【摘要】 目的 構(gòu)建超早產(chǎn)兒生后不同日齡發(fā)生中/重度支氣管肺發(fā)育不良(BPD)的預(yù)測(cè)模型。方法 回顧性選取2017年9月至2019年12月期間在廣州醫(yī)科大學(xué)附屬第三醫(yī)院出生、胎齡lt;28周且診斷為BPD的超早產(chǎn)兒為研究對(duì)象,分為輕度BPD和中/重度BPD 2組,將單因素分析中P lt; 0.05變量納入多因素Logistic回歸進(jìn)行風(fēng)險(xiǎn)評(píng)估分析,建立早期預(yù)測(cè)模型,進(jìn)行驗(yàn)證并評(píng)估預(yù)測(cè)效能。結(jié)果 共納入研究對(duì)象90例,其中輕度BPD組和中/重度BPD組分別為58例(64.4%) 和32例(35.6%)。多因素Logistic回歸分析結(jié)果顯示,超早產(chǎn)兒生后7日齡影響中/重度BPD發(fā)生的因素有出生體質(zhì)量、孕母孕前BMI≥25 kg/m2、出生后1分鐘Apgar評(píng)分≤7分和肺炎。14日齡危險(xiǎn)因素有子癇前期、孕母孕前BMI≥25 kg/m2、肺炎和具有血流動(dòng)力學(xué)意義動(dòng)脈導(dǎo)管未閉(hsPDA)。28日齡危險(xiǎn)因素有子癇前期、孕母孕前BMI≥25 kg/m2、有創(chuàng)機(jī)械通氣時(shí)間和hsPDA。生后7、14和28日齡預(yù)測(cè)模型的ROC曲線(xiàn)下AUC值分別為0.864(95%CI 0.776~0.952)、0.860(95%CI 0.774~0.946)和0.863(95%CI 0.783~0.944)?;诟呶R蛩貥?gòu)建列線(xiàn)圖模型,校準(zhǔn)后曲線(xiàn)接近參考線(xiàn),預(yù)測(cè)值與實(shí)際值接近,模型具有較好的校準(zhǔn)度。結(jié)論 超早產(chǎn)兒生后第7、14、28日齡時(shí)發(fā)生中/重度BPD的危險(xiǎn)因素略有差別,主要集中在出生體質(zhì)量、孕母孕前BMI≥25 kg/m2、生后1分鐘Apgar評(píng)分≤7分、肺炎、子癇前期、hsPDA和有創(chuàng)機(jī)械通氣天數(shù)等指標(biāo),根據(jù)不同因素所構(gòu)建的不同時(shí)間點(diǎn)的預(yù)測(cè)模型均具有較好的預(yù)測(cè)價(jià)值,可以為臨床提供指導(dǎo)。
【關(guān)鍵詞】 超早產(chǎn)兒;支氣管肺發(fā)育不良;危險(xiǎn)因素;預(yù)測(cè)模型
Constructing prediction models for the moderate/severe bronchopulmonary dysplasia in extremely preterm infants at different days after birth
GU Jian, FAN Yuwei, LONG Huan , XIA Changshun, FAN Siying, LI Yuan, ZHONG Yi, ZHONG Xinqi
(Department of Neonatology, the Third Affiliated Hospital, Guangzhou Medical University, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Pronvincial Clinical Research Center for Obstetrics and Gynecology,Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, Guangzhou 510150, China)
Corresponding author: ZHONG Xinqi, E-mail: zhongxq2016@gzhmu.edu.cn
