• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      石墨烯量子點的制備及光學性質(zhì)的研究

      2024-06-16 19:16:59陳樹帆趙會燕王璐趙樹人
      遼寧化工 2024年5期
      關(guān)鍵詞:光致發(fā)光水熱法光學

      陳樹帆 趙會燕 王璐 趙樹人

      摘 ?????要:碳納米材料由于獨特的電學光學性質(zhì)得到了廣泛的關(guān)注。其中石墨烯量子點由于好的光學穩(wěn)定性、豐富的表面修飾、低毒、高的生物相容性等特點被大量學者廣泛合成研究。首先介紹了石墨烯量子點的基本合成方法,在此基礎(chǔ)上,對石墨烯量子點光學性質(zhì)的研究現(xiàn)狀進行了概述。

      關(guān) ?鍵 ?詞:石墨烯量子點;制備;光學性質(zhì)

      中圖分類號:TQ323 ????文獻標識碼: A ????文章編號: 1004-0935(2024)05-0761-04

      近年來,由于富勒烯、碳納米管(CNTs)和石墨烯的發(fā)現(xiàn),以碳為基礎(chǔ)的納米材料(CNMs)憑借其獨特的光學,電學,熱力學性質(zhì)和機械性能受到了眾多科研工作者的關(guān)注與研究[1-6]。碳量子點(CQDs),通常也叫作碳點(CDs),是指直徑小于10 nm的熒光碳納米粒子(CNPs),CQDs具有化學穩(wěn)定性高、導電能力好、寬的光吸收帶等優(yōu)點[7-10]。石墨烯量子點(GQDs),是CQDs的一個子集,是指直徑尺寸小于100 nm的石墨烯納米片層,通常來源于石墨烯或氧化石墨烯[11-12]。作為一種新型量子點,由于顯著的量子限域和邊際效應,GQDs表現(xiàn)出許多新穎的物理化學性質(zhì)。GQDs還具有低細胞毒性、良好的溶解性、化學惰性、穩(wěn)定的光致發(fā)光、良好的表面接枝等優(yōu)點[13-15]。由于這些獨特的性質(zhì),很多學者研究了很多方法合成了GQDs,并對合成的GQDs的物理化學性質(zhì)進行了研究。

      1 ?石墨烯量子點的制備

      目前,GQDs的制備方法已經(jīng)得到了大量的研究,主要分為兩大類:自上而下(top-down)法和自下而上(bottom-up)法[16-19]。Top-down方法主要包含水熱法、電化學法、微波輔助法等,主要是將大尺寸的碳質(zhì)材料分裂切割從而得到小尺寸的GQDs。Bottom-up方法包含溶液化學法、有機分子前體法等,主要是利用一些小分子作為前體,經(jīng)過一系列化學反應得到GQDs。

      1.1 ?自上而下(top-down)途徑

      水熱法。Pan等利用水熱法以石墨烯片層(graphene?sheets, GSs)為原材料成功合成了GQDs[20-21]。得到的GQDs平均尺寸9.6 nm,發(fā)強烈的藍光。實驗首先對氧化石墨烯(graphene?oxide, GO)進行熱還原得到GSs,接著用濃H2SO4和濃HNO3在200?℃對GSs進行氧化,氧化后GSs尺寸發(fā)生顯著變化(50 nm~2μm),最后通過透析分離得到超細GQDs,尺寸范圍(5~13)nm(平均直徑9.6 nm)。Zhu等、Shen等利用水熱法以GO為原材料合成了GQDs[22-23]。

      電化學法。Li等利用電化學法成功合成了GQDs[24],尺寸(3~5)nm,發(fā)強烈綠光,其水溶液能夠穩(wěn)定保存數(shù)月。制備方法:在0.1 M(mol/L)的磷酸緩沖溶液中(PBS),以石墨烯薄膜(5 mm×10 mm)作為工作電極,Pt絲和Ag/AgCl分別做為對電極和參考電極,進行循環(huán)伏安掃描,掃描電壓±3.0?V,掃描頻率0.5 V/s。利用纖維素酯膜袋分離透析得到水溶性的GQDs溶液。Zhang等利用電化學法成功合成了GQDs[25],合成的GQDs量子產(chǎn)率高達14%,平均尺寸5~10 nm,發(fā)強烈的黃光。

      微波輔助法。微波輔助法結(jié)合了水熱法和微波法的共同優(yōu)點,加熱方便快捷,在GQDs的制備中能夠顯著減少反應時間、提高產(chǎn)物量子產(chǎn)率。Li等利用微波輔助法在酸性條件下以GO為原材料制備了兩種顏色的GQDs[26]

      1.2 ?自下而上(bottom-up)途徑

      溶液化學法。基于氧化縮合反應,Li課題組利用溶液化學法合成了GQDs[27,28],實驗以3-碘-4-溴苯胺和溴苯甲酸為原料,得到的GQDs尺寸均勻可控,分別包含了168、132、170個共軛碳原子。

