• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    氮摻雜碳納米管包覆Fe0.64Ni0.36@Fe3NiN 核殼結(jié)構(gòu)用于高穩(wěn)定鋅-空氣電池

    2024-07-04 00:00:00蒲晨鄧代潔李赫楠徐麗
    物理化學學報 2024年2期

    摘要:可逆鋅-空氣電池因其高功率密度和環(huán)境友好性而得到了廣泛研究。然而,氧還原反應(ORR)和氧析出反應(OER)的緩慢動力學限制了其實際應用。迄今為止,二氧化銥和二氧化釕被認為是氧還原反應的最佳電催化劑,同時鉑碳被認為是最有效的氧還原反應的電催化劑。然而,由于Pt、Ir和Ru的天然豐度低、成本高的原因,它們在ZABs中的實際應用嚴格受限。因此,探索低成本和高性能的雙功能催化劑對促進可充電鋅-空氣電池的發(fā)展至關重要。具有高導電性、低氧還原反應能壘的過渡金屬合金可作為有潛力的氧還原電催化劑。然而,為提高過渡金屬合金催化劑的雙功能催化活性,可構(gòu)筑過渡金屬合金@過渡金屬氮化物的核殼結(jié)構(gòu)。在此,我們設計了一種氮摻雜碳納米管包覆Fe0.64Ni0.36@Fe3NiN核殼結(jié)構(gòu)(Fe0.64Ni0.36@Fe3NiN/NCNT)的雙功能電催化劑,其具有高效的雙功能催化活性。核殼結(jié)構(gòu)可以為ORR/OER產(chǎn)生更多的活性點。Fe0.64Ni0.36核具有高導電性,有助于電荷轉(zhuǎn)移。Fe3NiN殼有助于提升催化劑的OER性能。氮摻雜碳納米管不僅能夠有效增強傳質(zhì)效應和內(nèi)部電荷傳遞,還可以提升其電化學活性表面積。此外,具有高抗腐蝕性能的Fe3NiN外殼可以有效地保護Fe0.64Ni0.36內(nèi)核,從而提高了電化學過程中催化劑的穩(wěn)定性。氮摻雜碳納米管對Fe0.64Ni0.36@Fe3NiN核殼結(jié)構(gòu)也具有一定的保護作用,因此Fe0.64Ni0.36@Fe3NiN/NCNT表現(xiàn)出優(yōu)異的穩(wěn)定性。Fe0.64Ni0.36@Fe3NiN/NCNT催化劑表現(xiàn)出優(yōu)異的雙功能氧電催化性能,ORR的半波電位為0.88 V,在10 mA·cm?2時的OER過電位為380 mV,以及高電化學穩(wěn)定性(8 h后電流密度剩余92.8%)。此外,與基于Pt/C + IrO2 (155 mW·cm?2)和Fe0.64Ni0.36/NCNT (89 mW·cm?2)的鋅-空氣電池相比,基于Fe0.64Ni0.36@Fe3NiN/NCNT的鋅-空氣電池展現(xiàn)出更高的功率密度(214 mW·cm?2),提供781mAh·g?1的高容量,并展現(xiàn)出了超長的循環(huán)穩(wěn)定性(循環(huán)壽命超過1100 h)。我們相信這項工作將對于新型催化劑設計有所啟發(fā),從而實現(xiàn)高度穩(wěn)定和高效的鋅-空氣電池。

    關鍵詞:雙功能電催化劑;Fe3NiN;核殼結(jié)構(gòu);鋅-空氣電池;長循環(huán)壽命

    中圖分類號:O646

    Abstract: Rechargeable zinc-air batteries (ZABs) havebeen extensively investigated owing to their high powerdensity and environmental friendliness. However, the slowkinetics of the oxygen reduction reaction (ORR) and oxygenevolution reaction (OER) processes limit their practicalapplication. Currently, IrO2 and RuO2 are considered theoptimal OER electrocatalysts, and Pt/C is the most effectiveORR electrocatalyst. However, the practical application of Pt,Ir, and Ru in ZABs is severely limited owing to their low naturalabundance and high cost. Therefore, the fabrication ofinexpensive and high-performance bifunctional catalysts is essential for the development of rechargeable ZABs. Transitionmetalalloys have a high electrical conductivity and low energy barrier for the reaction of oxygen, and thus they areconsidered promising ORR electrocatalysts. Transition-metal nitride-transition-metal alloy core-shell nanostructures canbe fabricated to improve the bifunctional electrocatalytic activity. In this study, a bifunctional electrocatalyst withFe0.64Ni0.36@Fe3NiN core-shell structures encapsulated in N-doped carbon nanotubes (Fe0.64Ni0.36@Fe3NiN/NCNT) wasdesigned for highly efficient rechargeable ZABs. Fe0.64Ni0.36@Fe3NiN/NCNT was synthesized by pyrolyzing the nickel-ironlayereddouble hydroxide (NiFe-LDH) precursor, followed by ammonia etching of the Fe0.64Ni0.36 alloy. The core-shellstructure produced more ORR/OER active sites. The Fe0.64Ni0.36 core exhibited high electrical conductivity, which facilitatescharge transfer. The Fe3NiN shell enhanced the OER performance and improved the bifunctional performance. Moreover,the NCNT structures not only efficiently enhanced the mass transfer efficiency and intrinsic electrical conductivity, but alsoprovided a large electrochemical active surface area. The high anticorrosion property of the Fe3NiN shell effectivelyprotected the Fe0.64Ni0.36 core, which consequently enhanced electrocatalyst stability during the electrochemical processes.The protective carbon layer and the superior chemical stability of the Fe3NiN shell resulted in the ultrahigh stability ofFe0.64Ni0.36@Fe3NiN/NCNT. The catalyst exhibited an excellent bifunctional oxygen electrocatalytic performance, with ahalf-wave potential of 0.88 V for the ORR and low OER overpotential of 380 mV at 10 mA·cm?2. Moreover, the catalystexhibited electrochemical stability (92.8% current retention after 8 h). In addition, the Fe0.64Ni0.36@Fe3NiN/NCNT-basedZAB exhibited a higher peak power density (214 mW?cm?2) than the ZABs based on Pt/C+IrO2 (155 mW?cm?2) andFe0.64Ni0.36/NCNT (89 mW?cm?2). Moreover, the Fe0.64Ni0.36@Fe3NiN/NCNT-based ZAB delivered a high capacity of 781mAh?g?1, while the ZABs based on Fe0.64Ni0.36/NCNT and Pt/C+IrO2 reached capacities of 688 and 739 mAh?g?1,respectively. Furthermore, the Fe0.64Ni0.36@Fe3NiN/NCNT-based ZAB exhibited ultralong cycling stability (cycle life gt; 1100h), which exceeded those of Pt/C (50 h) and Fe0.64Ni0.36/NCNT (450 h). We propose that this study will facilitate the designof novel catalysts for highly stable and efficient ZABs.

    Key Words: Bifunctional electrocatalyst; Fe3NiN; Core-shell structure; Zinc-air battery; Ultra-long cycle stability

    1 Introduction

    Among the many renewable energy conversion devices, zincairbatteries (ZABs) have attracted abundant attention in bothacademic and industrial communities due to their environmentalfriendliness, high stability and high theoretical energy density(1086 Wh·kg?1) 1,2. However, the practical efficiency of theZABs is inevitably affected by the slow kinetics of oxygenreduction reaction (ORR) and oxygen evolution reaction(OER) 3–6. Currently, Ru/Ir-based OER electrocatalysts and PtbasedORR electrocatalysts with a high price and scarcity arelimited in large-scale commercialization 7–10. Therefore, thedeveloping of high-efficiency, cost-effective, and stablebifunctional oxygen electrocatalysts are highly essential.