【Abstract】 Objective To construct prediction models for moderate/severe bronchopulmonary dysplasia (BPD) in extremely preterm infants at different days after birth. Methods The preterm infants with BPD at a gestational age of lt; 28 weeks at the Third Affiliated Hospital of Guangzhou Medical University from September 2017 to December 2019 were retrospectively selected. They were divided into the mild-BPD group and moderate/severe-BPD group. The significant variables screened by using single-factor analysis were subject to risk assessment analysis by multivariate Logistic regression analysis. Early prediction models were established, and the predictive performance was validated and evaluated. Results Ninety extremely preterm infants were included in this study, including 58 cases (64.4%) in the mild-BPD group and 32 cases (35.6%) in the moderate/severe-BPD group. Multiple Logistic regression analysis showed birth weight, maternal pre-pregnancy body mass index (BMI) ≥ 25 kg/m2, 1-minute Apgar score≤7 after birth and pneumonia were the influencing factors for moderate/severe BPD at 7 days after birth. Preeclampsia, maternal pre-pregnancy BMI≥
25 kg/m2, pneumonia and hsPDA were the risk factors for moderate/severe BPD at 14 days postnatal age. Preeclampsia, maternal pre-pregnancy BMI≥25 kg/m2, days of invasive mechanical ventilation and hsPDA were the risk factors for moderate/severe BPD at 28 days after birth. The area under the receiver operating characteristic (ROC) curve of the prediction models for 7, 14 and 28 days after birth were 0.864 (95% CI 0.776-0.952), 0.860 (95% CI 0.774-0.946) and 0.863 (95% CI 0.783-0.944), respectively. A nomogram was constructed based on high risk factors, the calibrated curve was close to the reference line, and the predicted value was close to the actual value, indicating good calibration of the model. Conclusions " The risk factors for moderate/severe BPD in preterm infants vary slightly on 7, 14 and 28 days after birth, mainly the birth weight, maternal pre-pregnancy BMI ≥ 25 kg/m2, 1-minute Apgar score≤7, pneumonia, preeclampsia, hsPDA and days of invasive mechanical ventilation. The predictive models based on different factors at different time points have good predictive value, which can provide guidance for clinical practice.
