根據(jù)圖形旋轉的概念可知,一個圖形旋轉后的結果是由旋轉中心、旋轉方向和旋轉角決定的,三者缺一不可. 因此,在解決圖形旋轉問題時,同學們一定要明確如下三點: (1)旋轉中心(是定點,還是動點);(2)旋轉方向(是逆時針,還是順時針);(3)旋轉角(是具體數(shù)值,還是一個范圍). 如果三者中有一個不確定,那么旋轉的結果就可能不唯一,這時同學們要注意分類思考,謹防漏解.
一、旋轉中心不確定
例1 如圖1,小紅在學習了三角形相關知識后,對等腰直角三角形進行了探究,在等腰直角三角形ABC中,CA = CB,∠C = 90°,過點B作射線BD⊥AB,垂足為B. 若點P在射線CB上移動,將射線PA繞點P逆時針旋轉90°與BD交于點E,畫出圖形,探究線段BA,BP,BE之間的數(shù)量關系,并說明理由.
解析:旋轉中心P在射線CB上移動,位置不確定,因此分為兩種情況,即P在線段BC上和P在線段CB的延長線上.
(1)當P在線段BC上時,過P作PM[?]AB,交AC于M,如圖2,
∴∠MPC = ∠ABC = 45°,∴∠PMC = ∠MPC = 45°.
∴CP = CM.
∵CA = CB,∴AM = BP.
∵∠APE = 90°,∴∠EPB = ∠PAC = 90° - ∠APC.
∵∠AMP = ∠PBE = 135°,∴△APM≌△PEB,
∴PA = PE,PM = BE.
∵AB = [2](AM + CM),PM = [2CM],
∴AB = [2]BP + BE.
(2)當P在線段CB的延長線上時,
過P作PN⊥BC,交BE于N,如圖3.
∵∠ABD = 90°,∠ABC = 45°,∴∠PBN = 45°,
∴△BPN是等腰直角三角形,∠ABP = 90° + 45° = 135°,
∴BP = NP,∴BN = [2]BP,∠PNB = 45°,
∴∠PNE = ∠ABP = 135°.
∵∠APE = ∠NPB = 90°,∴∠EPN = ∠APB,
∴△EPN ≌ △APB(ASA),∴EN = BA.
∵BE = EN + BN,∴BE = BA + [2]BP.
綜上所述,線段BA,BP,BE之間的數(shù)量關系有兩種情況:當P在線段BC上時,AB = [2]BP + BE;當P在線段CB的延長線上時,BE = BA + [2]BP.
二、旋轉方向不確定
例2 如圖4,△AOB中,OA = 4,OB = 6,AB = 2[7],將△AOB繞原點O旋轉90°,則旋轉后點A的對應點A′的坐標是( ).
A. (4,2)或(-4,2)
B. (2[3],-4)或(-2[3],4)
C. (-2[3],2)或(2[3],-2)
D. (2,-2[3])或(-2,2[3])
解析:旋轉中心和旋轉角度已知,旋轉方向未知,此時要分順時針旋轉和逆時針旋轉兩種情況求解.
過點A作AH⊥OB于H,設OH = m,則BH = 6 - m.
∵AH2 = OA2 - OH2 = AB2 - BH2,∴42 - m2 = (2[7])2 - (6 - m)2,
∴m = 2,∴AH = [42-22] = 2[3],∴A(2,2[3]).
若將△AOB繞原點O順時針旋轉90°,則旋轉后點A的對應點A′(2[3],-2);若將△AOB繞原點O逆時針旋轉90°,則旋轉后點A的對應點A′(-2[3],2). 故選C.
三、旋轉角度不確定
例3 在△ABC中,∠BAC = 90°,AB = AC,線段AB繞點A逆時針旋轉至AD(AD不與AC重合),旋轉角記為α,∠DAC的平分線AE與射線BD相交于點E,連接EC.
(1)如圖5,當α = 20°時,∠AEB的度數(shù)是 .
(2)如圖6,當0° lt; α lt; 90°時,求證:BD + 2CE = [2]AE.
(3)當0° lt; α lt; 180°,AE = 2CE時,請直接寫出[BDED]的值.
解析:(1)∵線段AB繞點A逆時針旋轉α至AD,α = 20°,
∴∠BAD = 20°,AB = AD,∴∠ADB = ∠ABD = 80°.
∵∠BAC = 90°,∴∠DAC = 70°.
∵AE平分∠DAC,∴∠DAE = 35°,
∴∠AEB = ∠ADB - ∠DAE = 80° - 35° = 45°. "故填45°.
(2)∵∠BAC = 90°,AB = AC,
∴將△ACE繞點A順時針旋轉90°到△ABF的位置,如圖7.
∵AB = AC,AD = AB,∴AD = AC.
∵∠DAE = ∠CAE, AE = AE,∴△ADE ≌ △ACE(SAS),
∴∠DEA = ∠CEA,∠ADE = ∠ACE,DE = CE.
∵AB = AD,∴∠ABD = ∠ADB.
∵∠ADE + ∠ADB = 180°,∴∠ACE + ∠ABD = 180°.
∵∠ABF = ∠ACE,∴∠ABF + ∠ABD = 180°,
即點F,B,E在一條直線上.
∵∠EAF = ∠BAF + ∠BAE = ∠CAE + ∠BAE = ∠BAC = 90°,AE = AF,∴EF = [2]AE.
∵EF = BF + BD + DE = BD + 2CE,∴BD + 2CE = [2]AE.
(3)由于旋轉角度不確定,導致滿足“線段AB繞點A逆時針旋轉至AD”時點D的位置有圖6和圖8兩種情況,需要分類求解.
①當0° lt; α lt; 90°時,如圖7,
由(2)可知BD + 2CE = [2]AE,CE = ED.
∵AE = 2CE,∴BD + 2ED = 2[2]ED,∴[BDED] = 2[2] - 2.
②當90° lt; α lt; 180°時,如圖8,
同(2)可證△ADE ≌ △ACE(SAS),∴DE = CE,∠D = ∠ACE.
∵AB = AC = AD,∴∠ABD = ∠D = ∠ACE.
將△ACE繞點A順時針旋轉90°到△ABF的位置,易知點F在BD上,
∴△AEF是等腰直角三角形,∴EF = [2]AE,
∴BD = BF + DE + EF = 2ED + [2]AE.
∵AE = 2CE = 2ED,∴BD = 2ED + 2[2]ED,∴[BDED] = 2[2] + 2.
綜上所述,[BDED]的值為2[2] - 2或2[2] + 2.
分層作業(yè)
難度系數(shù):★★★ 解題時間:10分鐘
1. 如圖9中正方形CDEF繞某點P旋轉后與正方形ABCD重合,這樣的點P有多少個?(答案見第33頁)
2. 如圖10,在△ABC中,AB = AC,∠BAC = 30°,射線CP繞點C旋轉,交射線AB于點D. 設∠ACD = α(0° lt; α lt; 75°). 將△ACD沿CD折疊得△A'CD,射線CA'與射線AB交于點E. 若△A'DE是等腰三角形,求α. (答案見第33頁)
(作者單位:江蘇省興化市興東初級中學)