    Currently, transition-metal-based electrocatalysts (metalalloy, metal oxides, carbides, hydroxides, phosphides, sulfidesand nitrides) are gravitating more focus on their abundance andpotential catalytic performance 11–14. Among these materials,transition metal alloys not only possess high electricalconductivity but can lower the oxygen reaction energy barrier byinducing internal electron redistribution 15–17. Therefore, transitionmetal alloys are considered promising electrocatalysts 18,19. Thedissolution of transition metal alloys in alkaline remains asubstantial issue. And, the most effective and cost-effective strategy to prevent this corrosion during the oxygen reaction isthe introduction of carbon substrates which can encapsulate thealloy nanoparticles 20. Moreover, the introduction of carbonsubstrates can conspicuously avoid aggregation, broadening thesurface area and fully exposing the active sites 15–19.Nevertheless, transition metal alloys exhibit limited bifunctionalactivity 21–23. The improvement strategies of bifunctional activityneed to be explored urgently. Nowadays, transition metalnitrides are gravitating more focus for their unique electronicstructure, superior chemical stability and excellent mechanicalrobustness. The M― N bonding of transition metal nitridesinduces the expansion of the parent lattice and shrinkage of themetal d-band, leading to a similar electronic structure of preciousmetals at the Fermi level and fundamentally changing theactivity of the catalytic site 14,24,25. Moreover, transition metalnitrides have abundant valence states and provide a largeflexibility for the regulation of the electronic structure. Withgreat flexibility for modulation, transition metal nitrides can beendowed with promising bifunctional electrocatalyticactivities 14,26. Therefore, through constructing the transitionmetal nitrides-transition metal alloys core@shell nanostructure,the bifunctional electrocatalytic activity can be effectivelyimproved.

    Herein, the Fe0.64Ni0.36@Fe3NiN core@shell nanostructureencapsulated in N-doped carbon nanotubes(Fe0.64Ni0.36@Fe3NiN/NCNT) was successfully synthesized bysurface ammonia etching of the nickel-iron alloys (Fig. 1a). TheFe0.64Ni0.36 alloy can enhance the conductivity of Fe3NiN. TheFe3NiN shell can enhance the performance of OER and improvethe dual-function performance. Meanwhile, the dense Fe3NiNshell with high thermal stability and corrosion resistance caneffectively protect the Fe0.64Ni0.36 core, which promotesremarkable activity and stability in ORR and OER processes.Notably, the Fe0.64Ni0.36@Fe3NiN/NCNT exhibited a high halfwavepotential (E1/2) of 0.88 V for ORR and a low overpotential(380 mV) for OER. Moreover, the Fe0.64Ni0.36 alloy stronglyinduces the construction of N-doped carbon nanotube (NCNT)which can not only provide a large electrochemical activesurface area (ECSA) but protect the Fe0.64Ni0.36@Fe3NiNcore@shell nanostructure from harsh electrochemicalcorrosion 27,28. Thus, the current density ofFe0.64Ni0.36@Fe3NiN/NCNT remains at 92.8% after 8 h ofelectrochemical measurements. Moreover, the assembledZABs with Fe0.64Ni0.36@Fe3NiN/NCNT exhibit a highefficiency with an ultra-long cycle life of 1100 h.

    2 Experimental and computational section

    2.1 Chemicals

    Ferric(III) nitrate nonahydrate (Fe(NO3)3·9H2O, 99%),nickel(II) nitrate hexahydrate (Ni(NO3)2·6H2O, 99%), urea(CO(NH2)2, 99%), sulfuric acid (H2SO4, 98.3%) and ethanol(C2H5OH, 99.7%) were obtained from Sino Pharm ChemicalReagent Co., Ltd. (Shanghai, China). Commercial Pt/C (20 wt%)and IrO2 (99.9%) were procured from Alfa Aesar Chemicals Co.Ltd. (Shanghai, China). Nafion (5 wt%) was purchased fromSigma-Aldrich Chemie Gmbh (Shanghai, China). Grapheneoxide (GO) was purchased from Nanjing XFNANO MaterialsTech Co., Ltd. (Nanjing, China).

    2.2 Synthesis of Fe0.64Ni0.36/NCNT

    Firstly, melamine, melic acid and urea were mixed and ballmilled (molar ratio = 1 : 1 : 3), and then underwent a thermaltreatment at 550 °C for 4 h with a heating rate of 2 °C·min?1under a nitrogen atmosphere to synthesize g-C3N4 29. Followinga typical procedure, 0.200 g of g-C3N4, 0.231 g ofFe(NO3)3·9H2O, 0.0665 g of Ni(NO3)2·6H2O, 0.360 g of urea,and 0.0150 g of GO were dissolved in 40 mL deionized water.The solution was sonicated for 30 min. Next, the final mixturewas transferred to a Teflon-lined steel autoclave and heated at120 °C for 18 h in an oven. The sediment was collected bycentrifugation and washed three times with deionized water andethanol, then centrifuged and dried overnight in a vacuum ovenat 60 °C. After grinding the dried solid, the sample was heatedat 850 °C for 1 h with a heating rate of 5 °C·min?1 under an argonatmosphere. After cooling to room temperature, the calcinedblack sample was removed from the tube and then dispersed in an H2SO4 solution (0.5 mol·L?1) for 12 h. The abovementionedsample was washed in deionized water until neutral and thendried at 60 °C. The Fe0.64Ni0.36 alloys/nitrogen-doped carbonnanotube (Fe0.64Ni0.36/NCNT) was formed.

    2.3 Synthesis of Fe0.64Ni0.36@Fe3NiN/NCNT

    The Fe0.64Ni0.36@Fe3NiN/NCNT catalyst was obtained bysurface ammonia etching of Fe0.64Ni0.36/NCNT. TheFe0.64Ni0.36/NCNT was nitrided in a mixture of ammonia andargon atmosphere at 800 °C for 2 h in a tube furnace with aheating rate of 5 °C·min?1. The resulting catalysts were denotedas Fe0.64Ni0.36@Fe3NiN/NCNT.

    2.4 Synthesis of Fe2N/NC, NG and NCNT

    The synthesis of Fe2N/NC and NG is similar to the abovementionedone for the Fe0.64Ni0.36/NCNT. The starting solutionswere replaced by 0.200 g of g-C3N4, 0.242 g of Fe(NO3)3·9H2O,0.360 g of urea, and 0.0150 g of GO for synthesizing Fe2N/NC.The starting solutions were replaced by 0.200 g of g-C3N4, 0.360g of urea, and 0.0150 g of GO for synthesizing NG. Meanwhile,the acid cleaning step was abandoned during the synthesis. TheCNT and g-C3N4 were placed in a tubular furnace, heated to850 °C for 1 h to produce the NCNT catalyst.

    3 Results and discussion

    The formation process of the Fe0.64Ni0.36@Fe3NiNencapsulated in N-doped carbon nanotubes is illustrated in Fig.1a. In brief, a combination of hydrothermal method, alloyingprocedure and ammonia treatment was adopted to form the finalcatalyst. Above all, the nickel-iron layered double hydroxideprecursor was prepared by a facile hydrothermal reaction. Afterthe pyrolysis process at 850 °C, the formed alloy can directlycatalyze carbon sources into highly interconnected NCNTs (Fig.S1a, Supporting Information). It is worth mentioning that theNCNTs with supplementary active sites can not only providehigh dispersibility but promote electron transfer 30,31. In the finalstep of catalyst preparation, Fe0.64Ni0.36@Fe3NiN/NCNT wasprepared by ammonia treatment of the Fe0.64Ni0.36/NCNT.

