摘要:【目的】揭示土壤和煙葉中多環(huán)芳烴(polycyclic aromatic hydrocarbons,PAHs)的暴露特征及其對(duì)人體造成的健康風(fēng)險(xiǎn)?!痉椒ā坎杉速F州松桃縣長坪(CP)、太平(TP)、平頭(PT)、普覺(PJ)、盤信(PX)和孟溪(MX)6個(gè)煙區(qū)土壤和新鮮煙葉樣品各40個(gè),測(cè)定樣品中16種PAHs含量,分析其經(jīng)口(ingestion)、皮膚(dermal)和呼吸(inhalation)3種非飲食攝入途徑的暴露特征,并評(píng)估了PAHs對(duì)煙農(nóng)造成的致癌和非致癌健康風(fēng)險(xiǎn)?!窘Y(jié)果】土壤和煙葉中7種致癌性的PAHs[(Chr)、苯并(a)蒽(BaA)、苯并(b)熒蒽(BbF)、苯并(k)熒蒽(BkF)、二苯并(a,h)蒽(DahA)、苯并(a)芘(BaP)和茚并(1,2,3-cd)芘(IP)]的含量分別為70.97~365.71和293.53~1 730.72 μg/kg,平均含量分別為221.13和 707.03 μg/kg;土壤和煙葉中9種非致癌性PAHs[萘(Nap)、蒽(Ant)、菲(Phe)、芘(Pyr)、苊烯(Ane)、二氫苊(Any)、芴(Flu)、熒蒽(Fla)和苯并(g,h,i)芘(BghiP)]的總含量分別為65.6~647.6和108.9~606.1 μg/kg,平均值分別為379.6和304.2 μg/kg。PAHs暴露特征從大到小呈現(xiàn)為:經(jīng)口攝入 gt; 皮膚攝入 gt; 呼吸攝入,土壤和煙葉中7種致癌性的PAHs對(duì)煙農(nóng)總的平均每日暴露量分別為54.41~280.38和225.04~1 326.87 pg/(kg·d),平均值分別為169.53和542.05 pg/(kg·d);非致癌性的9種PAHs對(duì)煙農(nóng)總的平均每日暴露量分別為146.70~1 448.19和243.41~1 355.33 pg/(kg·d),平均值分別為848.91和680.22 pg/(kg·d);致癌性和非致癌性PAHs的平均每日攝入量最大值均出現(xiàn)在MX煙區(qū)。土壤和煙葉中PAHs對(duì)煙農(nóng)產(chǎn)生的非致癌性總危險(xiǎn)指數(shù)為1.02×10-5~4.31×10-4,平均值為1.92×10-4;PAHs對(duì)煙農(nóng)產(chǎn)生的總致癌風(fēng)險(xiǎn)指數(shù)為8.39× 10-7~5.14×10-6,平均值為2.18×10-6。其中,BaP的總致癌風(fēng)險(xiǎn)指數(shù)最大(3.69×10-7~4.25×10-6,平均值為1.58×10-6);有26個(gè)點(diǎn)位的BaP超過美國環(huán)保署建議的臨界值,超標(biāo)率為65%,有90%的取樣點(diǎn)7種致癌性PAHs的總量處于低風(fēng)險(xiǎn)水平?!窘Y(jié)論】土壤和煙葉中PAHs對(duì)煙農(nóng)的暴露方式主要為經(jīng)口和皮膚途徑,PAHs的非致癌風(fēng)險(xiǎn)值處于美國環(huán)保署建議的臨界值之下,為可接受水平。絕大多數(shù)取樣點(diǎn)的致癌性PAHs已經(jīng)給煙農(nóng)造成了低風(fēng)險(xiǎn)的健康影響,尤其是BaP應(yīng)該受到重點(diǎn)關(guān)注。
關(guān)鍵詞:多環(huán)芳烴;土壤和煙葉;煙農(nóng);攝入途徑;健康風(fēng)險(xiǎn)評(píng)估
中圖分類號(hào):X53"""""" 文獻(xiàn)標(biāo)志碼:A開放科學(xué)(資源服務(wù))標(biāo)識(shí)碼(OSID):
文章編號(hào):1000-2006(2024)04-0200-09
The exposure characteristic and health risk assessment of polycyclic
aromatic hydrocarbons in soils and tobacco plants
MA Jun1,2, TAN Changyin2, WANG Yong1*, WU Lanyan1, QIN Hangdao1
(1. College of Materials and Chemistry, Tongren University, Tongren" 554300, China;
2. School of Geographic Sciences, Hunan Normal University, Changsha" 410081, China)
Abstract: 【Objective】The aim of this research is to determine the exposure characteristic and health risk of polycyclic aromatic hydrocarbons (PAHs) in soils and tobacco plants. 【Method】 Forty samples of soil and fresh tobacco plants were collected from tobacco-growing areas in Changping (CP), Taiping (TP), Pingtou (PT), Pujue (PJ), Panxin (PX) and Mengxi (MX) in Songtao County of Guizhou Province. A total of 16 PAH species were isolated from the samples. The characteristics of PAHs exposure were analyzed after ingestion, dermal administration, and inhalation. The carcinogenic and non-carcinogenic health risks on" farmers were assessed. 【Result】 The total contents of seven kinds of carcinogenic PAHs [perylene (Chr), benzo(a) anthracene (BaA), benzo(b) fluoranthene (BbF), benzo(k) fluoranthene (BkF), dibenzo(a,h)anthracene (DahA), benzo (a) pyrene (BaP), and indeno(1,2,3-cd) pyrene (IP)] in the soil and tobacco samples were 70.97-365.71 and 293.53-1 730.72 μg/kg," and the mean values were 221.13 and 707.03 μg/kg, respectively. The total contents of nine non-carcinogenic PAHs [naphthalene (Nap), anthracene (Ant), phenanthrene (Phe), pyrene (Pyr), acenaphthylene (Ane), diacenaphthylene (Any), fluorene (Flu), fluoranthene (Fla), and benzo (g,h,i) pyrene (BghiP)] were 65.6-647.6 and 108.9-606.1 μg/kg," and the mean values were 379.6 and 304.2 μg/kg, respectively. Analysis of the exposure characteristics of the PAHs revealed that ingestiongt;dermalgt;inhalation in terms of the exposure risk. The total average daily exposure of the farmers to the seven carcinogenic PAHs in the soil and tobacco samples was 54.41-280.38 and 225.04-1 326.87 pg/(kg·d), and the mean values were 169.53 and 542.05 pg/(kg·d), respectively. The total average daily exposure of the farmers to the nine non-carcinogenic PAHs in the soil and tobacco samples were 146.70-1448.19 and 243.41-1355.33 pg/(kg·d), and the mean values were 848.91 and 680.22 pg/(kg·d), respectively. The average daily intake (ADI) of the carcinogenic and non-carcinogenic PAHs was the" highest in MX. The total non-carcinogenic risk index of the PAHs in the soil and tobacco samples to the farmers ranged from 8.39×10-7 to 5.14×10-6, with a mean value of 2.18×10-6. The total carcinogenic risk index of the PAHs to the farmers varied from 8.39×10-7 to 5.14×10-6, with a mean value of 2.18×10-6. The total carcinogenic risk index of BaP was the" highest among the PAHs, being 3.69×10-7 to 4.25×10-6, with a mean value of 1.58×10-6. The levels of BaP exceeded the recommended threshold published by the United States Environmental Protection Agency (USEPA) at 26 sites (65%), and the total carcinogenic risk of the seven carcinogenic PAHs was low at 90% of the sampling sites. 【Conclusion】" Ingestion and dermal exposure were the main exposure routes of the PAHs in the soil and tobacco samples. The carcinogenic risk of the non-carcinogenic PAHs was below the critical value recommended by the USEPA, and their values were at acceptable range. The carcinogenic PAHs had a" low health risk to farmers at the majority of sampling sites. However, the carcinogenic PAH, BaP, requires further attention.
