 μmol·L-1)0.8 μL、FastPfu Polymerase 0.4 μL、BSA 0.2 μL、Template DNA 10 ng,補(bǔ)ddH2O至20 μL。95 ℃ 預(yù)變性3 min,之后95 ℃ 30 s,55 ℃ 30 s,72 ℃ 45 s,35個(gè)循環(huán),然后72 ℃ 延伸10 min,10 ℃至停止,達(dá)到PCR擴(kuò)增條件。每個(gè)樣本3個(gè)重復(fù),將同一樣本的PCR產(chǎn)物混合后用2%瓊脂糖凝膠電泳檢測(cè),使用AxyPrep DNA凝膠回收試劑盒(AXYGEN公司)切膠回收PCR產(chǎn)物,并將PCR產(chǎn)物用QuantiFluorTM-ST藍(lán)色熒光定量系統(tǒng)(Promega公司)進(jìn)行檢測(cè)定量。委托美吉生物科技(上海)有限公司(https://www.majorbio.com)用Illumina MiSeq PE300平臺(tái)進(jìn)行文庫構(gòu)建以及高通量測(cè)序。全部樣品的高通量測(cè)序結(jié)果已提交至NCBI SRA(https://www.ncbi.nlm.nih.gov/),編號(hào)為PRJNA936188。

      1.4 生物信息學(xué)分析

      使用Trimmomatic軟件對(duì)測(cè)序讀數(shù)(reader)的接頭(adapter)序列和低質(zhì)量序列進(jìn)行過濾。利用USEARCH軟件(vsesion 7.1,http://drive5.com/uparse/)按照97%相似性對(duì)非重復(fù)序列(不含單序列)進(jìn)行OTU聚類,在聚類過程中去除嵌合體,得到OTU的代表序列。在Qiime1平臺(tái)采用RDP classifier貝葉斯算法對(duì)97%相似水平的OTU代表序列比對(duì)Silva(Release123, http://www.arb-silva.de)數(shù)據(jù)庫(置信度閾值為0.7)獲得各土壤樣品真菌的分類學(xué)信息,將OTU表和物種信息表合并后,利用Python 3.8軟件比對(duì)FUNGuild v1.1數(shù)據(jù)庫來解析各樣品真菌群落的營(yíng)養(yǎng)型和功能類群。為了保證解讀真菌功能類群的可靠性,只保留置信度為“極可能”(highly probable)和“很可能”(probable)2個(gè)等級(jí)(Nguyen et al., 2016)。

      1.5 數(shù)據(jù)處理

      利用Kruskal-Wallis秩和檢驗(yàn)法對(duì)不同林分土壤真菌門和目進(jìn)行差異顯著性檢驗(yàn)。土壤樣品真菌群落的α多樣性采用基于OTU的Chao1指數(shù)、Shannon指數(shù)和Simpson指數(shù)來表征,其中Simpson指數(shù)越小代表多樣性越大,由Mothur軟件完成計(jì)算(Patrick et al., 2017)。不同林分之間土壤理化性質(zhì)、真菌群落α多樣性的差異顯著性采用單因素方差分析(one-way ANOVA)檢測(cè),并用Duncan法進(jìn)行多重比較;使用Spearman秩相關(guān)系數(shù)檢驗(yàn)α多樣性與土壤理化性質(zhì)因子之間的相關(guān)性。以上計(jì)算均使用SPSS 26.0軟件(SPSS, Inc, Chicago, IL)完成。

      基于OTU的Bray-Curtis距離,利用R軟件vegan程序包中的“metaMDS ( )”函數(shù)對(duì)不同土壤樣品的真菌群落β多樣性進(jìn)行非度量多維標(biāo)度(non-metric multidimensional scaling,NMDS)分析;進(jìn)而用基于999次置換檢驗(yàn)的置換多元方差分析(permutational multivariate analysis of variance, PERMANOVA)法檢測(cè)各土壤樣品真菌群落β多樣性的差異顯著性,計(jì)算由R軟件vegan程序包中的“adonis ( )”函數(shù)完成。以加權(quán) Bray-Curtis 非相似性矩陣作為響應(yīng)變量,以土壤理化性質(zhì)為預(yù)測(cè)變量,采用廣義非相似模型(generalized dissimilarity model, GDM)(Ferrier et al., 2007)分析土壤理化性質(zhì)對(duì)林分土壤真菌群落β多樣性的影響,即y軸的變化幅度代表土壤真菌群落OTU周轉(zhuǎn)速度在土壤理化性質(zhì)影響下的相對(duì)強(qiáng)度,因而y軸變化幅度越大,則表征土壤理化性質(zhì)對(duì)真菌群落組成結(jié)構(gòu)影響越大。計(jì)算由R軟件的gdm程序包完成,只有對(duì)GDM擬合有效的變量才會(huì)有圖輸出。利用冗余分析(redundancy analysis, RDA)探討土壤真菌功能類群與土壤理化性質(zhì)因子之間的關(guān)系,并采用蒙特卡羅置換檢驗(yàn)(Monte Carlo permutation test,置換次數(shù)為999次)檢測(cè)土壤理化因子影響土壤真菌功能類群的顯著性,計(jì)算由R軟件的vegan程序包中的“rda ( )”函數(shù)完成。

      2結(jié)果與分析

      2.1 土壤理化性質(zhì)