    The scanning electron microscopy (SEM) image reveals thespecific network structure composed of 1D carbon nanotubes(Fig. 1b), which can enhance mass-transport efficiency 32. Thetransmission electron microscopy (TEM) image ofFe0.64Ni0.36@Fe3NiN/NCNT displays that the nanoparticles witha diameter of about 20–50 nm are embedded in the tip of NCNTs(Fig. 1c). The specific carbon nanotube structure cannot befound in the SEM of NG and Fe2N/NC (Fig. S1b,c), which provethat Fe0.64Ni0.36 can catalyze the conversion of carbon source intoNCNT at a high temperature. Moreover, the high-resolutionTEM (HRTEM) verifies the Fe0.64Ni0.36@Fe3NiN core-shellstructure. The lattice fringe of 0.219, 0.218, and 0.220 nm relatesto the (111) facet of Fe3NiN as the shell part after the ammoniaetching of Fe0.64Ni0.36 alloy surfaces (Fig. 1d). The lattice fringeof the core part is 0.208 and 0.205 nm corresponding (111)planes of Fe0.64Ni0.36 alloy. And the lattice fringe of 0.34 nmcorresponds to the (003) lattice plane of graphite-3R (Fig. 1d) 33.Through pyrolyzing the NiFe LDH precursor and then ammoniaetching the Fe0.64Ni0.36 alloy, Fe3NiN nitride was successfullyformed on the surface of the Fe0.64Ni0.36 alloy. Similarly, Wanget al. produced nitrides on the TiNbZrTa/CrFeCoNi alloysurface by magnetron sputtering 34. Liu et al. reported a 3Delectrode configuration composed of metallic NiConitrides/NiCo2O4/GF as a pH-universal bifunctionalelectrocatalyst by being heated at 400 °C in an NH3 atmospherefor 2 h 35. Besides, Kuttiyiel et al. synthesized iridium-nickelnitride shell on the IrNi cores and then evaluated their activity inthe hydrogen evolution reaction through ammonia etching in510 °C 36. Besides, the particle of Fe0.64Ni0.36@Fe3NiN is tightlywrapped in a layer of NCNT with a thickness of about 3.3 nm.Fig. S2 exhibits the Raman spectra of theFe0.64Ni0.36@Fe3NiN/NCNT, Fe0.64Ni0.36/NCNT and NG. Theintensity ratios of the ID/IG peaks were calculated to be 1.08(Fe0.64Ni0.36@Fe3NiN/NCNT), 0.98 (Fe0.64Ni0.36/NCNT) and0.92 (NG). It demonstrates that the Fe0.64Ni0.36@Fe3NiN/NCNThas more defects than Fe0.64Ni0.36/NCNT and NG 37,38. The energydispersive spectroscopy (EDS) of Fe0.64Ni0.36@Fe3NiN/NCNTimplies that the N, Ni, and Fe elements are evenly distributedover the particle (Fig. 1e).

    After annealing the Fe0.64Ni0.36/NCNT precursor for 1 h, Xraydiffraction (XRD) pattern of the as-obtainedFe0.64Ni0.36@Fe3NiN/NCNT can be indexed to the cubic Fe3NiNphase (PDF#09-0318) (Fig. 2a) and Fe0.64Ni0.36 (PDF#47-1405) 39,40. The 2θ values of 41.186°, 48.103° and 70.176°correspond to the (111), (200) and (220) crystal facets,respectively. Additionally, two peaks for (200) and (220) latticeplanes slightly shift to lower diffraction angles (Fig. S3) due tocrystal defects or distortion resulting from the core-shellstructures, which finally brings extra active sites for oxygenreaction 41,42. The peak located at 26.6° can be indexed to the(003) lattice plane of the rhombohedral graphite structure(PDF#26-1079) 43, consistent with TEM results. The X-rayphotoelectron spectroscopy (XPS) was carried out to furtherconfirm the chemical composition and valence states of theFe0.64Ni0.36@Fe3NiN/NCNT catalyst. The survey spectrum ofFe0.64Ni0.36@Fe3NiN/NCNT exhibits the presence of typicalpeaks of C 1s, O 1s, N 1s, Fe 2p and Ni 2p (Fig. S4). The peaksof the Fe 2p spectrum at 707.06 and 708.38 eV correspond to Fe0species and Fe―Nx (Fig. 2b). The peak at 711.20 and 713.72 eVis corresponding to Fe2+ and Fe3+, respectively. In addition, thepeaks at 715.22 eV can be assigned to the satellite peaks 16,42.The Ni 2p spectrum of Fe0.64Ni0.36@Fe3NiN/NCNT shows theappearance of Ni0, Ni―Nx, Ni2+, Ni3+, and the satellite peaks at853.24, 853.92, 855.08, 857.46 and 861.24 eV (Fig. 2c),respectively. The appearance of Fe―Nx and Ni―Nx is inaccordance with the Fe3NiN phase shown in the XRD pattern.After the ammonia treatment, the contents of metal-nitrogenspecies significantly increase (Table S1 and S2, SupportingInformation). The N 1s spectrum (Fig. 2d) ofFe0.64Ni0.36@Fe3NiN/NCNT can be divided into five characteristic peaks of pyridinic N (398.42 eV), Fe/Ni―Nx(399.04 eV), pyrrolic N (399.41 eV), graphitic N (401.08 eV)and oxidized N (404.14 eV), further certifying the existence ofmetal nitrides 16,17. The nitrogen species are mainly graphitic Nand pyridinic N (Table S3). The pyridinic N is the active site ofthe oxygen reduction reaction. The graphitic N can enhance theconductivity to improve the current density 46,47. Compared tothe N 1s spectra from the Fe0.64Ni0.36/NCNT, theFe0.64Ni0.36@Fe3NiN/NCNT has significantly less pyrrolic Nand more Fe/Ni―Nx species (Table S3), which is consistent withthe findings from the spectra of Fe 2p and Ni 2p.

    To measure the electrocatalytic performance ofFe0.64Ni0.36@Fe3NiN/NCNT, a three-electrode system has beenconstructed in 0.1 mol·L?1 KOH electrolyte with saturated O2 orN2. Cyclic voltammetry (CV) curves are shown in Fig. S5 andFig. S6 to evaluate the ORR activity of the electrocatalysts. Thecharacteristic oxygen reduction peaks appear in all samples(Fe0.64Ni0.36@Fe3NiN/NCNT, Fe0.64Ni0.36/NCNT, Fe2N/NC, NGand Pt/C). The CV curves of Fe0.64Ni0.36@Fe3NiN/NCNTexhibit an oxygen reduction peak at 0.77 V, which is larger thanthat of Fe0.64Ni0.36/NCNT (0.69 V). This result indicates that theFe0.64Ni0.36@Fe3NiN/NCNT exhibits excellent ORR performance.The catalytic performances of Fe0.64Ni0.36@Fe3NiN/NCNT,F(xiàn)e0.64Ni0.36/NCNT, Fe2N/NC, NG and noble-metal catalysts(Pt/C for ORR, IrO2 for OER) were estimated through linearsweep voltammetry (LSV) measurements in 1.0 mol·L?1 KOHelectrolyte with saturated O2 (Fig. 3a,e). The LSV curves exhibitthe ORR performance with an onset and half-wave potential(E1/2) of 1.02 and 0.88 V for Fe0.64Ni0.36@Fe3NiN/NCNT.Compared with the Fe0.64Ni0.36@Fe3NiN/NCNT, thecommercial Pt/C (0.95 and 0.85 V), Fe0.64Ni0.36/NCNT (0.93 and0.82 V), Fe2N/NC (0.90 and 0.79 V) and NG (0.87 and 0.77 V)show low onset and half-wave potential. While the NCNTexhibits a lower onset potential (0.80 V) and half-wave potential(0.68 V) (Fig. S7). Chronoamperometry tests were performed toconfirm the ORR stability. After 8 h, the current density ofFe0.64Ni0.36@Fe3NiN/NCNT remains 92.8%, which is better thanthat of Fe0.64Ni0.36/NCNT (84.3%), Fe2N/NC (89.0%), NG(84.4%) and Pt/C (78.3%) (Fig. 3b). This remarkable stability ofFe0.64Ni0.36@Fe3NiN/NCNT can be attributed to the metalnitride layer and carbon substrate with high crystallinity, whichcan protect nanoparticles from corrosion during the harshelectrochemical process 13. Besides, the rotating ring diskelectrode (RRDE) test shows that the H2O2 yield ofFe0.64Ni0.36@Fe3NiN/NCNT is below 5% in the potentialranging of 0.2–0.8 V, which is close to that of Pt/C andFe0.64Ni0.36/NCNT. The electron-transfer number is 3.82–3.97,reconfirming a four-electron transfer pathway (Fig. 3c). Thecorresponding LSV curves of RRDE tests are exhibited in Fig.S8. The electron transfer properties were evaluated throughelectrochemical impedance spectra (EIS).Fe0.64Ni0.36@Fe3NiN/NCNT possesses the smallest radius circle(Fig. S9), suggesting a higher charge-transfer efficiency owingto the specific structure. The electrochemical active surface area(ECSA) was evaluated based on the proportional relationshipbetween ECSA and electrochemical double-layer capacitance(Cdl), which was obtained by measuring the non-Faradaic current(Fig. S10 and Fig. S11). The Cdl of Fe0.64Ni0.36@Fe3NiN/NCNTcatalyst is 59.3 mF·cm?2 which is larger than those of 48.8mF·cm?2 for Fe0.64Ni0.36/NCNT catalyst, 17.4 mF·cm?2 for Pt/C,12.5 mF·cm?2 for Fe2N/NC catalyst and 13.1 mF·cm?2 for NG(Fig. 3d). It indicates that more active sites are activated whenFe0.64Ni0.36 and Fe3NiN are coupled together with a core-shellstructure. The larger ECSA is due to the lower charge-transferresistance and the structure of carbon nanotube 13. The OERperformances of the catalysts were evaluated in 0.1 mol·L?1KOH electrolyte with saturated N2. TheFe0.64Ni0.36@Fe3NiN/NCNT shows an overpotential of 380 mVat a current density of 10 mA·cm?2 (Fig. 3e), which is lower thanthat of the commercial IrO2 (390 mV), Fe2N/NC (400 mV),F(xiàn)e0.64Ni0.36/NCNT (450 mV) and NG (460 mV). The surface ofFe3NiN can reconstruct into an amorphous FeNi-containingoxyhydroxide shell which serves as the real active species duringthe OER process 11,48. Thus, the Fe3NiN shell in the surface ofthe Fe0.64Ni0.36 core contributes to enhancing the performance ofOER. Measuring the potential gap ΔE (= Ej=10 ? E1/2) betweenthe half-wave potential (E1/2) of ORR and potential of OER(Ej=10) at a current density of 10 mA·cm?2 is calculated toevaluate bifunctional oxygen reaction activity. TheFe0.64Ni0.36@Fe3NiN/NCNT has shown an excellent ΔE of 0.73 V,which is superior to the Pt/C for ORR and IrO2 for OER (ΔE =0.77 V) and the Fe0.64Ni0.36/NCNT (ΔE = 0.85 V) (Fig. 3f),surpassing many works reported previously (Table S4).Additionally, by comparing to the performance of somepreviously reported outstanding bifunctional catalysts, theFe0.64Ni0.36@Fe3NiN/NCNT indeed exhibits a better bifunctionalperformance (ΔE = 0.73 V, Table S4). In summary, the reasonsfor the enhanced electrocatalytic performance can be attributedto the following factors: 1) Fe0.64Ni0.36 core possesses highelectrical conductivity which contributes to the charge transfer.The Fe3NiN shell with superior chemical stability can serve as aprotection layer to enhance the stability of theFe0.64Ni0.36@Fe3NiN/NCNT. 2) The nitride@alloy core-shellstructure can produce more active sites for ORR/OER. TheFe3NiN shell can enhance the performance of OER, whicheventually lead to improving the dual-function performance. 3)The NCNT catalyzed by Fe0.64Ni0.36 possesses a high degree ofgraphitization and a high level of graphitic-N active sites, whichcan efficiently enhance the mass transfer efficiency and intrinsicelectrical conductivity. And, the carbon layer can furthersignificantly protect the internal particle during theelectrochemical test, resulting in ultra-high cyclic stability.