Keywords:polycyclic aromatic hydrocarbons; soils and tobacco; tobacco farmers; intake way; health risk assessment
多環(huán)芳烴(polycyclic aromatic hydrocarbons,PAHs)是含有至少兩個(gè)苯環(huán)的芳香族化合物,通常以稠環(huán)以及非稠環(huán)的方式形成,有親脂性和疏水性等特點(diǎn)[1]。PAHs因其性質(zhì)穩(wěn)定、毒性強(qiáng)、有致癌、致畸和致突變效應(yīng),且能通過食物鏈進(jìn)人體而備受關(guān)注[2]。多環(huán)芳烴可通過大氣沉降和其他途徑進(jìn)入土壤[3],也可暴露于作物表面[4],最終對(duì)人類健康造成損害[5-6]。有研究指出,多環(huán)芳烴暴露與哮喘、支氣管炎和肺癌等的發(fā)生有關(guān)[7],也可通過干擾人體的內(nèi)分泌功能影響健康[8]。多環(huán)芳烴是間接致癌物,通常以苯并(a)芘(Bap)為代表,具有高度致癌性[9]。Bap可通過體內(nèi)代謝從前致癌物轉(zhuǎn)化為最終致癌物,從而誘發(fā)多種癌癥,如皮膚癌、白血病和膀胱癌[10]。Lee等[11]發(fā)現(xiàn)Bap的代謝氧化物可以與鳥環(huán)氨基結(jié)合,改變?cè)九c胞嘧啶結(jié)合的3個(gè)氫鍵,導(dǎo)致DNA配對(duì)異常。此外,嵌入DNA分子中的致癌物可以破壞DNA的堿基序列,也可能導(dǎo)致細(xì)胞向癌細(xì)胞的轉(zhuǎn)化。此外,最近一項(xiàng)關(guān)于多環(huán)芳烴的研究報(bào)告稱,PAHs可引起導(dǎo)致睪丸功能受損,男性的生殖功能障礙[12]。人類接觸多環(huán)芳烴通常是通過攝入食物和水、吸入空氣或煙霧、皮膚接觸土壤和油等途徑[2]。其中,農(nóng)民通過土壤接觸多環(huán)芳烴的頻率高于其他途徑。因此,對(duì)PAHs的暴露特征及其對(duì)人體產(chǎn)生潛在風(fēng)險(xiǎn)的研究應(yīng)引起關(guān)注。
烤煙在我國栽培廣泛,在煙草類型作物中種植面積最大[13],因此,開展烤煙種植區(qū)可持續(xù)性有機(jī)污染的風(fēng)險(xiǎn)暴露研究和健康風(fēng)險(xiǎn)評(píng)估工作,對(duì)保障當(dāng)?shù)鼐用裼绕涫菬熮r(nóng)的生存環(huán)境安全以及人體健康具有重要的意義。2020年中國烤煙產(chǎn)量超過202萬t,其中貴州超過21萬t??緹熞欢瘸蔀檗r(nóng)民致富的重要方式,位于貴州東部的松桃縣正是烤煙種植的主要區(qū)域之一。本研究以松桃縣烤煙產(chǎn)區(qū)的土壤和煙葉為研究對(duì)象,分析16種PAHs在土壤和煙葉中的風(fēng)險(xiǎn)暴露特征,探究其通過非飲食途徑對(duì)煙農(nóng)可能的暴露特征,并評(píng)估其潛在的致癌和非致癌風(fēng)險(xiǎn),為全面了解PAHs污染物在土壤和煙葉中暴露的潛在風(fēng)險(xiǎn),以及進(jìn)一步研究烤煙種植及管理過程中潛在的健康風(fēng)險(xiǎn)提供參考。
1 材料與方法
1.1 樣品采集與制備
樣品采集地位于貴州東部的松桃縣,于2020年7月在長坪(CP)、太平(TP)、平頭(PT)、普覺(PJ)、盤信(PX)和孟溪(MX)采集烤煙成熟期土壤和新鮮煙葉樣品各40個(gè)(109.16°~109.27°E,27.94°~28.13°N)。土壤和煙葉樣品的采集嚴(yán)格按照采樣標(biāo)準(zhǔn)進(jìn)行,用不銹鋼鏟采集由5~ 6個(gè)點(diǎn)位(S形布點(diǎn)法)的混合表層土壤2 kg。同時(shí)用不銹鋼剪刀分別在3 ~ 5株烤煙的上部、中部和下部葉混合后取約 1 kg煙葉。樣品采集后用冰袋盒保存并運(yùn)回實(shí)驗(yàn)室,-20 ℃ 凍存24 h后,轉(zhuǎn)移至凍干機(jī)中冷凍干燥96 h,用陶瓷研缽研磨后過0.25 mm不銹鋼篩,用棕色玻璃瓶保存于干燥器中待分析。
1.2 樣品處理與測(cè)定
本研究共測(cè)定了萘(Nap)、蒽(Ant)、菲(Phe)、芘(Pyr)、苊烯(Ace)、二氫苊(Acy)、芴(Flu)、熒蒽(Fla)、苯并(g,h,i)芘(BghiP)、(Chr)、苯并(a)蒽(BaA)、苯并(b)熒蒽(BbF)、苯并(k)熒蒽(BkF)、二苯并(a,h)蒽(DahA)、苯并(a)芘(BaP)、茚并(1,2,3-cd)芘(IP)等16種PAHs。樣品中PAHs采用二氯甲烷索氏提取24 h,待冷卻后,用旋轉(zhuǎn)蒸發(fā)儀(Rotavapor R-215,BCHI Labortechnik AG,瑞士)在370 Pa、90 r/min、36 ℃條件下濃縮至干,用環(huán)己烷定容待測(cè)。土壤樣品用正己烷-二氯甲烷(體積比1∶1)作為淋洗液,煙葉樣品用正己烷-丙酮(體積比4∶1)作為淋洗液,收集洗脫液旋轉(zhuǎn)蒸發(fā)濃縮并定容至1 mL并過0.22 μm的有機(jī)濾膜,轉(zhuǎn)移至棕色進(jìn)樣瓶并保存于4 ℃冰箱中待上機(jī)測(cè)定。
土壤和煙葉樣品中PAHs含量采用二氯甲烷索式提取、四通道色譜分離儀[CHRO-400,賽次科技(大連)有限公司]凈化、氣相色譜-質(zhì)譜聯(lián)用儀(GC-MS:Agilent 7890A 5975C,美國Agilent公司)測(cè)定[14-15]。GC-MS條件設(shè)置:電子(70 eV)轟擊EI離子源(230 ℃),傳輸線和接口設(shè)置溫度為260和280 ℃,電壓設(shè)置為1.012 kV,質(zhì)量掃描范圍(m/z)為60~640 amu;高純He(gt; 99.999%)作為載氣,彈性石英毛細(xì)管柱(DB-5MS)為30 m×0.25 mm×0.25 μm,設(shè)置流速為1 mg/L。升溫程序:設(shè)置柱室初始溫度為50 ℃并保持1 min,然后以15" ℃/min升至200 ℃并保持1 min,再以8" ℃/min升至280 ℃并保持3 min,最終溫度至285 ℃。進(jìn)樣口溫度保持250 ℃,選擇SIM模式定量。