      由表2可知,尾巨桉林土壤含水量與火力楠林差異不顯著(P>0.05),但顯著高于馬尾松林和紅椎林且顯著低于米老排林(P<0.05)。尾巨桉林土壤pH顯著高于火力楠林、米老排林和紅錐林,而與馬尾松林無顯著差異。其余7個(gè)土壤理化性質(zhì)(土壤有機(jī)碳、總氮、硝態(tài)氮、銨態(tài)氮、總磷、速效磷和土壤碳氮比)在尾巨桉林與4個(gè)鄉(xiāng)土樹種人工林之間均無顯著差異。

      2.2 基于物種分類水平的土壤真菌群落組成

      在相似水平為97%的條件下,對(duì)OTU的代表序列進(jìn)行物種注釋,獲得全部土壤樣品的真菌為33門54綱84目109科110屬。5個(gè)林分土壤真菌優(yōu)勢(shì)門(相對(duì)豐度≥10%)分別是子囊菌門(Ascomycota)(40.6%~76.1%)和擔(dān)子菌門(Basidiomycota)(15.4%~41.2%)(圖1:A)。Kruskal-Wallis秩和檢驗(yàn)發(fā)現(xiàn),這2個(gè)優(yōu)勢(shì)菌門的相對(duì)豐度在尾巨桉林與4個(gè)鄉(xiāng)土樹種人工林間無顯著差異(P>0.05)。

      全部林分土壤真菌相對(duì)豐度較高的前10個(gè)目分別是傘菌綱未分類目(Agaricomycetes_unclassified)、肉座菌目(Hypocreales)、散囊菌目(Eurotiales)、古根菌目(Archaeorhizomycetales)、爪甲團(tuán)囊菌目(Onygenales)、糞殼菌目(Sordariales)、銀耳目(Tremellales)、子囊菌門未分類目(Ascomycota_unclassified)、incertae_sedis和糞殼菌綱未分類目(Sordariomycetes_unclassified)(圖1:B)。Kruskal-Wallis秩和檢驗(yàn)發(fā)現(xiàn),尾巨桉林的古根菌目的相對(duì)豐度顯著低于米老排林,爪甲團(tuán)囊菌目的相對(duì)豐度顯著低于馬尾松林和紅錐林,而銀耳目和肉座菌目的相對(duì)豐度卻顯著高于紅錐林和米老排林,糞殼菌目則顯著高于紅椎林(P<0.05)。

      2.3 基于OTU水平的土壤真菌群落多樣性

      2.3.1 α多樣性本研究的全部土壤樣品共獲得580 568條優(yōu)化序列,平均每個(gè)土壤樣品有38 704條序列且平均序列長(zhǎng)度為401 bp。隨著測(cè)序數(shù)量的增加,稀疏曲線逐漸趨于平坦,說明測(cè)序數(shù)據(jù)能夠反映土壤樣本真菌群落的實(shí)際情況(圖2)。根據(jù)97%相似性對(duì)優(yōu)化序列進(jìn)行聚類得到440個(gè)OTU,5個(gè)林分土壤共享114個(gè)OTU。其中,尾巨桉林總OTU數(shù)目(279個(gè))高于4個(gè)鄉(xiāng)土樹種人工林(馬尾松林215個(gè)、火力楠林263個(gè)、米老排林250個(gè)和紅椎林181個(gè)),其獨(dú)有OTU數(shù)目(57個(gè))也明顯高于4個(gè)鄉(xiāng)土樹種人工林(馬尾松林17個(gè)、火力楠林21個(gè)、米老排林16個(gè)和紅椎林8個(gè))。

      方差分析表明,尾巨桉林土壤真菌群落的Chao1指數(shù)顯著高于紅錐林(P<0.05),而與其余3個(gè)鄉(xiāng)土樹種人工林無顯著差異(P>0.05)(圖3:A),Shannon指數(shù)與4個(gè)鄉(xiāng)土樹種人工林的差異不顯著(圖3:B),但其Simpson指數(shù)則顯著低于4個(gè)鄉(xiāng)土樹種人工林(圖3:C)??傮w而言,尾巨桉林土壤真菌群落多樣性顯著高于4個(gè)鄉(xiāng)土樹種人工林。Spearman秩相關(guān)分析發(fā)現(xiàn),僅有Simpson指數(shù)與土壤pH(r=-0.549,P=0.034)呈顯著負(fù)相關(guān)(P<0.05)。

      2.3.2 β多樣性基于Bray-Curtis距離的NMDS分析發(fā)現(xiàn),NMDS前兩軸較好表征了5個(gè)林分土壤樣品真菌群落結(jié)構(gòu)的差異(Stress=0.072)(圖4)。PERMANOVA分析發(fā)現(xiàn),尾巨桉林分別與馬尾松林(F=5.06,P=0.001)、火力楠林(F=2.92,P=0.043)、米老排林(F=2.28,P=0.045)和紅錐林(F=4.56,P=0.001)的土壤真菌群落結(jié)構(gòu)存在顯著差異(P<0.05)。GDM分析指出,影響林分土壤真菌群落組成結(jié)構(gòu)差異的理化性質(zhì)因子可分為3類:第1類是變量在低梯度區(qū)時(shí)影響較大,即SOC(圖5:A)和TP(圖5:E);第2類是在高梯度區(qū)時(shí)影響較大,即TN在約高于2.1 g·kg-1時(shí),真菌群落結(jié)構(gòu)的變化隨梯度值增大而顯著增大(圖5:B);第3類是隨著變量值的增加而真菌群落結(jié)構(gòu)變化緩慢增加,即pH值(圖5:C)、NH4+-N(圖5:D)和SWC(圖5:F)。