    The excellent bifunctional performance of the core-shellstructure ensures that the Fe0.64Ni0.36@Fe3NiN/NCNT can be anideal catalyst for the real application of rechargeable zinc-airbatteries. To demonstrate that, a classical rechargeable zinc-airbattery was assembled by applying the Fe0.64Ni0.36@Fe3NiN/NCNTas the cathode. For comparison, two batteries loading the Pt/C +IrO2 and Fe0.64Ni0.36/NCNT catalysts respectively were alsoestimated under the same test condition. TheFe0.64Ni0.36@Fe3NiN/NCNT-based ZABs display an opencircuitvoltage as large as 1.51 V (Fig. 4a), which is close to thatof Pt/C + IrO2-based ZABs (1.51 V) and Fe0.64Ni0.36/NCNTbasedZABs (1.38 V). The charge and discharge polarizationcurves have been recorded at current density varying from 0 to400 mA·cm?2 in Fig. 4b. The Fe0.64Ni0.36@Fe3NiN/NCNT-basedZABs present a low charge-discharge voltage gap compared withthe Pt/C + IrO2-based ZABs. The Fe0.64Ni0.36@Fe3NiN/NCNTbasedZABs deliver a maximum power density of 214 mW·cm?2at 364 mA·cm?2 (Fig. 4c), which is higher than that of Pt/C +IrO2 (155 mW·cm?2) and Fe0.64Ni0.36/NCNT (89 mW·cm?2),outperforming many reported ZABs in the recent works (TableS5). Besides, the Fe0.64Ni0.36@Fe3NiN/NCNT-based ZABs candeliver a high capacity of 781 mAh·g?1 at a current density of 20mA·cm?2, while the Fe0.64Ni0.36/NCNT and Pt/C + IrO2 reach at688 and 739 mAh·g?1 (Fig. 4d). During the discharge operation,no conspicuous voltage drop was observed. To verify the highstability of this specific structure in the real application, thecharge-discharge cycle curve (20 min for each charge anddischarge) was tested on the constant current density (5 mA·cm?2).As shown in Fig. 4e, the Fe0.64Ni0.36@Fe3NiN/NCNT-basedZABs display remarkable long-term durability over 3300 cyclesin 1100 h. The Fe0.64Ni0.36@Fe3NiN/NCNT-based ZABsdelivered a smaller voltage gap (1.04 V), indicating bettercharge-discharge performance. And the steady energy efficiencyis about 52.3%. However, a gradual increase in the voltage gapcan be observed in the Fe0.64Ni0.36/NCNT-based ZABs aftertesting about 450 h. It proves that the Fe3NiN shell inFe0.64Ni0.36@Fe3NiN/NCNT can enhance the stability ofFe0.64Ni0.36@Fe3NiN/NCNT-based ZABs.

    4 Conclusions

    In summary, the Fe0.64Ni0.36@Fe3NiN core@shellnanostructure encapsulated in N-doped carbon nanotubes wassuccessfully prepared via a facile strategy of pyrolyzing the NiFeLDH precursor and ammonia etching the Fe0.64Ni0.36 alloy. TheFe3NiN can be formed by ammonia etching the Fe0.64Ni0.36 alloyto obtain core@shell nanostructure which can provide morecatalytic active sites. The Fe3NiN contributes to enhancing theperformance of OER and leads to improving the dual-functionperformance. The Fe0.64Ni0.36@Fe3NiN/NCNT can significantlyobtain the outstanding oxygen reaction performance (ΔE = 0.73 V)with high ORR (E1/2 = 0.88 V) and OER (Ej=10 = 1.61 V)activities. Besides, the nitride layer with high crystallinity couldalso protect the Fe0.64Ni0.36@Fe3NiN from being directlyexposed to an electrochemical environment. Consequently,when Fe0.64Ni0.36@Fe3NiN/NCNT was applied as the cathode inZABs, it exhibits a high peak power density (214 mW·cm?2) anda prominent long-term durability (1100 h) in practicalapplications. The ultra-high cycling stability benefits from theprotection of the carbon layer in NCNT and the superiorchemical stability of Fe3NiN. This work provides a reasonablestrategy to design and synthesize core-shell electrocatalysts withhigh performance for zinc-air batteries.

    Author Contributions: Methodology, Validation,Investigation, Data Curation, Writing-Original DraftPreparation, Chen Pu; Investigation, Data Curation, Writing-Original Draft Preparation, Daijie Deng; Conceptualization,Supervision, Writing-Review amp; Editing, Resources, ProjectAdministration, Henan Li and Li Xu.

    Supporting Information: available free of charge via the Internet at http://www.whxb.pku.edu.cn.