1.3 質(zhì)量保證
對(duì)16種PAHs化合物進(jìn)行加標(biāo)回收試驗(yàn),土壤和樣品平均加標(biāo)回收率大于80.3%,儀器檢出限(LOD)lt;2.1 μg/kg。在分析過程中設(shè)置程序空白,每10個(gè)樣品加入空白樣品進(jìn)行抗干擾和污染檢測(cè),并減去空白樣品中的測(cè)定值得到數(shù)值。
1.4 暴露方式及健康風(fēng)險(xiǎn)評(píng)估
有機(jī)污染物是通過飲食和非飲食2種暴露途徑威脅人體健康,其中非飲食途徑有經(jīng)口攝入(ingestion)、皮膚攝入(dermal)和呼吸攝入(inhalation)3種方式。根據(jù)美國環(huán)保署提供的風(fēng)險(xiǎn)評(píng)估模型,并參照文獻(xiàn)進(jìn)行修正優(yōu)化后[16-18],得到植煙土壤和煙葉中PAHs的非飲食途徑攝入量和健康風(fēng)險(xiǎn)的計(jì)算公式:
IAD,Ingestion=C×RIngestion×F×TW×AAT。(1)
式中:IAD,Ingestion為經(jīng)口攝入途徑的平均每日攝入量, pg/(kg·d);C為PAH在土壤或煙葉中的含量,μg/kg;RIngestion為攝入率,取值為100 mg/d[16];F為暴露頻率,取值為350 d/a[16];T為暴露時(shí)間,取值為24 a[17];W為體質(zhì)量,取值為60 kg[17];AAT為持續(xù)時(shí)間(致癌性PAHs取值為25 550 d,非致癌性PAHs取值為8 760 d[18])。
IAD,Dermal=C×SSA×AAF×AABS×F×TW×AAT×
GGIABS。(2)
式中:IAD,Dermal為通過皮膚攝入途徑的平均每日攝入量, pg/(kg·d);SSA為接觸介質(zhì)的皮膚面積,取值為5 700 cm2/d[16-17];AAF為質(zhì)介對(duì)皮膚的黏附系數(shù),取值為0.07 mg/cm2[18];AABS為皮膚吸附系數(shù),取值為0.1[16-18];GGIABS為胃腸道吸附系數(shù),取值為1[16-18]。
IAD,Inhalation=C×RInhalation×F×TW×AAT×PPEF×106。(3)
式中:IAD,Inhalation為通過呼吸攝入的平均每日攝入量,pg/(kg·d);RIngestion為呼吸攝入率,取值為20 m3/d[17];PPEF為擴(kuò)散因子,取值為1.36×109 m3/kg[16-18]。
土壤和煙葉中非致癌性PAHs通過經(jīng)口攝入、皮膚攝入和呼吸攝入3種途徑對(duì)煙農(nóng)產(chǎn)生的危險(xiǎn)指數(shù)之和(H)用如下公式計(jì)算:
H=∑IAD,iDRfD(RfC)×109。(4)
式中:i為各風(fēng)險(xiǎn)物的第i種暴露途徑;DRfD(RfC) 為每日經(jīng)口和皮膚(經(jīng)呼吸)暴露參考劑量,mg/(kg·d)。
土壤和煙葉中致癌性PAHs通過經(jīng)口攝入、皮膚攝入和呼吸攝入3種途徑對(duì)煙農(nóng)產(chǎn)生的致癌風(fēng)險(xiǎn)指數(shù)之和(CCRI)用如下公式計(jì)算:
CCRI=∑[IAD,i×SSFO(IUR)×109]。(5)
式中:SSFO(IUR)為每日經(jīng)口和皮膚(經(jīng)呼吸)暴露斜率因子,mg/(kg·d)。
土壤和煙葉中非致癌性PAHs對(duì)煙農(nóng)產(chǎn)生的總危險(xiǎn)指數(shù)(TH)用如下公式計(jì)算:
TH=Hs+Ht。(6)
式中:Hs和Ht分別為土壤和煙葉中的危險(xiǎn)指數(shù)。
土壤和煙葉中致癌性PAHs對(duì)煙農(nóng)產(chǎn)生的總致癌風(fēng)險(xiǎn)指數(shù)(TCRI)用如下公式計(jì)算:
TCRI=CCRI,s+CCRI,t。(7)
式中:CCRI,s和CCRI,t分別為土壤和煙葉中的致癌風(fēng)險(xiǎn)指數(shù)。
1.5 數(shù)據(jù)處理
數(shù)據(jù)整理與分析采用Excel 2016,數(shù)據(jù)圖采用Origin 2019b繪制。
2 結(jié)果與分析
2.1 土壤和煙葉中多環(huán)芳烴的含量
多環(huán)芳烴在土壤和煙葉中的含量如圖1所示,土壤樣品中16種PAHs的總含量為166.74~989.43 μg/kg,平均值為600.77 μg/kg;煙葉樣品中16種PAHs的總含量為502.79~2 217.15 μg/kg,平均含量為1 011.23 μg/kg。土壤和煙葉中9種非致癌性PAHs的總含量分別為65.6~647.6和108.9~606.1 μg/kg,平均值分別為379.6和304.2 μg/kg;而7種致癌性的PAHs的總含量分別為70.97~365.71和293.53~1 730.72 μg/kg,平均含量分別為221.13和 707.03 μg/kg。土壤和煙葉樣品中平均含量最高的是菲和苯并(a)芘,分別為達(dá)80.03和404.07 μg/kg,最低的分別是苊烯和二氫苊。40個(gè)土壤樣品中芘、苯并(a)蒽和苯并(g,h,i)芘全部檢出,芘、、苯并(a)蒽、苯并(b)熒蒽、苯并(k)熒蒽和苯并(a)芘在40個(gè)煙葉樣品中也全部檢出。說明致癌性PAHs在土壤和煙葉中的大量累積成為對(duì)煙農(nóng)造成健康威脅的主要風(fēng)險(xiǎn)點(diǎn),尤其表現(xiàn)為具有強(qiáng)致癌性的苯并(a)芘。
2.2 土壤和煙葉中多環(huán)芳烴的暴露特征
2.2.1 致癌性多環(huán)芳烴的攝入特征
煙農(nóng)經(jīng)口途徑平均攝入土壤中致癌性PAH最多的是[23.14 pg/(kg·d)],其次是苯并(a)芘[19.84 pg/(kg·d)]。通過皮膚途徑的平均最大攝入量為[9.23 pg/(kg·d)](),而通過呼吸途徑的平均最攝入量較低,均小于0.004 pg/(kg·d)。煙農(nóng)平均每日經(jīng)口、皮膚和呼吸途徑攝入土壤中7種PAHs的量分別為38.89~200.39、15.52~79.96 和0.005 7~0.029 5 pg/(kg·d)(表1)。煙葉中PAH單體的經(jīng)口、皮膚和呼吸的最大值均為苯并(a)芘,煙農(nóng)通過經(jīng)口、皮膚和呼吸攝入煙葉中7種致癌性PAHs的量分別為160.84~948.34、64.18~378.39、0.023 7~0.139 5 pg/(kg·d)。表明土壤和煙葉中致癌性的PAHs主要是通過經(jīng)口攝入和皮膚攝入的形式對(duì)煙農(nóng)造成潛在威脅(表1)。