      2.4 土壤真菌群落的功能類群

      基于FUNGuild v1.1數(shù)據(jù)庫對(duì)全部土壤樣品真菌群落的營(yíng)養(yǎng)型和功能類群進(jìn)行鑒定分類,將檢測(cè)出的75個(gè)OTU(占總OTU數(shù)目的18.2%)分為6個(gè)營(yíng)養(yǎng)型和10個(gè)功能類群。6個(gè)營(yíng)養(yǎng)型分別是腐生營(yíng)養(yǎng)型、共生營(yíng)養(yǎng)型、病理營(yíng)養(yǎng)型、病理-腐生營(yíng)養(yǎng)型、病理-共生營(yíng)養(yǎng)型和病理-腐生-共生營(yíng)養(yǎng)型(圖6:A)。其中,腐生營(yíng)養(yǎng)型是4個(gè)鄉(xiāng)土樹種人工林的優(yōu)勢(shì)營(yíng)養(yǎng)型(21.7%~76.3%),而尾巨桉林中共生營(yíng)養(yǎng)型相對(duì)豐度最大(45.7%)。

      10個(gè)真菌功能類群分別是內(nèi)生-寄生-植物病原菌、內(nèi)生-植物病原-木材腐生菌、植物病原-未定義腐生菌、動(dòng)物病原-寄生-未定義腐生菌、莖腐生-木材腐生菌、外生菌根真菌、叢枝菌根真菌、木材腐生菌、糞腐生-土壤腐生菌、植物病原菌(圖6:B)。其中,尾巨桉林土壤外生菌根真菌和木材腐生菌功能類群的相對(duì)豐度(分別是44.7%和11.0%)明顯高于4個(gè)鄉(xiāng)土樹種林分,而叢枝菌根真菌在火力楠林和米老排林中的相對(duì)豐度(分別是17.5%和20.8%)明顯高于尾巨桉林。

      不同林分土壤真菌功能類群與土壤理化性質(zhì)的RDA分析發(fā)現(xiàn),RDA前2軸共計(jì)解釋了所有信息的95.43%(RDA1軸、RDA2軸的解釋率分別為87.62%和7.81%)(圖7)。其中,尾巨桉林的土壤樣品位于RDA1軸的正側(cè),而鄉(xiāng)土樹種人工林則位于RDA1軸的負(fù)側(cè)。Monte Carlo置換檢驗(yàn)發(fā)現(xiàn),pH值是顯著影響尾巨桉林土壤真菌功能類群與4個(gè)鄉(xiāng)土樹種人工林差異的主導(dǎo)因子(P=0.045)。

      3討論

      3.1 不同林分類型對(duì)土壤真菌群落多樣性的影響

      土壤真菌的子囊菌門與擔(dān)子菌門能夠降解木質(zhì)素和角質(zhì)素等難分解物質(zhì),被認(rèn)為是森林土壤中的核心微生物,在土壤養(yǎng)分循環(huán)以及微生物區(qū)系的功能和穩(wěn)定性中發(fā)揮重要作用(喬沙沙等,2017;Wang et al., 2018)。本研究發(fā)現(xiàn),子囊菌門和擔(dān)子菌門是5個(gè)研究林分土壤真菌的主要優(yōu)勢(shì)菌門,該結(jié)果與南亞熱帶地區(qū)人工塊狀造林后自然恢復(fù)形成的鄉(xiāng)土樹種人工林(宋戰(zhàn)超等,2020)和尾巨桉人工林(陳祖靜等,2020)一致。一般而言,土壤養(yǎng)分富集有利于富養(yǎng)型真菌生長(zhǎng),而在土壤養(yǎng)分相對(duì)貧瘠時(shí)寡營(yíng)養(yǎng)型真菌的相對(duì)豐度會(huì)增加(Schneider et al., 2012)。本研究中,米老排林土壤中古根菌目的相對(duì)豐度明顯高于尾巨桉林,其原因在于古根菌目通常分布在可為腐生真菌提供有機(jī)質(zhì)的物種根際(Meng et al., 2020),而米老排林土壤的有機(jī)碳高于尾巨桉林。同時(shí),馬尾松林和紅錐林土壤的爪甲團(tuán)囊菌目相對(duì)豐度顯著高于尾巨桉林,可能是因?yàn)檫@2個(gè)林分的土壤pH和含水量顯著低于尾巨桉林,而有研究表明較低的pH和含水量能增加土壤爪甲團(tuán)囊菌目豐度(Claudia et al., 2022)。此外,有研究認(rèn)為,糞殼菌目和銀耳目菌群的相對(duì)豐度與pH(滿百膺等,2021)和凋落物含量(Chen et al., 2020)呈正相關(guān),而凋落物含量又與林分密度密切相關(guān)(周弘愿,2019)。本研究中尾巨桉林的土壤pH和林分密度高于鄉(xiāng)土樹種人工林,這可能是導(dǎo)致糞殼菌目和銀耳目菌群在尾巨桉林中富集的原因。