【Key words】 Extremely preterm infant; Bronchopulmonary dysplasia; Risk factor; Prediction model
近年來(lái)隨著圍產(chǎn)救治技術(shù)的不斷提高,出生胎齡lt;28周的超早產(chǎn)兒存活率呈上升趨勢(shì),而支氣管肺發(fā)育不良(bronchopulmonary dysplasia, BPD)作為早產(chǎn)兒中常見(jiàn)的一種慢性肺部疾病,在超早產(chǎn)兒中的發(fā)生率高達(dá)50%~80%,且嚴(yán)重程度逐年升高[1-2]。中/重度BPD患兒發(fā)生心肺功能和神經(jīng)行為發(fā)育異常的可能性增加,影響全生命周期中的生存質(zhì)量[3]。目前在糾正胎齡36周時(shí)才對(duì)BPD進(jìn)行嚴(yán)重程度的分型[4],這一診斷時(shí)間節(jié)點(diǎn)對(duì)于實(shí)施臨床治療存在一定的滯后性,給臨床早期識(shí)別高?;純翰⒓皶r(shí)采取干預(yù)措施增加了難度,也導(dǎo)致中/重度BPD發(fā)生率及其并發(fā)癥增多[5-6]。如果能夠開(kāi)發(fā)出診斷節(jié)點(diǎn)前穩(wěn)定可靠的預(yù)測(cè)模型,將有助于早期識(shí)別和干預(yù),減輕病情嚴(yán)重程度。
盡管目前已有研究結(jié)合實(shí)驗(yàn)室檢測(cè)因子等構(gòu)建了模型,但受臨床可操作性等局限性影響并未得到廣泛的應(yīng)用[7-8]。此外,大部分研究?jī)H集中在生后單一時(shí)間點(diǎn)的預(yù)測(cè)模型構(gòu)建,不同時(shí)間點(diǎn)中/重度BPD發(fā)生風(fēng)險(xiǎn)的預(yù)測(cè)模型研究相對(duì)缺乏[9-10]。無(wú)法通過(guò)在不同時(shí)間節(jié)點(diǎn)風(fēng)險(xiǎn)模型的縱向比對(duì)中發(fā)現(xiàn)疾病預(yù)測(cè)風(fēng)險(xiǎn)的變化趨勢(shì),及時(shí)識(shí)別出高危超早產(chǎn)兒,并適時(shí)采用臨床干預(yù)方案,以獲取最大效益。
本研究通過(guò)綜合更多產(chǎn)前、產(chǎn)時(shí)、產(chǎn)后早期易于獲取的臨床數(shù)據(jù),預(yù)測(cè)超早產(chǎn)兒在生后不同時(shí)間節(jié)點(diǎn)發(fā)生中/重度BPD的風(fēng)險(xiǎn),以期為臨床早期預(yù)警、早期干預(yù)提供更好的方向和思路。
1 對(duì)象與方法
1.1 研究對(duì)象
回顧性選取2017年9月至2019年12月于我院出生并在新生兒科住院治療的162例超早產(chǎn)兒,并根據(jù)納入標(biāo)準(zhǔn)和排除標(biāo)準(zhǔn)納入90例BPD患兒作為本次研究對(duì)象。納入標(biāo)準(zhǔn):①出生胎齡lt;28周;②生后1 d內(nèi)入院;③住院天數(shù)gt;28 d并診斷為BPD。排除標(biāo)準(zhǔn):①有遺傳代謝、染色體異常疾?。虎谝蚱渌蚧蚣覍僖筠D(zhuǎn)院者;③有嚴(yán)重先天性畸形;④家屬簽署放棄積極搶救同意書(shū)后死亡或因病情危重死亡者;⑤簽字出院者;⑥孕母或早產(chǎn)兒臨床資料缺失。
BPP的診斷采用美國(guó)國(guó)家兒童健康生長(zhǎng)發(fā)育研究所(NICHD)于2001年提出的標(biāo)準(zhǔn)[4]:對(duì)于氧依賴(lài)(gt;21%)≥28 d的新生兒診斷為BPD。出生胎齡lt; 32周BPP患兒在糾正胎齡36周或出院時(shí)進(jìn)行分度:不需吸氧者為輕度,需要吸入lt; 30%氧濃度為中度,需要吸入氧濃度≥30%或需正壓通氣者為重度。最后根據(jù)標(biāo)準(zhǔn)分為輕度BPD組(n = 58)和中/重度BPD組(n = 32)。
本研究已通過(guò)廣州醫(yī)科大學(xué)附屬第三醫(yī)院倫理委員會(huì)的審批(批件號(hào):2023年第082號(hào)),且研究對(duì)象家屬均已簽署知情同意書(shū)。
1.2 資料收集
根據(jù)文獻(xiàn)報(bào)道和臨床經(jīng)驗(yàn),選擇與BPD發(fā)生可能相關(guān)的產(chǎn)前、產(chǎn)時(shí)、產(chǎn)后因素,包括孕母及新生兒臨床特征。