煙農(nóng)對(duì)7種致癌性PAHs的平均總攝入量分別為54.41~280.38和225.04~1 326.87 pg/(kg·d),平均值分別為169.53和542.05 pg/(kg·d)(圖2)。土壤中的總攝入值最高,其次是苯并(a)芘,而煙葉中總攝入量最高的是苯并(a)芘,其次為苯并(b)熒蒽。煙農(nóng)對(duì)土壤中致癌性PAH單體的總攝入量從大到小表現(xiàn)為gt;苯并(a)芘gt;苯并(k)熒蒽gt;茚并(1,2,3-cd)芘gt;苯并(b)熒蒽gt;二苯并(a,h)蒽gt;苯并(a)蒽,而在煙葉中從大到小則呈現(xiàn)出苯并(a)芘gt;苯并(b)熒蒽gt;苯并(k)熒蒽gt;gt;茚并(1,2,3-cd)芘gt;二苯并(a,h)蒽gt;苯并(a)蒽的攝入特點(diǎn),這同樣與致癌性PAH在土壤和煙葉中的含量相關(guān)。因此,煙農(nóng)平均每日致癌性多環(huán)芳烴攝入量也由其含量決定。
2.2.2 多環(huán)芳烴的非致癌攝入特征
煙農(nóng)對(duì)土壤和煙葉中9種非致癌性多環(huán)芳烴的攝入量由公式(1~3)計(jì)算所得。煙農(nóng)經(jīng)口、皮膚和呼吸途徑平均攝入土壤中多環(huán)芳烴最大的是菲,而最小的是苊烯。煙農(nóng)平均每日通過3種非飲食途徑攝入土壤中9種PAHs的總量分別為1 035.05、412.99和0.152 2 pg/(kg·d)(表2)。
煙葉中PAH單體的經(jīng)口、皮膚和呼吸途徑平均攝入量為24.76~143.53、9.88~57.27和0.021 1~0.003 6 pg/(kg·d)。煙農(nóng)通過3種非飲食途徑攝入煙葉中9種PAHs的平均值分別為486.17、193.98 和 0.071 5 pg/(kg·d)(表2)。以上表明煙農(nóng)主要是以經(jīng)口攝入和皮膚攝入方式攝入土壤和煙葉中的非致癌性PAHs。
煙農(nóng)對(duì)土壤中9種非致癌性PAHs的平均總攝入量為146.70~1 448.19 pg/(kg·d),對(duì)煙葉中∑9PAHs的平均總攝入量從大到小則為243.41~1 355.33 pg/(kg·d)(圖3)。土壤和煙葉中總攝入值最高分別的是菲和萘,而最低的分別是苊烯和二氫苊。煙農(nóng)對(duì)土壤中非致癌性PAH單體的總攝入量從大到小表現(xiàn)為菲gt;蒽gt;萘gt;芘gt;熒蒽gt;苯并(g,h,i)芘gt;芴gt;二氫苊gt;苊烯,而對(duì)煙葉的攝入從大到小則是萘gt;芘gt;菲gt;蒽gt;熒蒽gt;芴gt;苊烯gt;苯并(g,h,i)芘gt;二氫苊,這與非致癌性PAH在土壤和煙葉中的含量相關(guān),因此,煙農(nóng)平均每日非致癌性多環(huán)芳烴攝入量由其含量決定。
2.2.3 不同煙區(qū)土壤和煙葉中多環(huán)芳烴的暴露特征
土壤和煙葉中致癌性PAHs的平均最大攝入值均出現(xiàn)在MX煙區(qū),從大到小表現(xiàn)為MX gt; TP gt; PT gt; PX 的暴露特征,而在CP和PJ煙區(qū)表現(xiàn)出相反的暴露特點(diǎn)(圖4a)。非致癌性PAHs的平均最大攝入值也出現(xiàn)在MX煙區(qū),從大到小表現(xiàn)為MX gt; PT gt; PJ gt; TP gt; CP gt; PX,而在煙葉中從大到小呈現(xiàn)出MX gt; CP gt;PJ gt; PT gt; PXgt; TP的暴露特征(圖4b)。
2.3 土壤和煙葉中多環(huán)芳烴的健康風(fēng)險(xiǎn)
土壤和煙葉中致癌性的苯并(a)蒽、、苯并(b)熒蒽、苯并(k)熒蒽、苯并(a)芘、茚并(1,2,3-cd)芘和二苯并(a,h)蒽對(duì)煙農(nóng)產(chǎn)生的平均致癌風(fēng)險(xiǎn)指數(shù)見圖5a。在土壤樣品中CCRI值最大的是二苯并(a,h)蒽,而煙葉樣品中CCRI值最大的為苯并(a)芘。美國環(huán)保署建議的PAHs對(duì)人體的產(chǎn)生的致癌風(fēng)險(xiǎn)分為特低風(fēng)險(xiǎn)(小于1×10-6)、低風(fēng)險(xiǎn)[1×10-6, 1 ×10-4)、中風(fēng)險(xiǎn)[1×10-4,1×10-3)、高風(fēng)險(xiǎn)[1×10-3, 1 ×10-1)和特高風(fēng)險(xiǎn)(≥1×10-1)5個(gè)等級(jí)[16-17]。在所有土壤樣品中,致癌性PAH單體的CCRI值均小于1×10-6量級(jí),全部處于特低風(fēng)險(xiǎn)水平;煙葉樣品中苯并(a)蒽、、苯并(b)熒蒽、苯并(k)熒蒽、茚并(1,2,3-cd)芘和二苯并(a,h)蒽產(chǎn)生的致癌風(fēng)險(xiǎn)指數(shù)均小于1×10-6,處于特低風(fēng)險(xiǎn)水平,有23個(gè)煙葉樣品中苯并(a)芘的致癌風(fēng)險(xiǎn)指數(shù)高于1×10-6,但低于1×10-4,處于低風(fēng)險(xiǎn)的煙葉樣品率為57.5%。說明有部分煙葉樣品的PAHs已經(jīng)對(duì)煙農(nóng)造成了低健康風(fēng)險(xiǎn)。土壤和煙葉中致癌性的PAH對(duì)煙農(nóng)產(chǎn)生的TCRI值如圖5b所示。7種PAH單體的TCRI最大值為4.25×10-6,在40個(gè)取樣點(diǎn)位中,苯并(a)芘的總致癌風(fēng)險(xiǎn)指數(shù)最大,有26個(gè)點(diǎn)位超過美國環(huán)保署建議的臨界值,超標(biāo)率為65%。有36個(gè)取樣點(diǎn)的總致癌風(fēng)險(xiǎn)指數(shù)介于1×10-6~1×10-4,說明有90%的取樣點(diǎn)處于低風(fēng)險(xiǎn)水平。表明本研究煙區(qū)土壤和煙葉中致癌性PAHs的殘留已經(jīng)給煙農(nóng)的健康造成了一定的威脅。