      相較于鄉(xiāng)土樹種人工林,尾巨桉林土壤真菌群落有著較高的總OTU數(shù)、特有OTU數(shù)、Chao1指數(shù)和Shannon指數(shù)以及較低的Simpson指數(shù),說明尾巨桉林的土壤真菌群落α多樣性高于鄉(xiāng)土樹種人工林。有研究發(fā)現(xiàn),森林土壤真菌α多樣性與土壤pH值之間具有顯著正相關(guān)性(Shen et al., 2014),這是因?yàn)閜H值的不同會(huì)改變土壤環(huán)境,進(jìn)而影響土壤真菌群落多樣性(Green et al., 2004)。Spearman秩相關(guān)分析表明,5個(gè)研究林分土壤真菌群落的Simpson指數(shù)與pH值顯著負(fù)相關(guān)(P<0.05),而尾巨桉林土壤pH值高于鄉(xiāng)土樹種人工林,可見土壤pH是調(diào)控尾巨桉林土壤真菌群落α多樣性高于鄉(xiāng)土樹種人工林的主要因子。然而,宋戰(zhàn)超等(2020)發(fā)現(xiàn)土壤碳氮含量是影響南亞熱帶地區(qū)不同人工林土壤真菌多樣性的關(guān)鍵因素;Yang等(2020)指出黃土高原人工林土壤真菌多樣性受土壤碳氮比的控制。本研究未發(fā)現(xiàn)土壤碳氮含量或碳氮比是影響鄉(xiāng)土樹種人工林與尾巨桉林土壤真菌群落多樣性差異的主導(dǎo)因素,原因是二者的土壤碳氮含量和碳氮比均無顯著差異。NMDS分析和PERMANOVA分析表明,尾巨桉林與4個(gè)鄉(xiāng)土樹種人工林土壤真菌群落結(jié)構(gòu)的差異顯著,結(jié)合GDM分析和土壤理化性質(zhì)的單因素方差分析結(jié)果,推測(cè)土壤含水量和pH是導(dǎo)致此差異的主要原因。已有大量研究表明,pH是影響森林土壤真菌群落β多樣性的重要因子,如Ping等(2017)研究認(rèn)為pH對(duì)長(zhǎng)白山森林土壤真菌群落β多樣性的影響較大,陳祖靜等(2020)發(fā)現(xiàn)桉樹林土壤真菌群落變化對(duì)施肥的響應(yīng)與pH呈負(fù)相關(guān)。此外,土壤含水量與土壤真菌群落結(jié)構(gòu)密切相關(guān)(楊立賓等,2017;Chen et al., 2019)。綜上所述,pH是導(dǎo)致尾巨桉林與鄉(xiāng)土樹種人工林土壤真菌群落多樣性和結(jié)構(gòu)存在差異的主要土壤環(huán)境因子。

      3.2 不同林分類型對(duì)土壤真菌群落功能類群的影響

      真菌有著復(fù)雜的生活史,部分真菌為了適應(yīng)生存環(huán)境會(huì)主動(dòng)采用多種營(yíng)養(yǎng)方式,這是真菌特有的較為高級(jí)的生存策略(熊丹等,2020)。本研究發(fā)現(xiàn),鄉(xiāng)土樹種人工林土壤中腐生營(yíng)養(yǎng)型為真菌優(yōu)勢(shì)營(yíng)養(yǎng)型,意味著鄉(xiāng)土樹種人工林土壤中的子囊菌門和擔(dān)子菌門主要是腐生營(yíng)養(yǎng)型。有研究表明,我國(guó)其他地區(qū)鄉(xiāng)土樹種人工林土壤真菌優(yōu)勢(shì)營(yíng)養(yǎng)型為腐生營(yíng)養(yǎng)型(鄧嬌嬌等,2020;陳歷睿等,2022)。腐生真菌作為土壤中重要的分解者,在養(yǎng)分循環(huán)方面作用重大(Nie et al., 2018;孫倩等,2019)。但是,尾巨桉林土壤真菌共生營(yíng)養(yǎng)型占優(yōu)勢(shì),說明其土壤中子囊菌門和擔(dān)子菌門多為共生營(yíng)養(yǎng)型。因此,在南亞熱帶地區(qū)營(yíng)造鄉(xiāng)土樹種人工林取代尾巨桉林有利于提高土壤肥力,改善土壤質(zhì)量。