孕母資料:孕母年齡、常住地、孕前體質(zhì)量指數(shù)(body mass index,BMI)、是否使用產(chǎn)前激素、是否為初次妊娠、是否患有子癇前期、妊娠期糖尿病、急性絨毛膜羊膜炎、胎膜早破、胎兒宮內(nèi)生長(zhǎng)受限、宮內(nèi)窘迫。
超早產(chǎn)兒出生情況:出生胎齡、出生體質(zhì)量、性別、分娩方式、是否為小于胎齡兒、身長(zhǎng)、頭圍、出生時(shí)Apgar評(píng)分。
超早產(chǎn)兒住院期間相關(guān)情況:有創(chuàng)機(jī)械通氣天數(shù)、咖啡因使用天數(shù)、抗生素使用天數(shù)、輸血次數(shù)、新生兒肺炎、敗血癥、具有血流動(dòng)力學(xué)意義動(dòng)脈導(dǎo)管未閉(hemodynamically significant patent ductus arteriosus,hsPDA)、肺動(dòng)脈高壓(pulmonary hypertension,PH)、腦室內(nèi)出血(intraventricular hemorrhage,IVH)、壞死性小腸結(jié)腸炎(necrotizing enterocolitis,NEC)。其中hsPDA診斷標(biāo)準(zhǔn)為動(dòng)脈導(dǎo)管直徑≥1.5 mm,左心房與主動(dòng)脈根部比值gt;1.4,肺動(dòng)脈舒張期存在反流,同時(shí)合并以下臨床癥狀中的3項(xiàng)及以上:①心前區(qū)雜音,②心前區(qū)搏動(dòng)增強(qiáng),③水沖脈,④心率gt;180次/分,⑤呼吸情況惡化,⑥胸部X線(xiàn)片顯示肺血管影增多、心影增大或存在肺水腫[11]。其余疾病診斷參考第5版《實(shí)用新生兒科》,所有疾病診斷的發(fā)生及持續(xù)時(shí)間均以生后7、14和28日齡為界進(jìn)行資料收集。
1.3 統(tǒng)計(jì)學(xué)處理
采用 SPSS 26.0和R 4.1.3軟件進(jìn)行數(shù)據(jù)整理和分析。符合正態(tài)分布的計(jì)量資料以表示,2組間比較采用獨(dú)立樣本t檢驗(yàn);不符合正態(tài)分布的計(jì)量資料以M(P25,P75)表示,2組間比較采用Mann-Whitney U檢驗(yàn)。計(jì)數(shù)資料用n(%)表示,組間比較采用χ 2檢驗(yàn)或Fisher確切概率法。對(duì)組間有統(tǒng)計(jì)學(xué)差異的變量進(jìn)行共線(xiàn)性診斷,若兩個(gè)自變量間存在多重共線(xiàn)性則基于理論依據(jù)剔除引起共線(xiàn)性的因素之一,結(jié)合提高模型預(yù)測(cè)能力的原則確定最強(qiáng)預(yù)測(cè)因素。采用多因素Logistic回歸分析計(jì)算最終預(yù)測(cè)模型,并使用列線(xiàn)圖工具進(jìn)行模型的可視化構(gòu)建,使用bootstrap(1 000次)重復(fù)抽樣方法進(jìn)行模型的內(nèi)部驗(yàn)證,采用Hosmer-Lemeshow進(jìn)行模型擬合度評(píng)估。繪制受試者操作特征(receiver operator characteristic,ROC)曲線(xiàn)并
計(jì)算出曲線(xiàn)下面積(area under the curve,AUC),采用校準(zhǔn)曲線(xiàn)對(duì)預(yù)測(cè)模型的準(zhǔn)確性進(jìn)行評(píng)價(jià)。以雙側(cè)P lt; 0.05為差異有統(tǒng)計(jì)學(xué)意義。
2 結(jié) 果
2.1 輕度BPD組與中/重度BPD組患兒出生情況及其孕母資料比較
中/重度BPD組孕母孕前BMI≥25 kg/m2所占比例、子癇前期發(fā)病率、患兒生后1分鐘Apgar評(píng)分≤7分的比例高于輕度BPD組,出生體質(zhì)量、出生身長(zhǎng)、出生頭圍低于輕度BPD組(P均lt;0.05)。其余指標(biāo)比較差異均無(wú)統(tǒng)計(jì)學(xué)意義(P均gt; 0.05)。見(jiàn)表1。
2.2 輕度BPD組與中/重度BPD組超早產(chǎn)兒生后不同日齡住院期間治療與疾病發(fā)生情況比較
在生后7、14和28日齡時(shí),中/重度組患兒患肺炎、hsPDA比例均高于輕度BPD組患兒,有創(chuàng)機(jī)械通氣時(shí)間長(zhǎng)于輕度BPD組患兒,咖啡因使用時(shí)間少于輕度BPD患兒(P均lt; 0.05)。在生后28日齡時(shí),中/重度組BPD患兒抗生素使用時(shí)間和輸血次數(shù)多于輕度BPD患兒(P均lt; 0.05)。見(jiàn)表2。