    References

    (1) Kundu, A.; Mallick, S.; Ghora, S.; Raj, C. R. ACS Appl. Mater.Interfaces 2021, 13, 40172. doi: 10.1021/acsami.1c08462

    (2) Wu, M.; Zhang, G.; Wu, M.; Prakash, J.; Sun, S. Energy StorageMater. 2019, 21, 253. doi: 10.1016/j.ensm.2019.05.018

    (3) Tian, H.; Song, A. L.; Zhang, P.; Sun, K. A.; Wang, J.; Sun, B.; Fan,Q. H.; Shao, G. J.; Chen, C.; Liu, H.; et al. Adv. Mater. 2023, 35,2210714. doi: 10.1002/adma.202210714

    (4) Anand, P.; Wong, M. S.; Fu, Y. P. Energy Storage Mater. 2023, 58,362. doi: 10.1016/j.ensm.2023.03.033

    (5) Deng, D. J.; Ma, H. X.; Wu, S. Q.; Wang, H.; Qian, J. C.; Wu, J. C.;Li, H. M.; Yan, C.; Li, H. N.; Xu, L. Renewables 2023, Accepted.doi: 10.31635/renewables.023.202200020

    (6) Wu, S. Q.; Deng, D. J.; Zhang, E. J.; Li, H. N.; Xu, L. Carbon 2022,196, 347. doi: 10.1016/j.carbon.2022.04.043

    (7) Lee, C.; Shin, K.; Park, Y.; Yun, Y. H.; Doo, G.; Jung, G. H.; Kim,M.; Cho, W.; Kim, C.; Lee, H. M.; et al. Adv. Funct. Mater. 2023, 32,2301557. doi: 10.1002/adfm.202301557

    (8) Hong, S.; Ham, K.; Hwang, J.; Kang, S.; Seo, M. H.; Choi, Y.; Han,B.; Lee, J.; Cho, K. Adv. Funct. Mater. 2023, 33, 2209543.doi: 10.1002/adfm.202209543

    (9) Zhao, S. Y.; Liu, T.; Dai, Y. W.; Wang, J.; Wang, Y.; Guo, Z. J.; Yu,J.; Bello, I. T.; Ni, M. Appl. Catal. B 2023, 320, 121992.doi: 10.1016/j.apcatb.2022.121992

    (10) Liu, M. L.; Zhao, Z. P.; Duan, X. F.; Huang, Y. Adv. Mater. 2019, 31,1802234. doi: 10.1002/adma.201802234

    (11) Lai, C.; Gong, M.; Zhou, Y.; Fang, J.; Huang, L.; Deng, Z.; Liu, X.;Zhao, T.; Lin, R.; Wang, K.; et al. Appl. Catal. B 2020, 274, 119086.doi: 10.1016/j.apcatb.2020.119086

    (12) Liu, W.; Zhang, J.; Bai, Z.; Jiang, G.; Li, M.; Feng, K.; Yang, L.;Ding, Y.; Yu, T.; Chen, Z.; et al. Adv. Funct. Mater. 2018, 28,1706675. doi: 10.1002/adfm.201706675

    (13) Wu, M.; Zhang, G.; Chen, N.; Hu, Y.; Regier, T.; Rawach, D.; Sun, S.ACS Energy Lett. 2021, 6, 1153. doi: 10.1021/acsenergylett.1c00037

    (14) Wang, H.; Li, J.; Li, K.; Lin, Y.; Chen, J.; Gao, L.; Nicolosi, V.;Xiao, X.; Lee, J. M. Chem. Soc. Rev. 2021, 50, 1354.doi: 10.1039/D0CS00415D

    (15) Xiong, Q.; Zheng, J.; Liu, B.; Liu, Y.; Li, H.; Yang, M. Appl. Catal. B2023, 321, 122067. doi: 10.1016/j.apcatb.2022.122067

    (16) Ma, Y.; Chen, W.; Jiang, Z.; Tian, X.; Wang, X.; Chen, G.; Jiang, Z.-J.J. Mater. Chem. A 2022, 10, 12616. doi: 10.1039/D2TA03110H

    (17) Kim, K.; Min, K.; Go, Y.; Lee, Y.; Shim, S. E.; Lim, D.; Baeck, S. H.Appl. Catal. B 2022, 315, 121501. doi: 10.1016/j.apcatb.2022.121501

    (18) Wu, Z.; Lu, X. F.; Zang, S.; Lou, X. W. Adv. Funct. Mater. 2020, 30,1910274. doi: 10.1002/adfm.201910274

    (19) Huang, Z. F.; Wang, J.; Peng, Y.; Jung, C. Y.; Fisher, A.; Wang, X.Adv. Energy Mater. 2017, 7, 1700544. doi: 10.1002/aenm.201700544

    (20) Li, G.; Tang, Y.; Fu, T.; Xiang, Y.; Xiong, Z.; Si, Y.; Guo, C.; Jiang,Z. S. Chem. Eng. J. 2022, 429, 132174. doi: 10.1016/j.cej.2021.132174

    (21) Chen, K.; Kim, S.; Rajendiran, R.; Prabakar, K.; Li, G.; Shi, Z.;Jeong, C.; Kang, J.; Li, O. L. J. Colloid Interface Sci 2021, 582, 977.doi: 10.1016/j.jcis.2020.08.101

    (22) Sheng, K.; Yi, Q.; Chen, A. L.; Wang, Y.; Yan, Y.; Nie, H.; Zhou, X.ACS Appl. Mater. Interfaces 2021, 13, 45394.doi: 10.1021/acsami.1c10671

    (23) Xu, X.; Xie, J.; Liu, B.; Wang, R.; Liu, M.; Zhang, J.; Liu, J.; Cai, Z.;Zou, J. Appl. Catal. B 2022, 316, 121687.doi: 10.1016/j.apcatb.2022.121687

    (24) He, X.; Tian, Y.; Huang, Z.; Xu, L.; Wu, J.; Qian, J.; Zhang, J.; Li, H.J. Mater. Chem. A 2021, 9, 2301. doi: 10.1039/D0TA10370E

    (25) Liu, Z.; Liu, D.; Zhao, L.; Tian, J.; Yang, J.; Feng, L. J. Mater. Chem.A 2021, 9, 7750. doi: 10.1039/D1TA01014J

    (26) Ban, J.; Xu, H.; Cao, G.; Fan, Y.; Pang, W. K.; Shao, G.; Hu, J. Adv.Funct. Mater. 2023, 33, 2300623. doi: 10.1002/adfm.202300623

    (27) Jiang, R.; Tung, S. O.; Tang, Z.; Li, L.; Ding, L.; Xi, X.; Liu, Y.;Zhang, L.; Zhang, J. Energy Storage Mater. 2018, 12, 260.doi: 10.1016/j.ensm.2017.11.005

    (28) Guo, Y.; Yuan, P.; Zhang, J.; Xia, H.; Cheng, F.; Zhou, M.; Li, J.;Qiao, Y.; Mu, S.; Xu, Q. Adv. Funct. Mater. 2018, 28, 1805641.doi: 10.1002/adfm.201805641

    (29) Ong, W. J.; Tan, L. L.; Ng, Y. H.; Yong, S. T.; Chai, S. P. Chem. Rev.2016, 116, 7159. doi: 10.1021/acs.chemrev.6b00075

    (30) Kang, J.; Zhang, H. Y.; Duan, X. G.; Sun, H. Q.; Tan, X. Y.; Liu, S.M.; Wang, S.B. Chem. Eng. J. 2019, 362, 251.doi: 10.1016/j.cej.2019.01.035.