      本研究發(fā)現(xiàn),叢枝菌根真菌類群在火力楠和米老排人工林中的相對(duì)豐度顯著高于尾巨桉林,而叢枝菌根真菌有促進(jìn)植物生長(zhǎng)、改善土壤結(jié)構(gòu)以及提高植物抵御不良環(huán)境的能力(Ai-Yahyaei et al., 2011;Wilson et al., 2016),據(jù)此推測(cè)尾巨桉林改建成火力楠或米老排人工林后將提升土壤生態(tài)功能。值得注意的是,尾巨桉林土壤的外生菌根真菌和木材腐生真菌類群明顯高于鄉(xiāng)土樹種人工林,這直接導(dǎo)致尾巨桉林土壤中的共生營(yíng)養(yǎng)型真菌成為優(yōu)勢(shì)型,因?yàn)橥馍婢湍静母鷮儆诠采鸂I(yíng)養(yǎng)型(葛偉等,2021;Gilmartin et al., 2022)。劉兵(2020)研究發(fā)現(xiàn)南亞熱帶地區(qū)多代連栽桉樹林土壤中共生營(yíng)養(yǎng)型真菌占比最多,并且木材腐生菌為優(yōu)勢(shì)功能類群;陳祖靜等(2020)研究認(rèn)為南亞熱帶地區(qū)尾巨桉林土壤中外生菌根真菌占比最高:這些與本研究結(jié)果一致。外生菌根真菌能提高植物對(duì)養(yǎng)分和水分的吸收(Nasholm et al., 1998),而木材腐生真菌起到傳導(dǎo)水分的功能,也能增強(qiáng)植物的吸水能力(Gilmartin et al., 2022)。因此,在南亞帶地區(qū)種植尾巨桉人工林能提高土壤外生菌根真菌和木材腐生真菌的豐度,增加植物對(duì)土壤水分及其他營(yíng)養(yǎng)元素的吸收,但會(huì)導(dǎo)致土壤肥力下降。Monkai等(2022)研究發(fā)現(xiàn)土壤pH的降低會(huì)減少外生菌根真菌形成。本研究中尾巨桉林土壤pH高于鄉(xiāng)土樹種人工林,可能是導(dǎo)致尾巨桉林土壤中外生菌根真菌富集的原因。土壤真菌功能與林分凋落物密切相關(guān),而木材腐生菌一般存在于植物體內(nèi)(Gilmartin et al., 2022),本研究中木材腐生菌在尾巨桉林土壤中富集,可能是由尾巨桉林凋落物中的木材腐生菌多于鄉(xiāng)土樹種人工林而導(dǎo)致,具體原因還有待進(jìn)一步研究。冗余分析和Monte Carlo置換檢驗(yàn)表明,pH是導(dǎo)致尾巨桉林和鄉(xiāng)土樹種人工林土壤真菌功能類群差異的主要土壤環(huán)境因子。Monkai等(2022)研究證實(shí)在東南亞森林轉(zhuǎn)換過程中pH是顯著影響真菌功能類群的主要理化因子。

      4結(jié)論

      南亞熱帶地區(qū)鄉(xiāng)土樹種人工林與尾巨桉人工林土壤真菌群落多樣性及功能類群存在差異,這主要由土壤pH所致。鄉(xiāng)土樹種人工林和尾巨桉林的土壤真菌優(yōu)勢(shì)門均為子囊菌門和擔(dān)子菌門,但在優(yōu)勢(shì)目上存在一定差異。尾巨桉林的土壤真菌群落α多樣性高于鄉(xiāng)土樹種人工林,其土壤真菌群落組成結(jié)構(gòu)與鄉(xiāng)土樹種人工林存在顯著差異。鄉(xiāng)土樹種人工林土壤真菌的腐生營(yíng)養(yǎng)型占比最高,并且火力楠林和米老排林的土壤叢枝菌根真菌類群的相對(duì)豐度顯著高于尾巨桉林;尾巨桉林土壤的共生營(yíng)養(yǎng)型為優(yōu)勢(shì)真菌營(yíng)養(yǎng)型,其外生菌根真菌和木材腐生菌的相對(duì)豐度明顯高于鄉(xiāng)土樹種人工林??傮w而言,南亞熱帶鄉(xiāng)土樹種人工林(尤其是火力楠林和米老排林)替代尾巨桉林能提高土壤肥力,提升土壤生態(tài)功能。

      參考文獻(xiàn):

      AI-YAHYAEI MN, OEHL F, VALLINA M, et al., 2011. Unique arbuscular mycorrhizal fungal communities uncovered in date palm plantations and surrounding desert habitats of Southern Arabia [J]. Mycorrhiza, 21(3): 195-209.

      ASLANI F, GEISEN S, NING D, et al., 2022. Towards revealing the global diversity and community assembly of soil eukaryotes [J]. Ecol Lett, 25(1): 65-76.

      BARBI F, PRUDENT E, VALLON L, et al., 2016. Tree species select diverse soil fungal communities expressing different sets of lignocellulolytic enzyme-encoding genes [J]. Soil Biol Biochem, 100: 149-159.

      CHEN L, XIANG WH, WU HL, et al., 2019. Contrasting patterns and drivers of soil fungal communities in subtropical deciduous and evergreen broadleaved forests [J]. Appl Microbiol Biotechnol, 103(13): 5421-5433.

      CHEN LR, LIN JN, SHEN R, et al., 2022. Characteristic of soil fungal community and its impact factors of Pinus massoniana forests in the Three Gorges Reservoir Region [J]. Chin J Appl Ecol, 33(9): 2397-2404. [陳歷睿, 林佳妮, 沈蓉, 等, 2022. 三峽庫區(qū)馬尾松林土壤真菌群落特征及影響因素 [J]. 應(yīng)用生態(tài)學(xué)報(bào), 33(9): 2397-2404.]

      CHEN WQ, WANG JY, MENG ZX, et al., 2020. Fertility-related interplay between fungal guilds underlies plant richness-productivity relationships in natural grasslands [J]. New Phytol, 226(4): 947-949.

      CHEN XB, ZHU DQ, ZHAO CC, et al., 2019. Community composition and diversity of fungi in soils under different types of Pinus koraiensis forests [J]. Acta Ped Sin, 56(5): 1221-1234. [陳秀波, 朱德全, 趙晨晨, 等, 2019. 不同林型紅松林土壤真菌群落組成和多樣性 [J]. 土壤學(xué)報(bào), 56(5): 1221-1234.]