2.3 生后不同日齡發(fā)生超早產(chǎn)兒中/重度BPD的多因素Logistic回歸分析及預(yù)測(cè)模型
在生后7、14和28日齡時(shí),分別將組間差異有統(tǒng)計(jì)學(xué)意義的因素作為自變量(經(jīng)檢驗(yàn),不存在多重共線(xiàn)性),是否中/重度BPD為因變量,經(jīng)Logistic(逐步回歸法)回歸分析,結(jié)果顯示:生后7日齡時(shí),出生體質(zhì)量、孕母孕前BMI≥25 kg/m2、
出生時(shí)1分鐘Apgar評(píng)分≤7分和肺炎是中/重度BPD發(fā)生的風(fēng)險(xiǎn)因素。生后14日齡時(shí),孕母子癇前期、孕前BMI≥25 kg/m2與患兒肺炎和hsPDA是中/重度BPD發(fā)生的風(fēng)險(xiǎn)因素。生后28日齡時(shí),孕母子癇前期、孕前BMI≥25 kg/m2與患兒有創(chuàng)機(jī)械通氣時(shí)間和hsPDA是中/重度BPD發(fā)生的風(fēng)險(xiǎn)因素。見(jiàn)表3~5。
根據(jù)上述分析結(jié)果分別建立超早產(chǎn)兒生后7、14和28日齡中/重度BPD預(yù)測(cè)模型,ROC AUC值分別為0.864(95%CI 0.776~0.952)、0.860(95%CI 0.774~0.946)和0.863(95%CI 0.783~0.944)
使用bootstrap(1 000次)重復(fù)抽樣進(jìn)行內(nèi)部驗(yàn)證,校準(zhǔn)后曲線(xiàn)接近參考線(xiàn),預(yù)測(cè)值與實(shí)際值接近,模型具有較好的校準(zhǔn)度且Hosmer-Lemeshow檢驗(yàn)?zāi)P蛿M合良好。
3 討 論
BPD是28周以下超早產(chǎn)兒中最常見(jiàn)的并發(fā)癥之一,在中/重度BPD患兒中,預(yù)后更差,由此帶來(lái)的家庭負(fù)擔(dān)和醫(yī)療成本也在不斷增加[12]。目前國(guó)內(nèi)缺乏針對(duì)超早產(chǎn)兒生后不同時(shí)間節(jié)點(diǎn)發(fā)生中/重度BPD影響因素的相關(guān)研究[13-14]。本文通過(guò)生后28日齡內(nèi)不同時(shí)間節(jié)點(diǎn)易于收集獲取的臨床數(shù)據(jù)來(lái)構(gòu)建模型,并預(yù)測(cè)在超早產(chǎn)兒這一特殊群體中發(fā)生中/重度BPD的風(fēng)險(xiǎn)程度。在我們結(jié)果中發(fā)現(xiàn)了超早產(chǎn)兒生后7、14、28日齡時(shí)發(fā)生中/重度BPD的危險(xiǎn)因素略有差別,但主要集中在出生體質(zhì)量、孕母孕前BMI≥25 kg/m2、生后1分鐘Apgar評(píng)分≤7分、肺炎、子癇前期、hsPDA和有創(chuàng)機(jī)械通氣時(shí)間等指標(biāo)。而在生后7、14和28日齡時(shí),預(yù)測(cè)模型ROC曲線(xiàn)下面積都達(dá)到了0.8以上,靈敏度和特異度均較高,證明了模型能夠在生后不同日齡的超早產(chǎn)兒中較好地篩選出嚴(yán)重程度更高的BPD患兒,可以為臨床提供指導(dǎo)。
Sharma等[15]在超早產(chǎn)兒生后14和28日齡的模型中發(fā)現(xiàn)出生體質(zhì)量、性別和機(jī)械通氣時(shí)間是影響中/重度BPD發(fā)生的重要因素。而Valenzuela-
Stutman等[16]在對(duì)極低出生體質(zhì)量?jī)喝后w的研究中發(fā)現(xiàn)生后7日齡時(shí)出生體質(zhì)量、機(jī)械通氣以及動(dòng)脈導(dǎo)管未閉是影響中/重度BPD發(fā)生的重要因素,但在生后14日齡時(shí)機(jī)械通氣時(shí)間相對(duì)于出生體質(zhì)量預(yù)測(cè)價(jià)值更大。另一項(xiàng)評(píng)估不同程度BPD發(fā)生的高危因素預(yù)測(cè)作用的研究顯示,當(dāng)綜合hsPDA和機(jī)械通氣變量時(shí),預(yù)測(cè)模型的準(zhǔn)確率將會(huì)進(jìn)一步提高[17]。