萘產(chǎn)生的平均非致癌危險(xiǎn)指數(shù)最高,在土壤和煙葉中分別為4.72×10-5和8.99×10-5,而蒽產(chǎn)生的平均非致癌危險(xiǎn)指數(shù)最低,在土壤和煙葉分別為5.80×10-7和8.37×10-7(圖5c)。多環(huán)芳烴對(duì)煙農(nóng)產(chǎn)生的TH由公式(6)計(jì)算所得。PAH單體的TH為1.02× 10-5~4.31×10-4,平均值為1.92×10-4。萘、苊烯、二氫苊、芴、菲、蒽、熒蒽、芘和苯并(g,h,i)芘的最大TH值分別為3.56×10-4、4.17×10-6、7.17×10-6、1.17×10-5、3.68×10-5、4.19×10-6、1.27×10-5、2.14×10-5和2.28×10-5,PAHs經(jīng)口暴露、皮膚接觸暴露和呼吸暴露途徑對(duì)煙農(nóng)產(chǎn)生的總非致癌危險(xiǎn)指數(shù)均小于10-3數(shù)量級(jí),美國環(huán)保署制定的非致癌風(fēng)險(xiǎn)臨界值為1,當(dāng)H gt;1時(shí),多環(huán)芳烴會(huì)對(duì)人體造成非致癌的健康影響[16-17],本研究土壤和煙葉中PAHs對(duì)煙農(nóng)產(chǎn)生的非致癌危險(xiǎn)指數(shù)均未超過美國控制臨界值,說明PAHs給煙農(nóng)帶來的非致癌性健康風(fēng)險(xiǎn)處于可接受的范圍。
3 討 論
本研究中,16種多環(huán)芳烴在40個(gè)土壤樣品中的平均含量低于Ambade等[19]對(duì)印度東部城市土壤開展調(diào)查得出的結(jié)果,也低于王飛等[20]調(diào)查位于太原的農(nóng)田土壤中16種PAHs的總含量以及嚴(yán)青云等[9]研究南方某地塑料廠土壤時(shí)的結(jié)果。但高于李文靜等[21]研究油田居住區(qū)附近的土壤、張秀秀等[22]在調(diào)查南京農(nóng)田土壤和Jia等[23]在研究上海農(nóng)業(yè)土壤時(shí)的PAHs含量。同時(shí),本次土壤樣品中有部分樣品的PAHs的含量超過歐洲農(nóng)業(yè)土壤的控制標(biāo)準(zhǔn)[24](中度污染,600~1 000 μg/kg;輕度污染,200~600 μg/kg)處于輕度到中度污染水平。煙葉樣品中16種PAHs總含量平均值低于Tesi等[25]在對(duì)尼日利亞市場(chǎng)的苦葉菜和南瓜葉中PAHs含量的檢測(cè)結(jié)果,以及趙體躍等[26]對(duì)廣西水生蔬菜中PAHs的含量開展研究時(shí)所檢測(cè)的含量,而高于Jia等[23]在研究上海本地蔬菜中PAHs的含量、葛蔚等[27]在研究葉類和瓜果類蔬菜時(shí)和龍明華等[28]對(duì)南寧市市售菜心進(jìn)行研究時(shí)得出的結(jié)果。這可能是因?yàn)镻AHs可通過大氣沉降吸附于植物表面[25],新鮮的煙葉有比蔬菜更為寬大的表面積而易于附著污染物。
而多環(huán)芳烴可能被輸送到遠(yuǎn)離其來源的地方并在土壤中積累,隨后通過食物鏈或各種其他暴露途徑轉(zhuǎn)移至人體[29],最終對(duì)人類健康構(gòu)成長期危害[30]。煙農(nóng)對(duì)土壤和煙葉中多環(huán)芳烴的攝入量表現(xiàn)為經(jīng)口攝入途徑最大,3種暴露途徑造成的致癌和非致癌攝入量總體呈現(xiàn)出經(jīng)口攝入gt;皮膚攝入gt;呼吸攝入的特點(diǎn)。這與嚴(yán)青云等[9]對(duì)典型塑料廠土壤中PAHs對(duì)人體產(chǎn)生的健康風(fēng)險(xiǎn)時(shí)得出的結(jié)論一致。Chen等[31]研究指出飲馬河流域土壤中PAHs的暴露以經(jīng)口攝入途徑為主和Hu等[32]在評(píng)估三峽水庫區(qū)土壤PAHs對(duì)人體的暴露特征時(shí)得出經(jīng)口攝入途徑大于皮膚攝入途徑的結(jié)果與本研究結(jié)論保持一致。不同煙區(qū)煙農(nóng)對(duì)土壤和煙葉中PAHs的攝入特征不同,最大攝入值出現(xiàn)在孟溪采樣區(qū)域,這可能是因?yàn)樗商矣胸S富的錳礦資源[33],在進(jìn)行資源開采利用等工業(yè)活動(dòng)中[34],PAHs進(jìn)入環(huán)境介質(zhì)中并通過大氣沉降進(jìn)入土壤[35]和植物表面[25],而孟溪離錳礦開采場(chǎng)較近,故煙農(nóng)對(duì)PAHs的攝入量較高。
本研究中,土壤和煙葉中PAHs的非致癌風(fēng)險(xiǎn)值均處于美國環(huán)保署建議的臨界值之下,同樣,從長春市玉米-土壤體系中[36]和天津農(nóng)村土壤[37]采集的中多環(huán)芳烴的暴露水平。除了有90%的取樣點(diǎn)中苯并(a)芘處于低風(fēng)險(xiǎn)水平以外(CCRIlt;1×10-4),其余致癌性的PAHs產(chǎn)生的致癌風(fēng)險(xiǎn)值均處于特低風(fēng)險(xiǎn)水平。這與沈陽城市土壤[38]、武漢農(nóng)業(yè)土壤[39]、勝利油田的周邊居住區(qū)土壤[21]以及日照市化工園區(qū)土壤中致癌性PAHs產(chǎn)生的風(fēng)險(xiǎn)值處于同一水平[40]。
綜上,松桃煙區(qū)土壤中16種PAHs輕度到中度污染水平。煙區(qū)土壤和煙葉中16種PAHs對(duì)煙農(nóng)的暴露方式主要為經(jīng)口和皮膚攝入途徑;PAHs在土壤和煙葉中對(duì)煙農(nóng)產(chǎn)生的非致癌風(fēng)險(xiǎn)值處于美國環(huán)保署建議的臨界值之下,處于可接受水平,但這并不意味著沒有任何風(fēng)險(xiǎn);絕大多數(shù)取樣點(diǎn)位的致癌性PAHs已經(jīng)給煙農(nóng)造成了低風(fēng)險(xiǎn)的健康影響,尤其是苯并(a)芘應(yīng)該受到重點(diǎn)關(guān)注。本研究結(jié)果有助于了解土壤和煙葉中多環(huán)芳烴的危害特征,以及非食品類作物中PAHs的主要暴露特點(diǎn),從而為提高煙農(nóng)的自我防范意識(shí),并為監(jiān)管者制定環(huán)境介質(zhì)中多環(huán)芳烴的控制標(biāo)準(zhǔn)提供參考。