    (31) Yang, L.; Zhang, X.; Yu, L.; Hou, J.; Zhou, Z.; Lv, R. Adv. Mater.2022, 34, 2105410. doi: 10.1002/adma.202105410

    (32) Zhao, B.; Wu, Y.; Han, L.; Xia, Z.; Wang, Q.; Chang, S.; Liu, B.;Wang, G.; Shang, Y.; Cao, A. Energy Storage Mater. 2022, 50, 344.doi: 10.1016/j.ensm.2022.05.029

    (33) Chen, Z.; Qin, Y.; Ren, Y.; Lu, W.; Orendorff, C.; Roth, E. P.; Amine,K. Energy Environ. Sci. 2011, 4, 4023. doi: 10.1039/c1ee01786a

    (34) Wang, J.; Shu, R.; Chai, J.; Rao, S. G.; Le Febvrier, A.; Wu, H.; Zhu,Y.; Yao, C.; Luo, L.; Li, W.; et al. Mater. Des. 2022, 219, 110749.doi: 10.1016/j.matdes.2022.110749

    (35) Liu, Z.; Tan, H.; Liu, D.; Liu, X.; Xin, J.; Xie, J.; Zhao, M.; Song, L.;Dai, L.; Liu, H. Adv. Sci 2019, 6, 1801829.doi: 10.1002/advs.201801829

    (36) Kuttiyiel, K. A.; Sasaki, K.; Chen, W. F.; Su, D.; Adzic, R. R.J. Mater. Chem. A 2014, 2, 591. doi: 10.1039/C3TA14301E

    (37) Deng, D.; Qian, J.; Liu, X.; Li, H.; Su, D.; Li, H.; Li, H.; Xu, L. Adv.Funct. Materials 2022, 32, 2203471. doi: 10.1002/adfm.202203471

    (38) Deng, D.; Wu, S.; Li, H.; Li, H.; Xu, L. Small 2023, 19, 2205469.doi: 10.1002/smll.202205469

    (39) López-Callejas, R.; Valencia-Alvarado, R.; Mu?oz-Castro, A. E.;Godoy-Cabrera, O. G.; Barocio, S. R.; Chávez-Alarcón, E. Vacuum2004, 76, 287. doi: 10.1016/j.vacuum.2004.07.060

    (40) Zhang, C.; Li, J.; Shi, C.; He, C.; Liu, E.; Zhao, N. J. Energy Chem.2014, 23, 324. doi: 10.1016/S2095-4956(14)60154-6

    (41) Chen, M.; Lu, S.; Fu, X.; Luo, J. Adv. Sci. 2020, 7, 1903777.doi: 10.1002/advs.201903777

    (42) Wu, M.; Zhang, G.; Qiao, J.; Chen, N.; Chen, W.; Sun, S. NanoEnergy 2019, 61, 86. doi: 10.1016/j.nanoen.2019.04.031

    (43) Park, J.; Yoon, K. Y.; Kwak, M. J.; Lee, J. E.; Kang, J.; Jang, J. H.ACS Appl. Mater. Interfaces 2021, 13, 54906.doi: 10.1021/acsami.1c13872

    (44) Xu, L.; Wu, S.; He, X.; Wang, H.; Deng, D.; Wu, J.; Li, H. Chem.Eng. J. 2022, 437, 135291. doi: 10.1016/j.cej.2022.135291

    (45) Lou, Y.; Liu, J.; Liu, M.; Wang, F. ACS Catal. 2020, 10, 2443.doi: 10.1021/acscatal.9b03716

    (46) Xia, D.; Yang, X.; Xie, L.; Wei, Y.; Jiang, W.; Dou, M.; Li, X.; Li, J.;Gan, L.; Kang, F. Adv. Funct. Mater. 2019, 29, 1970332.doi: 10.1002/adfm.201970332

    (47) Zhang, J.; Sun, Y.; Zhu, J.; Kou, Z.; Hu, P.; Liu, L.; Li, S.; Mu, S.;Huang, Y. Nano Energy 2018, 52, 307.doi: 10.1016/j.nanoen.2018.08.003

    (48) Tang, H.; Yang, D.; Lu, M.; Kong, S.; Hou, Y.; Liu, D.; Liu, D.; Yan,S.; Chen, Z.; Yu, T.; et al. J. Mater. Chem. A 2021, 9, 25435.doi: 10.1039/D1TA07561F