我們的研究表明,在生后不同日齡,這些變量的不同組合都會(huì)對(duì)BPD嚴(yán)重程度的發(fā)生存在一定的影響。但隨著日齡的增長(zhǎng),出生體質(zhì)量以及生后1分鐘低Apgar評(píng)分對(duì)于模型影響比重降低,而有創(chuàng)機(jī)械通氣時(shí)間、hsPDA以及肺炎在生后14日齡以及28日齡的預(yù)測(cè)模型中占據(jù)了重要作用。根據(jù)以往研究,呼吸機(jī)輔助通氣中不合適的壓力或容積供給會(huì)對(duì)肺泡造成損害,引起過(guò)度的牽拉擴(kuò)張[18],而長(zhǎng)時(shí)間的機(jī)械通氣以及hsPDA中肺充血水腫情況的發(fā)生,使機(jī)體更容易發(fā)生呼吸機(jī)相關(guān)性肺炎,伴發(fā)某些呼吸道病原體感染,這些因素疊加刺激炎癥因子的生成[19-23],加重了肺部損傷,都可能潛在地放大并加重了BPD的嚴(yán)重程度。
另一方面,在對(duì)單個(gè)時(shí)間點(diǎn)BPD影響因素的部分研究中顯示,調(diào)整胎齡與出生體質(zhì)量影響后,子癇前期是BPD發(fā)生的重要危險(xiǎn)因素[24-26]。而在我們研究中發(fā)現(xiàn),子癇前期在生后不同日齡對(duì)增加BPD嚴(yán)重程度的發(fā)生同樣起到了重要作用??赡苁且?yàn)樵诎l(fā)生子癇前期的孕母體內(nèi),除分泌增加的抗血管因子外,血管生成因子、胎盤(pán)生長(zhǎng)因子的表達(dá)失衡也會(huì)對(duì)胎兒肺發(fā)育和血管生長(zhǎng)產(chǎn)生不利影響,并進(jìn)一步加劇了BPD的嚴(yán)重程度[27]。此外,有趣的是在我們對(duì)生后不同日齡的預(yù)測(cè)模型中發(fā)現(xiàn),根據(jù)世界衛(wèi)生組織標(biāo)準(zhǔn)劃分的孕母BMI處于超重或肥胖范圍時(shí),中/重度BPD發(fā)生風(fēng)險(xiǎn)均增高。這對(duì)我們進(jìn)一步挖掘孕母肥胖與BPD發(fā)生之間的潛在關(guān)系提供了重要線(xiàn)索,也許是孕母肥胖與體內(nèi)慢性炎癥產(chǎn)生相關(guān)或者是肥胖導(dǎo)致母體-胎盤(pán)-胎兒循環(huán)體系中氧化應(yīng)激增加,而這些炎癥因子產(chǎn)生和氧化還原失衡都對(duì)胎兒和新生兒肺發(fā)育產(chǎn)生了影響,并加劇了BPD的嚴(yán)重程度[28-30]。
本文存在一定的局限性,由于為單中心研究,而且為避免時(shí)間跨度太大產(chǎn)生對(duì)于診療水平的影響,收集樣本量相對(duì)集中,沒(méi)有進(jìn)一步完善外部驗(yàn)證隊(duì)列研究,但目前我們研究團(tuán)隊(duì)正積極往多中心且更為細(xì)致量化的高質(zhì)量隊(duì)列研究方向努力,以期為模型提供更有力的效能驗(yàn)證證據(jù)。
綜上所述,本研究構(gòu)建了超早產(chǎn)兒這一特殊研究人群生后7、14和28日齡3個(gè)時(shí)間點(diǎn)中/重度BPD發(fā)生風(fēng)險(xiǎn)的預(yù)測(cè)模型,模型均展現(xiàn)出良好的預(yù)測(cè)價(jià)值。并通過(guò)構(gòu)建列線(xiàn)圖實(shí)現(xiàn)模型可視化,有助于臨床更直觀地評(píng)估超早產(chǎn)兒發(fā)生中/重度BPD的風(fēng)險(xiǎn),以實(shí)現(xiàn)早期識(shí)別和篩選高危兒。
參 考 文 獻(xiàn)
[1] ZHU Z C, YUAN L, WANG J, et al. Mortality and morbidity of infants born extremely preterm at tertiary medical centers in China from 2010 to 2019[J]. JAMA Netw Open, 2021, 4(5): e219382. DOI: 10.1001/jamanetworkopen.2021.9382.
[2] TOLL B J, HANSEN N I, BELL E F, et al. Trends in care practices, morbidity, and mortality of extremely preterm neonates, 1993–2012[J]. JAMA, 2015, 314(10): 1039-1051. DOI: 10.1001/jama.2015.10244.