參考文獻(xiàn)(reference):
[1]張俊葉,俞菲,楊靖宇,等.南京城市林業(yè)土壤多環(huán)芳烴累積特征及其與黑炭的相關(guān)性[J].南京林業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版),2018,42(2):75-80.ZHANG J Y,YU F,YANG J Y,et al.Accumulation of polycyclic aromatic hydrocarbons and their correlation with black carbon in urban forest soil of Nanjing City,China[J].J Nanjing For Univ (Nat Sci Ed),2018,42(2):75-80.DOI: 10.3969/j.issn.1000-2006.201704010.
[2]SHUKLA S,KHAN R,BHATTACHARYA P,et al.Concentration,source apportionment and potential carcinogenic risks of polycyclic aromatic hydrocarbons (PAHs) in roadside soils[J].Chemosphere,2022,292:133413.DOI: 10.1016/j.chemosphere.2021.133413.
[3]HU T P,MAO Y,KE Y P,et al.Spatial and seasonal variations of PAHs in soil,air,and atmospheric bulk deposition along the plain to mountain transect in Hubei Province,central China:air-soil exchange and long-range atmospheric transport[J].Environ Pollut,2021,291:118139.DOI: 10.1016/j.envpol.2021.118139.
[4]TUSHER T R,SARKER M E,NASRIN S,et al.Contamination of toxic metals and polycyclic aromatic hydrocarbons (PAHs) in rooftop vegetables and human health risks in Bangladesh[J].Toxin Rev,2021,40(4):736-751.DOI: 10.1080/15569543.2020.1767650.
[5]QU Y J,GONG Y W,MA J,et al.Potential sources,influencing factors,and health risks of polycyclic aromatic hydrocarbons (PAHs) in the surface soil of urban parks in Beijing,China[J].Environ Pollut,2020,260:114016.DOI: 10.1016/j.envpol.2020.114016.
[6]WANG C H,WANG J X,ZHOU S L,et al.Polycyclic aromatic hydrocarbons and heavy metals in urban environments:concentrations and joint risks in surface soils with diverse land uses[J].Land Degrad Dev,2020,31(3):383-391.DOI: 10.1002/ldr.3456.
[7]CAI C Y,LI J Y,WU D,et al.Spatial distribution,emission source and health risk of parent PAHs and derivatives in surface soils from the Yangtze River Delta,eastern China[J].Chemosphere,2017,178:301-308.DOI: 10.1016/j.chemosphere.2017.03.057.
[8]RANJBAR J A,RIYAHI B A,SHADMEHRI T A.Comprehensive and comparative ecotoxicological and human risk assessment of polycyclic aromatic hydrocarbons (PAHs) in reef surface sediments and coastal seawaters of Iranian Coral Islands,Persian Gulf[J].Ecotoxicol Environ Saf,2017,145:640-652.DOI: 10.1016/j.ecoenv.2017.08.016.
[9]嚴(yán)青云,楊耀帥,羅海鯤,等.典型塑料生產(chǎn)加工地塊土壤鄰苯二甲酸酯及多環(huán)芳烴污染特征和健康風(fēng)險(xiǎn)[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2022,41(2):357-366. YAN Q Y,YANG Y S,LUO H K,et al.Pollution characteristics and health assessment of phthalate esters and polycyclic aromatic hydrocarbon in soils of plastic-producing site[J].J Agric Resour Environ,2022,41(2):357-366.DOI: 10.11654/jaes.2021-1452.