    國家自然科學基金(22178148, 22278193)資助項目

    久久精品国产清高在天天线| 韩国av一区二区三区四区| 国产色婷婷99| 内地一区二区视频在线| 亚洲第一电影网av| 欧美成人免费av一区二区三区| 久久久国产成人精品二区| 婷婷丁香在线五月| 国产v大片淫在线免费观看| 一卡2卡三卡四卡精品乱码亚洲| 又爽又黄无遮挡网站| 婷婷丁香在线五月| 久久人妻av系列| 中文字幕久久专区| 亚洲av中文字字幕乱码综合| 午夜视频国产福利| 一本综合久久免费| 国产亚洲精品一区二区www| 婷婷亚洲欧美| 亚洲色图av天堂| 成年女人看的毛片在线观看| 色哟哟哟哟哟哟| 又粗又爽又猛毛片免费看| 人人妻人人澡欧美一区二区| 亚洲精品亚洲一区二区| 2021天堂中文幕一二区在线观| 最新中文字幕久久久久| 丰满的人妻完整版| 88av欧美| 中文字幕熟女人妻在线| 午夜福利免费观看在线| 久久久久久国产a免费观看| 欧美性猛交╳xxx乱大交人| 噜噜噜噜噜久久久久久91| 91在线精品国自产拍蜜月 | 精品一区二区三区视频在线 | 成人av一区二区三区在线看| 在线观看av片永久免费下载| 亚洲 国产 在线| 成人av一区二区三区在线看| 午夜福利高清视频| av天堂在线播放| 亚洲精品一区av在线观看| 亚洲国产精品sss在线观看| 草草在线视频免费看| avwww免费| www.色视频.com| 十八禁网站免费在线| 女生性感内裤真人,穿戴方法视频| 成人特级av手机在线观看| 日本a在线网址| 最后的刺客免费高清国语| 欧美色视频一区免费| 少妇的丰满在线观看| 欧美极品一区二区三区四区| 亚洲欧美日韩高清在线视频| 久久精品国产综合久久久| 一个人看视频在线观看www免费 | 国产伦人伦偷精品视频| av视频在线观看入口| 免费观看的影片在线观看| 午夜精品久久久久久毛片777| 国产欧美日韩一区二区精品| 国产成人av教育| 99久久综合精品五月天人人| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 久久天躁狠狠躁夜夜2o2o| 好男人在线观看高清免费视频| 亚洲人成伊人成综合网2020| 真人一进一出gif抽搐免费| 在线观看免费午夜福利视频| 少妇的丰满在线观看| 法律面前人人平等表现在哪些方面| 99热这里只有是精品50| 亚洲va日本ⅴa欧美va伊人久久| 精品国产亚洲在线| 亚洲国产精品999在线| www.色视频.com| 舔av片在线| 午夜福利视频1000在线观看| 午夜激情福利司机影院| 国产v大片淫在线免费观看| 亚洲天堂国产精品一区在线| 在线国产一区二区在线| 免费无遮挡裸体视频| 欧美日韩亚洲国产一区二区在线观看| 夜夜躁狠狠躁天天躁| 在线十欧美十亚洲十日本专区| 悠悠久久av| 欧美在线黄色| 有码 亚洲区| 嫩草影院入口| 欧美日韩福利视频一区二区| 婷婷丁香在线五月| 美女被艹到高潮喷水动态| 又黄又爽又免费观看的视频| 一区二区三区高清视频在线| 欧美日本亚洲视频在线播放| 91麻豆精品激情在线观看国产| 亚洲国产欧美人成| 嫩草影院入口| 在线观看免费午夜福利视频| 国产久久久一区二区三区| 亚洲一区二区三区不卡视频| 国产精品久久久久久久电影 | 十八禁人妻一区二区| 又爽又黄无遮挡网站| 波多野结衣巨乳人妻| 欧美日韩精品网址| 久久欧美精品欧美久久欧美| 国产伦精品一区二区三区视频9 | 又爽又黄无遮挡网站| 中文字幕久久专区| 婷婷亚洲欧美| 国产三级中文精品| 欧美午夜高清在线| 18禁美女被吸乳视频| 99在线视频只有这里精品首页| 熟女少妇亚洲综合色aaa.| 一级毛片高清免费大全| 色老头精品视频在线观看| av中文乱码字幕在线| 亚洲av免费在线观看| 色精品久久人妻99蜜桃| xxxwww97欧美| 天堂网av新在线| 一个人看的www免费观看视频| 亚洲成人精品中文字幕电影| 国产精品一及| 国产黄色小视频在线观看| 欧美日韩一级在线毛片| 亚洲久久久久久中文字幕| 18+在线观看网站| 国产99白浆流出| 少妇丰满av| 亚洲av电影在线进入| 国模一区二区三区四区视频| 首页视频小说图片口味搜索| a级一级毛片免费在线观看| 小说图片视频综合网站| 日韩欧美精品v在线| 老汉色av国产亚洲站长工具| 91久久精品国产一区二区成人 | 亚洲中文日韩欧美视频| 夜夜看夜夜爽夜夜摸| 久久人人精品亚洲av| 国产一区二区激情短视频| 美女cb高潮喷水在线观看| 色av中文字幕| 一本综合久久免费| 好男人电影高清在线观看| 中文字幕人妻丝袜一区二区| 老鸭窝网址在线观看| 国产成人欧美在线观看| 国产激情偷乱视频一区二区| 三级国产精品欧美在线观看| 宅男免费午夜| 国产成人影院久久av| 日本在线视频免费播放| 香蕉久久夜色| 免费在线观看影片大全网站| 久久这里只有精品中国| 免费看美女性在线毛片视频| 欧美日韩福利视频一区二区| 中文字幕人妻熟人妻熟丝袜美 | 我要搜黄色片| 一进一出抽搐动态| 亚洲在线观看片| 亚洲成人免费电影在线观看| 3wmmmm亚洲av在线观看| 噜噜噜噜噜久久久久久91| 午夜激情欧美在线| 男女那种视频在线观看| 国产精品98久久久久久宅男小说| 国产男靠女视频免费网站| 亚洲,欧美精品.| 午夜免费激情av| 日本在线视频免费播放| 搞女人的毛片| 国产av在哪里看| 国产一区二区亚洲精品在线观看| 久久精品91无色码中文字幕| 在线看三级毛片| 亚洲欧美日韩高清在线视频| 岛国在线观看网站| 最好的美女福利视频网| 变态另类丝袜制服| 啪啪无遮挡十八禁网站| 日本撒尿小便嘘嘘汇集6| 一级毛片女人18水好多| 国产精品久久久久久久电影 | 欧美黄色淫秽网站| 午夜视频国产福利| 1000部很黄的大片| 欧美黑人欧美精品刺激| 国产精品 国内视频| 中出人妻视频一区二区| 国产探花在线观看一区二区| 久久精品91蜜桃| 亚洲国产精品999在线| 欧美国产日韩亚洲一区| 黄色片一级片一级黄色片| 啦啦啦韩国在线观看视频| 国产一区二区三区视频了| 99热只有精品国产| 国产精品久久视频播放| 少妇的丰满在线观看| 欧美高清成人免费视频www| 国产爱豆传媒在线观看| 88av欧美| 禁无遮挡网站| 午夜久久久久精精品| 一个人看的www免费观看视频| 女人高潮潮喷娇喘18禁视频| 国产一区二区在线av高清观看| 在线观看午夜福利视频| 亚洲精品乱码久久久v下载方式 | 亚洲18禁久久av| 日本a在线网址| 我要搜黄色片| 他把我摸到了高潮在线观看| 精品一区二区三区人妻视频| 蜜桃久久精品国产亚洲av| 亚洲av成人不卡在线观看播放网| bbb黄色大片| 中文字幕久久专区| 日韩精品中文字幕看吧| 久久精品国产自在天天线| 欧美黑人巨大hd| www.熟女人妻精品国产| 婷婷精品国产亚洲av| 色综合亚洲欧美另类图片| 男女视频在线观看网站免费| 校园春色视频在线观看| 成人国产综合亚洲| 美女免费视频网站| 少妇裸体淫交视频免费看高清| x7x7x7水蜜桃| 国产亚洲精品av在线| 日韩精品青青久久久久久| 19禁男女啪啪无遮挡网站| 精品熟女少妇八av免费久了| 日日夜夜操网爽| 12—13女人毛片做爰片一| 有码 亚洲区| 欧美日韩福利视频一区二区| 看片在线看免费视频| 日韩欧美 国产精品| 国产av不卡久久| 热99re8久久精品国产| 亚洲国产日韩欧美精品在线观看 | 欧美色视频一区免费| a级一级毛片免费在线观看| 国内少妇人妻偷人精品xxx网站| 久久中文看片网| 国产精品嫩草影院av在线观看 | 成人三级黄色视频| 日本 欧美在线| 黑人欧美特级aaaaaa片| 精品国产超薄肉色丝袜足j| 88av欧美| 三级毛片av免费| 日本熟妇午夜| 欧美bdsm另类| 亚洲五月天丁香| 国产综合懂色| 精品一区二区三区人妻视频| 长腿黑丝高跟| 99热6这里只有精品| 无限看片的www在线观看| 亚洲欧美日韩无卡精品| 黄色视频,在线免费观看| 两人在一起打扑克的视频| 两性午夜刺激爽爽歪歪视频在线观看| 久久这里只有精品中国| 亚洲五月婷婷丁香| 可以在线观看毛片的网站| 欧美日本亚洲视频在线播放| av视频在线观看入口| 日本三级黄在线观看| www日本在线高清视频| 国产免费av片在线观看野外av| 久久九九热精品免费| 在线国产一区二区在线| 国产真实伦视频高清在线观看 | 午夜福利高清视频| 欧美性感艳星| 亚洲男人的天堂狠狠| 欧美区成人在线视频| 久久久久久久久大av| tocl精华| 欧美日本视频| 国产精品影院久久| 18禁在线播放成人免费| 蜜桃亚洲精品一区二区三区| 成人国产综合亚洲| 亚洲av美国av| 热99re8久久精品国产| 国产亚洲精品一区二区www| 欧美在线黄色| 午夜福利在线观看吧| 亚洲人成网站高清观看| 午夜福利高清视频| 中文字幕熟女人妻在线| 狂野欧美激情性xxxx| 亚洲av五月六月丁香网| 亚洲,欧美精品.