      CHEN ZJ, GAO SK, CHEN Y, et al., 2020. Effects of short-term fertilization on soil fungal community structure and functional group in Eucalyptus artificial forest [J]. Acta Ecol Sin, 40(11): 3813-3821. [陳祖靜, 高尚坤, 陳園, 等, 2020. 短期施肥對(duì)桉樹人工林土壤真菌群落結(jié)構(gòu)及功能類群的影響 [J]. 生態(tài)學(xué)報(bào), 40(11): 3813-3821.]

      CLAUDIA C, LAURA S, EMILIO G, et al., 2022. Humidity and low pH boost occurrence of Onygenales fungi in soil at global scale [J]. Soil Biol Biochem, 167: 108617.

      DENG FC, QIN QY, YAN Q, et al., 2013. Variation of soil fertility in Eucalyptus plantation and its soil fertility comprehensive evaluation [J]. Guangxi For Sci, 42(2): 148-152. [鄧富春, 覃其云, 顏權(quán), 等, 2013. 桉樹人工林土壤肥力變化及其綜合評(píng)價(jià) [J]. 廣西林業(yè)科學(xué), 42(2): 148-152.]

      DENG JJ, ZHU WX, ZHANG Y, et al., 2020. Studies on soil fungal community composition and function characteristics of different plantations of sandy area, northwest Liaoning Province [J]. For Res, 33(1): 44-54. [鄧嬌嬌, 朱文旭, 張巖, 等, 2020. 遼西北風(fēng)沙區(qū)不同人工林土壤真菌群落結(jié)構(gòu)及功能特征 [J]. 林業(yè)科學(xué)研究, 33(1): 44-54.]

      DONG AR, L GZ, WU QY, et al., 2004. Diversity of soil fungi in Liangshui Natural Reserve, Xiaoxing’anling forest region [J]. J NE For Univ, 32(1): 8-10. [董愛榮, 呂國(guó)忠, 吳慶禹, 等, 2004. 小興安嶺涼水自然保護(hù)區(qū)森林土壤真菌的多樣性 [J]. 東北林業(yè)大學(xué)學(xué)報(bào), 32(1): 8-10.]

      FERRIER S, MANION G, ELITH J, et al., 2007. Using generalized dissimilarity modelling to analyse and predict patterns of beta diversity in regional biodiversity assessment [J]. Divers Distrib, 13(3): 252-264.

      FREY SD, 2019. Mycorrhizal fungi as mediators of soil organic matter dynamics [J]. Ann Rev Ecol Evol Syst, 50(1): 237-259.

      GE W, DONG CB, ZHANG ZY, et al., 2021. Symbiotic interaction between ectomycorrhizal fungi and endobacteria: a review [J]. Microbiol Chin, 48(10): 3810-3822. [葛偉, 董醇波, 張芝元, 等, 2021. 外生菌根真菌與內(nèi)生細(xì)菌共生互作的研究進(jìn)展 [J]. 微生物學(xué)通報(bào), 48(10): 3810-3822.]

      GILMARTIN EC, JUSINO MA, PYNE EJ, et al., 2022. Fungal endophytes and origins of decay in beech (Fagus sylvatica) sapwood [J]. Fungal Ecol, 59: 101161.

      GREEN JL, HOLMES AJ, WESTOBY M, et al., 2004. Spatial scaling of microbial eukaryote diversity [J]. Nature, 432(7018): 747-750.

      HE YJ, QIN L, LI ZY, et al., 2013. Carbon storage capacity of monoculture and mixed-species plantations in subtropical China [J]. For Ecol Manage, 295: 193-198.

      LIANG X, LI YC, CHEN XJ, et al., 2017. Soil fungal community characteristics in three types of forest stand in Huyang forest region of Mulei, Xinjiang [J]. Chin J Ecol, 36(3): 623-630. [梁雪, 李永春, 陳相君, 等, 2017. 新疆木壘胡楊林區(qū)三種林分土壤真菌群落特征 [J]. 生態(tài)學(xué)雜志, 36(3): 623-630.]

      LIU B, 2020. The effects of different Eucalyptus stands on soil fungal community structures and functions [D]. Nanjing: Nanjing Forestry University. [劉兵, 2020. 桉樹人工林林分結(jié)構(gòu)變化對(duì)土壤真菌群落和功能結(jié)構(gòu)的影響 [D]. 南京: 南京林業(yè)大學(xué).]

      LU RK, 2000. Methods for agricultural chemical analysis of soil [M]. Beijing: China Agricultural Science and Technology Press. [魯如坤, 2000. 土壤農(nóng)業(yè)化學(xué)分析方法 [M]. 北京: 中國(guó)農(nóng)業(yè)科技出版社.]

      MAN BY, XIANG X, LUO Y, et al., 2021. Characteristics and influencing factors of soil fungal community of typical vegetation types in Mount Huangshan, East China [J]. Mycosystema, 40(10): 2735-2751. [滿百膺, 向興, 羅洋, 等, 2021. 黃山典型植被類型土壤真菌群落特征及其影響因素 [J]. 菌物學(xué)報(bào), 40(10): 2735-2751.]

      MARON JL, MARLER M, KLIRONOMOS JN, et al., 2011. Soil fungal pathogens and the relationship between plant diversity and productivity [J]. Ecol Lett, 14(1): 36-41.

      MARTIN H, CHARLES GH, DAVID V, et al., 2012. Significant and persistent impact of timber harvesting on soil microbial communities in Northern coniferous forests [J]. ISME J, 6(12): 2199-2218.