[10]OKONA-MENSAH K B,BATTERSHILL J,BOOBIS A,et al.An approach to investigating the importance of high potency polycyclic aromatic hydrocarbons (PAHs) in the induction of lung cancer by air pollution[J].Food Chem Toxicol,2005,43(7):1103-1116.DOI: 10.1016/j.fct.2005.03.001.
[11]LEE H J,VILLAUME J,CULLEN D C,et al.Monitoring and classification of PAH toxicity using an immobilized bioluminescent bacteria[J].Biosens Bioelectron,2003,18(5/6):571-577.DOI: 10.1016/S0956-5663(03)00039-3.
[12]KUBINCOV P,SYCHROV E,RAKA J,et al.Polycyclic aromatic hydrocarbons and endocrine disruption:role of testicular gap junctional intercellular communication and connexins[J].Toxicol Sci,2019,169(1):70-83.DOI: 10.1093/toxsci/kfz023.
[13]MA J,LU Y G,TENG Y,et al.Soils and tobacco polycyclic aromatic hydrocarbon characterization and associated health risk assessment in Qingzhen City,southwest China[J].J Soil Sediment,2023,23(1):273-287.DOI: 10.1007/s11368-022-03284-y.
[14]馬軍,滕應(yīng),陸引罡,等.植煙土壤中16種多環(huán)芳烴的洗脫凈化技術(shù)及含量測(cè)定[J].環(huán)境污染與防治,2017,39(3):258-262,267. MA J,TENG Y,LU Y G,et al.Elution and purification of 16 polycyclic aromatic hydrocarbons in tobacco-planting soil and the content determination[J].Environ Pollut Control,2017,39(3):258-262,267.DOI: 10.15985/j.cnki.1001-3865.2017.03.007.
[15]馬軍,滕應(yīng),陸引罡,等.四通道色譜分離儀凈化/氣相色譜-質(zhì)譜法測(cè)定煙葉中的多環(huán)芳烴[J].分析測(cè)試學(xué)報(bào),2016,35(8):968-973. MA J,TENG Y,LU Y G,et al.Determination of" 16 polycyclic aromatic hydrocarbons in tobacco (Nicotiana tabacum L.) by four-channel chromatograph purification coupled with gas chromatography-mass spectrometry[J].J Instrum Anal,2016,35(8):968-973.DOI: 10.3969/j.issn.1004-4957.2016.08.007.
[16]HUI K L,KOU B,JIANG Y H,et al.Nitrogen addition increases the ecological and human health risks of PAHs in different fractions of soil in sewage-irrigated area[J].Sci Total Environ,2022,811:151420.DOI: 10.1016/j.scitotenv.2021.151420.
[17]KALISA E,NAGATO E G,BIZURU E,et al.Characterization and risk assessment of atmospheric PM2.5 and PM10 particulate-bound PAHs and NPAHs in Rwanda,central-east Africa[J].Environ Sci Technol,2018,52(21):12179-12187.DOI: 10.1021/acs.est.8b03219.
[18]WANG J,ZHANG X F,LING W T,et al.Contamination and health risk assessment of PAHs in soils and crops in industrial areas of the Yangtze River Delta region,China[J].Chemosphere,2017,168:976-987.DOI: 10.1016/j.chemosphere.2016.10.113.
[19]AMBADE B,SETHI S S,CHINTALACHERUVU M R.Distribution,risk assessment,and source apportionment of polycyclic aromatic hydrocarbons (PAHs) using positive matrix factorization (PMF) in urban soils of east India[J].Environ Geochem Health,2023,45(2):491-505.DOI: 10.1007/s10653-022-01223-x.
[20]王飛,趙穎.太原市污灌區(qū)農(nóng)田土壤中多環(huán)芳烴污染特征及生態(tài)風(fēng)險(xiǎn)評(píng)價(jià)[J].生態(tài)環(huán)境學(xué)報(bào),2022,31(1):160-169. WANG F,ZHAO Y.Pollution characteristics and risk assessment of PAHs in agricultural soil from sewage irrigation area of Taiyuan City,Shanxi Province[J].Ecol Environ Sci,2022,31(1):160-169.DOI: 10.16258/j.cnki.1674-5906.2022.01.018.
[21]李文靜,李楊,傅曉文,等.油田居住區(qū)土壤中多環(huán)芳烴污染特征與風(fēng)險(xiǎn)評(píng)價(jià):以勝利油田為例[J].科學(xué)技術(shù)與工程,2021,21(22):9634-9643. LI W J,LI Y,F(xiàn)U X W,et al.Distribution and health risks of polycyclic aromatic hydrocarbons in soils of residential areas of an oil field:a case study on Shengli Oilfield,China[J].Sci Technol Eng,2021,21(22):9634-9643.DOI: 10.3969/j.issn.1671-1815.2021.22.063.
[22]張秀秀,盧曉麗,魏宇宸,等.城郊農(nóng)田土壤多環(huán)芳烴污染特征及風(fēng)險(xiǎn)評(píng)價(jià)[J].環(huán)境科學(xué),2021,42(11):5510-5518.ZHANG X X,LU X L,WEI Y C,et al.Pollution characteristics and risk assessment of polycyclic aromatic hydrocarbons in a suburban farmland soil[J].Environ Sci,2021,42(11):5510-5518.DOI: 10.13227/j.hjkx.202103161.
[23]JIA J P,BI C J,ZHANG J F,et al.Atmospheric deposition and vegetable uptake of polycyclic aromatic hydrocarbons (PAHs) based on experimental and computational simulations[J].Atmos Environ,2019,204:135-141.DOI: 10.1016/j.atmosenv.2019.02.030.
[24]MALISZEWSKA-KORDYBACH B,SMRECZAK B,KLIMKOWICZ-PAWLAS A,et al.Monitoring of the total content of polycyclic aromatic hydrocarbons (PAHs) in arable soils in Poland[J].Chemosphere,2008,73(8):1284-1291.DOI: 10.1016/j.chemosphere.2008.07.009.
[25]TESI G O,INIAGHE P O,LARI B,et al.Polycyclic aromatic hydrocarbons (PAHs) in leafy vegetables consumed in southern" Nigeria:concentration,risk assessment and source apportionment[J].Environ Monit Assess,2021,193(7):1-15.DOI: 10.1007/s10661-021-09217-5.