[3] CHAWLA S, NATARAJAN G, SHANKARAN S, et al. Association of neurodevelopmental outcomes and neonatal morbidities of extremely premature infants with differential exposure to antenatal steroids[J]. JAMA Pediatr, 2016, 170(12): 1164-1172. DOI: 10.1001/jamapediatrics.2016.1936.
[4] JOBE A H, BANCALARI E. Bronchopulmonary dysplasia[J]. Am J Respir Crit Care Med, 2001, 163(7): 1723-1729. DOI:10.1164/ajrccm.163.7.2011060.
[5] NINO G, MANSOOR A, PEREZ G F, et al. Validation of a new predictive model to improve risk stratification in bronchopulmonary dysplasia[J]. Sci Rep, 2020, 10(1):613. DOI: 10.1038/s41598-019-56355-5.
[6] GALLINI F, COPPOLA M, DE ROSE D U, et al. Neurodevelopmental outcomes in very preterm infants: the role of severity of bronchopulmonary dysplasia[J]. Early Hum Dev, 2021, 152: 105275. DOI: 10.1016/jear1humdev.2020.105275.
[7] ZHANG Z, CHEN K, PAN D, et al. A predictive model for preterm infants with bronchopulmonary dysplasia based on ferroptosis-related IncRNAs [J]. BMC Pulm Med, 2023, 23(1): 367. DOI: 10.1186/s12890-023-02670-7.
[8] PHILPOT P A, BHANDARI V. Predicting the likelihood of bronchopulmonary dysplasia in premature neonates[J]. Expert Rev Respir Med, 2019, 13(9): 871-884. DOI: 10.1080/17476348.2019.1648215.
[9] ZHANG J, MU K, WEI L, et al. A prediction nomogram for moderate-to-severe bronchopulmonary dysplasia in preterm infantslt;32 weeks of gestation: a multicenter retrospective study[J]. Front Pediatr, 2023, 11: 1102878. DOI: 10.3389/fped.2023.
[10] KOSTEKCI Y E, BAKIRARAR B, OKULU E, et al. An Early prediction model for estimating bronchopulmonary dysplasia in preterm infants[J]. Neonatology, 2023, 120(6): 709-717. DOI: 10.1159/000533299.
[11] MALVIYA M N, OHLSSON A, SHAH S S. Surgical versus medical treatment with cyclooxygenase inhibitors for symptomatic patent ductus arteriosus in preterm infants[J]. Cochrane Database Syst Rev, 2013, 2013(3): CD003951. DOI: 10.1002/14651858.CD003951.
[12] JIANG W X, WANG Y C, SONG H X, et al. Characteristics of home oxygen therapy for preterm infants with bronchopulmonary dysplasia in China: results of a multicenter cohort study[J]. World J Pediatr, 2023, 19(6): 557-567. DOI: 10.1007/s12519-022-00591-9.
[13] LAUGHON M M, LANGER J C, BOSE C L, et al. Prediction of bronchopulmonary dysplasia by postnatal age in extremely premature infants[J]. Am J Respir Crit Care Med, 2011, 183(12): 1715-22. DOI: 10.1164/rccm.201101-0055OC.
[14] HE W, ZHANG L, FENG R, et al. Risk factors and machine learning prediction models for bronchopulmonary dysplasia severity in the Chinese population[J]. World J Pediatr, 2023, 19(6): 568-576. DOI: 10.1007/s12519-022-00635-0.
[15] SHARMA A, XIN Y, CHEN X, et al. Early prediction of moderate to severe bronchopulmonary dysplasia in extremely premature infants[J]. Pediatr Neonatol, 2020, 61(3): 290-299. DOI: 10.1016/j.pedneo.2019.12.001.
[16] VALENZUELA-STUTMAN D, MARSHALL G, TAPIA J L, et al. Bronchopulmonary dysplasia: risk prediction models for very-low- birth-weight infants[J]. J Perinatol, 2019, 39(9): 1275-1281. DOI: 10.1038/s41372-019-0430-x.