      MENG M, WANG B, ZHANG QL, et al., 2020. Driving force of soil microbial community structure in a burned area of Daxing’anling, China [J]. J For Res, 32(4): 1723-1738.

      MONKAI J, PURAHONG W, NAWAZ A, et al., 2022. Conversion of rainforest to rubber plantations impacts the rhizosphere soil mycobiome and alters soil biological activity [J]. Land Degrad Dev, 33(17): 3411-3426.

      NASHOLM T, EKBLAD A, NORDIN A, et al., 1998. Boreal forest plants take up organic nitrogen [J]. Nature, 392(6679): 914-916.

      NGUYEN NH, SONG ZW, BATES ST, et al., 2016. FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild [J]. Fungal Ecol, 20: 241-248.

      NIE SA, LEI XM, ZHAO LX, et al., 2018. Fungal communities and functions response to long-term fertilization in paddy soils [J]. Appl Soil Ecol, 130: 251-258.

      PATRICK DS, GEVERS D, SARAH LW, 2017. Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNA-based studies [J]. PLoS ONE, 6(12): e27310.

      PENG W, TAN L, MING AG, et al., 2018. Bacterial community composition in soil profile of typical monoculture plantations in south subtropical China [J]. Chin J Soil Sci, 49(6): 1361-1369. [彭雯, 譚玲, 明安剛, 等, 2018. 南亞熱帶典型人工純林土壤剖面細(xì)菌群落組成差異分析 [J]. 土壤通報(bào), 49(6): 1361-1369.]

      PING Y, HAN DX, WANG N, et al., 2017. Vertical zonation of soil fungal community structure in a Korean pine forest on Changbai Mountain, China [J]. World J Microbiol Biotechnol, 33(1): 12.

      QIAO SS, ZHOU YN, CHAI BF, et al., 2017. Characteristics of fungi community structure and genetic diversity of forests in Guandi mountains [J]. Environ Sci, 38(6): 2502-2512. [喬沙沙, 周永娜, 柴寶峰, 等, 2017. 關(guān)帝山森林土壤真菌群落結(jié)構(gòu)與遺傳多樣性特征 [J]. 環(huán)境科學(xué), 38(6): 2502-2512.]

      QIN H, LI CX, REN QS, et al., 2017. Effects of different land use patterns on soil bacterial and fungal biodiversity in the hydro-fluctuation zone of the Three Gorges Reservoir Region [J]. Acta Ecol Sin, 37(10): 3494-3504. [秦紅, 李昌曉, 任慶水, 2017. 不同土地利用方式對(duì)三峽庫區(qū)消落帶土壤細(xì)菌和真菌多樣性的影響 [J]. 生態(tài)學(xué)報(bào), 37(10): 3494-3504.]

      QIN XH, LIAN Y, CHEN CF, et al., 2021. Effects of different tree species plantations on soil bacterial community diversity in south subtropical China [J]. For Res, 34(4): 120-127. [覃鑫浩, 梁艷, 陳超凡, 等, 2021. 南亞熱帶不同樹種人工林對(duì)土壤細(xì)菌群落多樣性的影響 [J]. 林業(yè)科學(xué)研究, 34(4): 120-127.]

      QIN L, MA XZ, WU SR, et al., 2017. Characteristics of soil microbial biomass nitrogen and soluble nitrogen between typical native broad-leaved and Eucalyptus plantations in southern subtropical China [J]. Chin J Appl Environ Biol, 23(4): 678-684. [覃林, 馬雪珍, 吳水榮, 等, 2017. 南亞熱帶典型鄉(xiāng)土闊葉人工林與桉樹人工林土壤微生物量氮及可溶性氮特征 [J]. 應(yīng)用與環(huán)境生物學(xué)報(bào), 23(4): 678-684.]

      ROUSK J, BAATH E, BROOKES PC, et al., 2010. Soil bacterial and fungal communities across a pH gradient in an arable soil [J]. ISME J, 4(10): 1340-1351.

      SCHNEIDER T, KEIBLINGER KM, SCHMID E, et al., 2012. Who is who in litter decomposition? Metaproteomics reveals major microbial players and their biogeochemical functions [J]. ISME J, 6(9): 1749-1762.

      SHEN CC, LIANG WJ, SHI Y, et al., 2014. Contrasting elevational diversity patterns between eukaryotic soil microbes and plants [J]. Ecology, 95(11): 3190-3202.

      SNAJDR J, DOBIASOVA P, URBANOVA M, et al., 2013. Dominant trees affect microbial community composition and activity in post-mining afforested soils [J]. Soil Biol Biochem, 56: 105-115.

      SONG ZC, WANG H, LIU SR, et al., 2020. Relationship between tree species richness and soil microbial diversity and community composition in a mixed planted south subtropical forest [J]. Acta Ecol Sin, 40(22): 8265-8273. [宋戰(zhàn)超, 王暉, 劉世榮, 等, 2020. 南亞熱帶混交人工林樹種豐富度與土壤微生物多樣性和群落組成的關(guān)系 [J]. 生態(tài)學(xué)報(bào), 40(22): 8265-8273.]

      SUN Q, WU HL, CHEN F, et al., 2019. Fungal community diversity and structure in rhizosphere soil of different crops in the arid zone of central Ningxia [J]. Microbiol Chin, 46(11): 2963-2972. [孫倩, 吳宏亮, 陳阜, 等, 2019. 寧夏中部干旱帶不同作物根際土壤真菌群落多樣性及群落結(jié)構(gòu) [J]. 微生物學(xué)通報(bào), 46(11): 2963-2972.]