[26]趙體躍,龍明華,喬雙雨,等.廣西水生蔬菜和陸生蔬菜多環(huán)芳烴污染特征[J].生態(tài)與農(nóng)村環(huán)境學(xué)報(bào),2020,36(4):505-514. ZHAO T Y,LONG M H,QIAO S Y,et al.Characteristics of polycyclic aromatic hydrocarbons (PAHs) pollution in aquatic and terrestrial vegetables in Guangxi Province[J].J Ecol Rural Environ,2020,36(4):505-514.DOI: 10.19741/j.issn.1673-4831.2019.0590
[27]葛蔚,程琪琪,柴超,等.青島市城郊蔬菜中多環(huán)芳烴污染特征和健康風(fēng)險(xiǎn)評(píng)估[J].環(huán)境科學(xué)學(xué)報(bào),2017,37(12):4772-4778.GE W,CHENG Q Q,CHAI C,et al.Characteristics of pollution and health risk assessment of polycyclic aromatic hydrocarbons in vegetables from Qingdao suburb[J].Acta Sci Circumstantiae,2017,37(12):4772-4778.DOI: 10.13671/j.hjkxxb.2017.0259.
[28]龍明華,龍彪,梁勇生,等.南寧市蔬菜基地土壤多環(huán)芳烴含量及來源分析[J].中國蔬菜,2017(3):52-57.LONG M H,LONG B,LIANG Y S,et al.Analysis of contents and sources of polycyclic aromatic hydrocarbons in vegetable production base of Nanning City[J].China Veg,2017(3):52-57.DOI: 10.16258/j.cnki.1674-5906.2016.02.019.
[29]LEMIEUX C L,LONG A S,LAMBERT I B,et al.Cancer risk assessment of polycyclic aromatic hydrocarbon contaminated soils determined using bioassay-derived levels of benzo[a]pyrene equivalents[J].Environ Sci Technol,2015,49(3):1797-1805.DOI: 10.1021/es504466b.
[30]GAO P,DA SILVA E,HOU L,et al.Human exposure to polycyclic aromatic hydrocarbons:metabolomics perspective[J].Environ Int,2018,119:466-477.DOI: 10.1016/j.envint.2018.07.017.
[31]CHEN Y N,ZHANG J Q,ZHANG F,et al.Contamination and health risk assessment of PAHs in farmland soils of the Yinma River basin,China[J].Ecotoxicol Environ Saf,2018,156:383-390.DOI: 10.1016/j.ecoenv.2018.03.020.
[32]HU T P,ZHANG J Q,YE C,et al.Status,source and health risk assessment of polycyclic aromatic hydrocarbons (PAHs) in soil from the water-level-fluctuation zone of the Three Gorges Reservoir,China[J].J Geochem Explor,2017,172:20-28.DOI: 10.1016/j.gexplo.2016.09.012.
[33]金修齊,黃代寬,趙書晗,等.松桃河流域氨氮和錳污染特征及生態(tài)風(fēng)險(xiǎn)評(píng)價(jià)[J].中國環(huán)境科學(xué),2021,41(1):385-395. JIN X Q,HUANG D K,ZHAO S H,et al.Pollution characteristics and ecological risk assessment of ammonia nitrogen and manganese in Songtao River basin of Guizhou Province,China[J].China Environ Sci,2021,41(1):385-395.DOI: 10.3969/j.issn.1000-6923.2021.01.044
[34]SUN T,WANG Y H,TIAN J M,et al.Characteristics of PAHs in soils under different land-use types and their associated health risks in the northern Taihu basin,China[J].J Soil Sediment,2022,22(1):134-145.DOI: 10.1007/s11368-021-03050-6.
[35]齊曉寶,黃沈發(fā),沙晨燕,等.鋼鐵工業(yè)區(qū)下風(fēng)向土壤中多環(huán)芳烴污染特征及源解析[J].環(huán)境科學(xué)研究,2018,31(5):927-934.QI X B,HUANG S F,SHA C Y,et al.Pollution characteristics and source apportionment of polycyclic aromatic hydrocarbons in surface soil of the steel industrial downwind area[J].Res Environ Sci,2018,31(5):927-934.DOI: 10.13198/j.issn.1001-6929.2018.02.04.
[36]CHEN Y N,ZHANG J Q,MA Q Y,et al.Human health risk assessment and source diagnosis of polycyclic aromatic hydrocarbons (PAHs) in the corn and agricultural soils along main roadside in Changchun,China[J].Hum Ecol Risk Assess Int J,2016,22(3):706-720.DOI: 10.1080/10807039.2015.1104627.
[37]FAN Y,ZHAO Z S,SHI R G,et al.Urbanization-related changes over the last 20 years in occurrence,sources,and human health risks of soil PAHs in rural Tianjin,China[J].Environ Chem Lett,2021,19(6):3999-4008.DOI: 10.1007/s10311-021-01264-1.
[38]LUO Q,GU L Y,SHAN Y,et al.Distribution,source apportionment,and health risk assessment of polycyclic aromatic hydrocarbons in urban soils from Shenyang,China[J].Environ Geochem Health,2020,42(7):1817-1832.DOI: 10.1007/s10653-019-00451-y.
[39]GERESLASSIE T,WORKINEH A,LIU X N,et al.Occurrence and ecological and human health risk assessment of polycyclic aromatic hydrocarbons in soils from Wuhan,central China[J].Int J Environ Res Public Health,2018,15(12):2751.DOI: 10.3390/ijerph15122751.
[40]郭瑾,葛蔚,柴超,等.化學(xué)工業(yè)區(qū)周邊土壤中多環(huán)芳烴含量、來源及健康風(fēng)險(xiǎn)評(píng)估[J].環(huán)境化學(xué),2018,37(2):296-309.GUO J,GE W,CHAI C,et al.Concentrations,sources,and health risk of polycyclic aromatic hydrocarbons in soils around chemical plants[J].Environ Chem,2018,37(2):296-309.DOI: 10.7524/j.issn.0254-6108.2017070603.
(責(zé)任編輯 孟苗婧 鄭琰燚)
收稿日期Received:2022-04-12""" 修回日期Accepted:2022-05-11
基金項(xiàng)目:銅仁市科技計(jì)劃項(xiàng)目(銅市科研〔2023〕43號(hào));國家自然科學(xué)基金項(xiàng)目(22166031);湖南省研究生科研創(chuàng)新項(xiàng)目(CX20220514);貴州省科技計(jì)劃項(xiàng)目(黔科合基礎(chǔ)-ZK〔2021〕一般224)。
第一作者:馬軍(junma2015@qq.com),講師。*通信作者:王勇(wy7185299@126.com),副教授。
引文格式:馬軍,譚長銀,王勇,等.
土壤和煙葉中多環(huán)芳烴的暴露特征及健康風(fēng)險(xiǎn)評(píng)估[J]. 南京林業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版),2024,48(4):200-208.
MA J,TAN C Y,WANG Y,et al.
The exposure characteristic and health risk assessment of polycyclic aromatic hydrocarbons in soils and tobacco plants
[J]. Journal of Nanjing Forestry University (Natural Sciences Edition),2024,48(4):200-208.
DOI:10.12302/j.issn.1000-2006.202204028.