[17] BHERING C A, MOCHDECE C C, MOREIRA M E L, et al. Bronchopulmonary dysplasia prediction model for 7-day-old infants[J]. J Pediatr(Rio J), 2007, 83(2): 163-170. DOI: 10.2223/JPED.1599.
[18] DAVIDSON L M, BERKELHAMER S K. Bronchopulmonary dysplasia: chronic lung disease of infancy and long-term pulmonary outcomes[J]. J Clin Med, 2017, 6(1): 4. DOI:10.3390/jcm6010004.
[19] KUSHNAREVA M V, KESHISHYAN E S, BALASHOVA E D. The etiology of neonatal pneumonia, complicated by bronchopulmonary dysplasia[J]. J Neonatal Perinatal Med, 2019, 12(4):429-436. DOI: 10.3233/NPM-17159.
[20] KIM H R, KIM J Y, YUN B, et al. Interstitial pneumonia pattern on day 7 chest radiograph predicts bronchopulmonary dysplasia in preterm infants[J]. BMC Pediatr, 2017, 17(1): 125. DOI: 10.1186/s12887-017-0881-1.
[21] TAN B, ZHANG F, ZHANG X, et al. Risk factors for ventilator-associated pneumonia in the neonatal intensive care unit: a meta-analysis of observational studies[J]. Eur J Pediatr, 2014, 173(4): 427-434. DOI: 10.1007/s00431-014-2278-6.
[22] WILLIS K A, WEEMS M F. Hemodynamically significant patent ductus arteriosus and the development of bronchopulmonary dysplasia[J]. Congenit Heart Dis, 2019, 14(1): 27-32. DOI: 10.1111/chd.12691.
[23] 燕江雪, 曹囡囡, 丁霞, 等. Toll樣受體9在呼吸系統(tǒng)疾病中的作用機(jī)制研究進(jìn)展[J]. 新醫(yī)學(xué), 2022, 53(4): 234-237.DOI: 10.3969/j.issn.0253-9802.2022.04.002.
YAN J X, CAO N N, DING X, et al. Research progress on the mechanism of Toll-like receptor 9 in respiratory diseases[J].
J New Med, 2022, 53(4): 234-237. DOI: 10.3969/j.issn.
0253-9802.2022.04.002.
[24] MORROW L A, WAGNEr B D, INGRAM D A, et al. Antenatal determinants of bronchopulmonary dysplasia and late respiratory disease in preterm infants[J]. Am J Respir Crit Care Med, 2017, 196(3): 364-374. DOI: 10.1164/rccm.201612-2414OC.
[25] ROCHA G, DE LIMA F F, MACHADO A P, et al. Preeclampsia predicts higher incidence of bronchopilmonary dysplasia[J]. J Perinatol, 2018, 38(9): 1165-1173. DOI:10.1038/s41372-018-0133-8.
[26] TAGLIAFERRO T, JAIN D, VANBUSKIRK S, et al. Maternal preeclampsia and respiratory outcomes in extremely premature infants[J]. Pediatr Res, 2019, 85(5): 693-696. DOI:10.1038/s41390-019-0336-5.
[27] HASAN J, BEHARRY K D, VALENCIA A M, et al. Soluble vascular endothelial growth factor receptor 1 in tracheal aspirate fluid of preterm neonates at birth may be predictive of bronchopulmonary dysplasia/chronic lung disease[J]. Pediatrics, 2009, 123(6): 1541-1547. DOI:10.1542/peds.2008-1670.
[28] MAYOR R, MORA A, CARMONA C, et al. Maternal body mass index and risk of bronchopulmonary dysplasia in extremely preterm infants[J]. Am J Perinatol, 2024, 41(8):1033-1038. DOI: 10.1055/a-1787-3297.
[29] CARMICHAEL S L, KAN P, GOULD J B, et al. Maternal prepregnancy body mass index and risk of bronchopulmonary dysplasia[J]. Pediatr Res, 2017, 82(1): 8-13. DOI: 10.1038/pr.2017.90.
[30] RIZZO G S, SEN S. Maternal obesity and immune dysregulation in mother and infant: a review of the evidence[J]. Paediatr Resp Rev, 2015, 16: 251-257. DOI: 10.2223/JPED.1599.
(責(zé)任編輯:鄭巧蘭)