      TAN HW, YANG SD, WU J, et al., 2014. Comparison of Eucalyptus plantation with and other forests in soil microbial activity and bacterial diversity in red soil region, China [J]. Acta Ped Sin, 51(3): 575-584. [譚宏偉, 楊尚東, 吳俊, 等, 2014. 紅壤區(qū)桉樹人工林與不同林分土壤微生物活性及細(xì)菌多樣性的比較 [J]. 土壤學(xué)報(bào), 51(3): 575-584.]

      TEDERSOO L, BAHRAM M, POLME S, et al., 2014. Global diversity and geography of soil fungi [J]. Science, 346(6213): 1078.

      VAN DER HEIJDEN MGA, DE BRUIN S, LUCKERHOFF L, et al., 2016. A widespread plant-fungal-bacterial symbiosis promotes plant biodiversity, plant nutrition and seedling recruitment [J]. ISME J, 10(2): 389-399.

      WAN XH, HUANG ZQ, HE ZM, et al., 2015. Soil C∶N ratio is the major determinant of soil microbial community structure in subtropical coniferous and broadleaf forest plantations [J]. Plant Soil, 387(2): 103-116.

      WANG Q, WANG C, YU WW, et al., 2018. Effects of nitrogen and phosphorus inputs on soil bacterial abundance, diversity, and community composition in Chinese fir plantations [J]. Front Microbiol, 9: 1543.

      WILSON H, JOHNSON BR, BOHANNAN B, et al., 2016. Experimental warming decreases arbuscular mycorrhizal fungal colonization in prairie plants along a Mediterranean climate gradient [J]. PeerJ, 4: e2083.

      WU D, ZHANG MM, PENG M, et al., 2019. Variations in soil functional fungal community structure associated with pure and mixed plantations in typical temperate forests of China [J]. Front Microbiol, 10: 1636.

      XIONG D, OU J, LI LP, et al., 2020. Community composition and ecological function analysis of endophytic fungi in the roots of Rhododendron simsii in Pinus massoniana forest in central Guizhou [J]. Acta Ecol Sin, 40(4): 1228-1239. [熊丹, 歐靜, 李林盼, 等, 2020. 黔中地區(qū)馬尾松林下杜鵑根部?jī)?nèi)生真菌群落組成及其生態(tài)功能 [J]. 生態(tài)學(xué)報(bào), 40(4): 1228-1239.]

      YANG LB, SUI X, ZHU DG, et al., 2017. Study on fungal communities characteristics of different Larix gmelini forest typesin cold temperate zone [J]. J Cent S Univ For Technol, 37(12): 76-84. [楊立賓, 隋心, 朱道光, 等, 2017. 大興安嶺興安落葉松林土壤真菌群落特征研究 [J]. 中南林業(yè)科技大學(xué)學(xué)報(bào), 37(12): 76-84.]

      YANG Y, CHENG H, DOU YX, et al., 2020. Plant and soil traits driving soil fungal community due to tree plantation on the Loess Plateau [J]. Sci Total Environ, 708: 134560.

      YOU YM, XU HC, WU XP, et al., 2020. Native broadleaf tree species stimulate topsoil nutrient transformation by changing microbial community composition and physiological function, but not biomass in subtropical plantations with low P status [J]. For Ecol Manage, 477: 118491.

      YU TH, ZHANG NL, YU S, et al., 2021. The characteristics of soil fungal community and effect factors under common tree species in urban parks of Beijing [J]. Acta Ecol Sin, 41(5): 1835-1845. [于天赫, 張乃莉, 于爽, 等, 2021. 北京城市公園常見喬木土壤真菌群落特征及影響因素 [J]. 生態(tài)學(xué)報(bào), 41(5): 1835-1845.]

      ZHENG W, LI CX, TAN L, et al., 2020. Comparison of Eucalyptus plantation and typical native species plantations in soil phosphorus fractions and sorption characteristics in south subtropical China [J]. Soils, 52(5): 1017-1024. [鄭威, 李晨曦, 譚玲, 等, 2020. 南亞熱帶桉樹人工林與典型鄉(xiāng)土樹種人工林土壤磷組分及磷吸附特性比較 [J]. 土壤, 52(5): 1017-1024.]

      ZHOU HY, 2019. Dynamics characteristic of litterfall production and nutrient of E. grandis × E. urophylla plantation in southwest of Guangxi [D]. Nanning: Guangxi University. [周弘愿, 2019. 桂西南巨尾桉人工林凋落物量及養(yǎng)分動(dòng)態(tài)特征 [D]. 南寧: 廣西大學(xué).]

      (責(zé)任編輯鄧斯麗)

      洛阳市| 宝山区| 得荣县| 内乡县| 祁门县| 漠河县| 乌苏市| 南雄市| 榆树市| 平原县| 茶陵县| 汾阳市| 集贤县| 宜都市| 许昌县| 昌吉市| 南澳县| 娱乐| 南陵县| 古丈县| 乐陵市| 阳西县| 阳江市| 镇安县| 正安县| 南陵县| 九龙城区| 揭阳市| 泾阳县| 洞头县| 漳浦县| 宁安市| 东乌珠穆沁旗| 大渡口区| 青铜峡市| 繁峙县| 平顶山市| 齐齐哈尔市| 博爱县| 胶州市| 新沂市|