| 亚洲人与动物交配视频| 国产成+人综合+亚洲专区| 午夜福利18| 夜夜爽天天搞| 九色国产91popny在线| 国产精品综合久久久久久久免费| 俄罗斯特黄特色一大片| 真人一进一出gif抽搐免费| 啦啦啦韩国在线观看视频| 午夜影院日韩av| 久久天躁狠狠躁夜夜2o2o| 免费在线观看日本一区| 日本五十路高清| 国产精品久久视频播放| 真人做人爱边吃奶动态| 亚洲精品成人久久久久久| 午夜老司机福利剧场| 99久久精品一区二区三区| 五月伊人婷婷丁香| 成年人黄色毛片网站| 欧美日韩国产亚洲二区| 色综合亚洲欧美另类图片| 一进一出抽搐动态| 婷婷亚洲欧美| 亚洲国产欧洲综合997久久,| 成人鲁丝片一二三区免费| 亚洲中文字幕日韩| 乱人视频在线观看| 一本精品99久久精品77| 国产三级在线视频| 亚洲av免费高清在线观看| 国产探花极品一区二区| 日本免费a在线| 91在线观看av| 免费看美女性在线毛片视频| 老司机深夜福利视频在线观看| 99国产综合亚洲精品| 波多野结衣巨乳人妻| 国产三级黄色录像| 午夜免费男女啪啪视频观看 | 在线国产一区二区在线| 亚洲性夜色夜夜综合| 亚洲国产欧美网| 亚洲av日韩精品久久久久久密| 丁香六月欧美| 亚洲狠狠婷婷综合久久图片| 成人永久免费在线观看视频| а√天堂www在线а√下载| 国产精品亚洲美女久久久| 国产精品精品国产色婷婷| 免费一级毛片在线播放高清视频| 国产一区二区亚洲精品在线观看| 亚洲中文日韩欧美视频| 国产精品自产拍在线观看55亚洲| 韩国av一区二区三区四区| 舔av片在线| 在线观看舔阴道视频| 久久久精品欧美日韩精品| 日韩欧美在线乱码| 免费观看人在逋| 9191精品国产免费久久| 午夜亚洲福利在线播放| 岛国在线观看网站| 狠狠狠狠99中文字幕| 757午夜福利合集在线观看| 搡老妇女老女人老熟妇| 欧美精品啪啪一区二区三区| 母亲3免费完整高清在线观看| 国产乱人伦免费视频| 啪啪无遮挡十八禁网站| 国产亚洲精品久久久久久毛片| 国模一区二区三区四区视频| 精品一区二区三区视频在线观看免费| 久9热在线精品视频| 每晚都被弄得嗷嗷叫到高潮| 中文字幕精品亚洲无线码一区| 欧美+亚洲+日韩+国产| 国产中年淑女户外野战色| 亚洲精品在线观看二区| 国产成人欧美在线观看| 日本 av在线| www.熟女人妻精品国产| 亚洲精品色激情综合| 亚洲在线自拍视频| 色综合站精品国产| 中文资源天堂在线| 国产高清有码在线观看视频| 婷婷精品国产亚洲av| 国模一区二区三区四区视频| 不卡一级毛片| 在线免费观看不下载黄p国产 | 12—13女人毛片做爰片一| 在线观看免费午夜福利视频| 日韩欧美国产一区二区入口| 狂野欧美激情性xxxx| eeuss影院久久| 亚洲国产中文字幕在线视频| 丰满人妻一区二区三区视频av | www.色视频.com| 国产 一区 欧美 日韩| 99精品欧美一区二区三区四区| 国产探花在线观看一区二区| 久久久精品欧美日韩精品| 成人永久免费在线观看视频| 一个人观看的视频www高清免费观看| 亚洲精品一卡2卡三卡4卡5卡| 国产成人影院久久av| 不卡一级毛片| 非洲黑人性xxxx精品又粗又长| 日本与韩国留学比较| 国产v大片淫在线免费观看| av欧美777| av黄色大香蕉| 老汉色av国产亚洲站长工具| 欧美日本视频| 国产精品久久久久久人妻精品电影| 国语自产精品视频在线第100页| 国产成人影院久久av| 精品一区二区三区人妻视频| 国产日本99.免费观看| 亚洲国产精品999在线| 精品99又大又爽又粗少妇毛片 | 色噜噜av男人的天堂激情| 国内久久婷婷六月综合欲色啪| 高清日韩中文字幕在线| 成人一区二区视频在线观看| 欧美性感艳星| 亚洲av二区三区四区| 免费观看的影片在线观看| 91久久精品电影网| 性欧美人与动物交配| 男女下面进入的视频免费午夜| 国产在视频线在精品| 深夜精品福利| 亚洲午夜理论影院| 免费搜索国产男女视频| 国产99白浆流出| 国产成人av教育| 亚洲国产精品sss在线观看| 亚洲国产精品久久男人天堂| 一二三四社区在线视频社区8| 人人妻人人看人人澡| 制服丝袜大香蕉在线| 一个人看的www免费观看视频| 美女cb高潮喷水在线观看| 国产爱豆传媒在线观看| 狂野欧美激情性xxxx| 搡女人真爽免费视频火全软件 | 国产伦精品一区二区三区视频9 | 色吧在线观看| 波多野结衣巨乳人妻| 观看美女的网站| h日本视频在线播放| 欧美乱妇无乱码| 波多野结衣高清无吗| 国产精品久久久久久久久免 | 亚洲无线在线观看| 国产精品国产高清国产av| 俺也久久电影网| 大型黄色视频在线免费观看| 狂野欧美激情性xxxx| 国产精品久久久人人做人人爽| 亚洲久久久久久中文字幕| 久久午夜亚洲精品久久| 91久久精品电影网| 国产精品久久久久久久久免 | 国产亚洲欧美在线一区二区| 天天一区二区日本电影三级| 免费观看的影片在线观看| 亚洲精品亚洲一区二区| 精品午夜福利视频在线观看一区| 97超视频在线观看视频| 成人精品一区二区免费| 亚洲七黄色美女视频| 亚洲成人免费电影在线观看| 很黄的视频免费| www日本黄色视频网| 国产色爽女视频免费观看| 久久久国产精品麻豆| 又黄又爽又免费观看的视频| 午夜老司机福利剧场| 精品人妻偷拍中文字幕| 成人亚洲精品av一区二区| 亚洲精品色激情综合| 9191精品国产免费久久| 久久精品91无色码中文字幕| 国产乱人视频| 国产精品久久电影中文字幕| 国产一区二区在线av高清观看| 欧美绝顶高潮抽搐喷水| 免费观看的影片在线观看| 人人妻,人人澡人人爽秒播| 欧洲精品卡2卡3卡4卡5卡区| 国产一区二区在线av高清观看| 99国产精品一区二区三区| 亚洲五月婷婷丁香| 午夜影院日韩av| 欧美日韩亚洲国产一区二区在线观看| 亚洲精品色激情综合| 亚洲无线观看免费| 十八禁人妻一区二区| 此物有八面人人有两片| 日本在线视频免费播放| 色综合站精品国产| 黄色日韩在线| 欧美日韩福利视频一区二区| 男人舔女人下体高潮全视频| 免费观看精品视频网站| 最近最新中文字幕大全免费视频| av在线蜜桃| 99久国产av精品| 黄片小视频在线播放| 真人做人爱边吃奶动态| 久久久久久久精品吃奶| ponron亚洲| 校园春色视频在线观看| 老汉色av国产亚洲站长工具| 欧美日韩瑟瑟在线播放| 欧美成狂野欧美在线观看| 精品久久久久久,| xxx96com| 搡老妇女老女人老熟妇| 亚洲精品在线美女| 欧美中文日本在线观看视频| 中文字幕人妻丝袜一区二区| 伊人久久精品亚洲午夜| 久久九九热精品免费| 精品久久久久久,| 国产又黄又爽又无遮挡在线| 极品教师在线免费播放| 在线观看66精品国产| 99热6这里只有精品| 精品国产三级普通话版| 亚洲中文日韩欧美视频| 一区二区三区免费毛片| 国产三级中文精品| 国产久久久一区二区三区| 九九热线精品视视频播放| 在线观看66精品国产| 很黄的视频免费| 久久久久久久久大av| 搡老熟女国产l中国老女人| 日韩高清综合在线| 亚洲成人精品中文字幕电影| 午夜精品一区二区三区免费看| 我要搜黄色片| 麻豆久久精品国产亚洲av| 狂野欧美激情性xxxx| 天堂√8在线中文| 欧美不卡视频在线免费观看| 亚洲人与动物交配视频| 色综合亚洲欧美另类图片| 国产亚洲精品av在线| 美女cb高潮喷水在线观看| 在线视频色国产色| 国产探花在线观看一区二区| 啪啪无遮挡十八禁网站| 久久欧美精品欧美久久欧美| 亚洲天堂国产精品一区在线| 免费观看人在逋| 国产免费一级a男人的天堂| 校园春色视频在线观看| 欧美性猛交黑人性爽| 国产视频一区二区在线看| 成人鲁丝片一二三区免费| 一二三四社区在线视频社区8| 激情在线观看视频在线高清| 99热6这里只有精品| 国产精品,欧美在线| 老司机深夜福利视频在线观看| 最近在线观看免费完整版| 久久精品夜夜夜夜夜久久蜜豆| 精品久久久久久久人妻蜜臀av| 一边摸一边抽搐一进一小说| 色在线成人网| 国产精品电影一区二区三区| 久久精品91无色码中文字幕| 亚洲自拍偷在线| 亚洲欧美日韩高清在线视频| 国产精品久久久久久人妻精品电影| 日韩欧美国产一区二区入口| 黑人欧美特级aaaaaa片| 69av精品久久久久久| 人人妻,人人澡人人爽秒播| 亚洲人成网站高清观看| 久久久久久久精品吃奶| 久久久久亚洲av毛片大全| 国产色爽女视频免费观看| 日日干狠狠操夜夜爽| 好男人电影高清在线观看| 国产 一区 欧美 日韩| 亚洲七黄色美女视频| 97碰自拍视频| 淫妇啪啪啪对白视频| 男女视频在线观看网站免费| 最好的美女福利视频网| 免费在线观看日本一区| 18美女黄网站色大片免费观看| 亚洲欧美日韩无卡精品| 国产伦精品一区二区三区四那| 99riav亚洲国产免费| 国产一区二区在线观看日韩 | 欧美黑人欧美精品刺激| 欧美不卡视频在线免费观看| 99久久精品国产亚洲精品| 亚洲熟妇熟女久久| 小说图片视频综合网站| 成年女人毛片免费观看观看9|