      有機分子前體法。在一些特定條件下,通過熱解或碳化,一些有機小分子可以作為原材料來制備GQDs。Tang等利用葡萄糖作為原材料且沒有其他試劑的條件下合成了GQDs[29]。并且該實驗發(fā)現(xiàn)通過增加加熱時間,產(chǎn)物的尺寸也會增大。實驗中,加熱時間從1?min延長到9?min,GQDs尺寸從1.65 nm增大到21 nm。Dong等通過檸檬酸的碳化制備出了GQDs和GO,過程如圖1所示[30]

      GO中的黑點代表氧原子[30]

      Top-down 和bottom-up這兩種方法各有利弊,top-down合成方法具有原材料豐富,合成量大,操作簡單等優(yōu)點,而且得到的GQDs邊緣通常含有氧化功能基團,能夠促進GQDs的溶解、功能化和鈍化。其缺點是需要特定的設(shè)備、量子產(chǎn)率低、選擇性差,產(chǎn)物尺寸形態(tài)無法控制。與top-down方法不同,bottom-up可以有效控制產(chǎn)物的尺寸、形狀和性質(zhì)。但是也存在一些問題,比如說合成的GQDs容易聚集,產(chǎn)物尺寸較?。ù蠖嘣? nm以下),合適的前體分子不容易找到。

      2 ?石墨烯量子點的光學性質(zhì)

      2.1 ?紫外-可見吸收(UV-vis)

      在GO的UV-vis光譜中,可以觀察到230 nm處有一個特征峰,這個特征峰是芳香C=C鍵的π-π*躍遷所形成。在GQDs中,?320 nm處出現(xiàn)了新的譜帶,?這是由于C=O鍵的n-π*躍遷所引起

      [20,24,31]。Peng等分別在80?℃、100?℃、120?℃下合成了GQDs,隨著溫度的增加,GQDs的UV-vis吸收峰出現(xiàn)了明顯的藍移,從330?nm移動到

      270?nm[32]。Tang等利用水熱法制備得到的GQDs在228 nm、282 nm處有兩個特征峰,且隨著加熱時間的增加,GQDs尺寸的增加,兩個特征峰位置不變[29]??梢园l(fā)現(xiàn),通過不同條件制備得到的GQDs,UV-vis光譜略有不同。

      2.2 ?光致發(fā)光(Photoluminescence)

      尺寸依賴。由于量子限域效應,GQDs光致發(fā)光(Photoluminescence, PL)表現(xiàn)出尺寸依賴特點。Peng等在不同溫度下制備出尺寸不同的GQDs,?A溶液GQDs尺寸為1~4?nm,B溶液GQDs尺寸為4~8?nm, C溶液GQDs尺寸為7~11?nm,可以看出尺寸不同,PL不同[32]

      激發(fā)依賴。對于碳基熒光材料來說,發(fā)射波長和強度隨激發(fā)波長的變化而變化是一種常見的現(xiàn)象。GQDs也存在這種現(xiàn)象。在Pan等的實驗中[20],當激發(fā)光波長從320 nm增加到420 nm,GQDs的最大發(fā)射波長逐漸增加,發(fā)射強度迅速降低。發(fā)射強度在320 nm處最高。Li等利用電化學方法合成的GQDs中也出現(xiàn)了此種現(xiàn)象[24]。當激發(fā)波長在吸收峰(UV-vis)320 nm附近時,PL發(fā)射波長在473 nm,強度達到最大。這種性質(zhì)可能是由于不同尺寸GQDs的光選擇性和不同發(fā)射位點[13,23]

      2.3 ?電致化學發(fā)光(Electrochemiluminescence, ECL)

      ECL具有選擇性高、檢測范圍寬、靈敏度高等優(yōu)點。許多量子點(Si、CdSe、CdTe、CDs)等都被發(fā)現(xiàn)能夠產(chǎn)生ECL[33-35]。2012年,Li等首次發(fā)現(xiàn)GQDs的ECL[26]。實驗以K2S2O8作為共反應物,循環(huán)電壓為0 V~(-1.6)V,GQDs在-1.45?V時出現(xiàn)強烈的ECL信號。發(fā)光機制如圖2所示。

      3 ?結(jié) 論

      本文對GQDs的合成方法、光學性質(zhì)的當前研究進展進行了介紹。可以發(fā)現(xiàn),大量學者對GQDs的合成方法進行了研究,所用原材料、處理過程、所用設(shè)備不同,制備出了各種尺寸、形態(tài)的GQDs。文章也對GQDs的紫外-可見、光致發(fā)光、電致化學發(fā)光性質(zhì)做了介紹。

      這些獨特的電學、光學性質(zhì)也使得GQDs在化學分析、光學材料、醫(yī)學、生物學領(lǐng)域都得到了廣泛的應用[36-39]。未來,相信隨著廣大學者的研究,更多快速簡單、高質(zhì)量GQDs(例如良好的尺寸控制、形狀控制、良好的水溶性)的合成方法被進一步探索出來,更多獨特的電學光學性質(zhì)被研究發(fā)現(xiàn),為GQDs的廣泛應用打下更加堅實的基礎(chǔ)。

      參考文獻:

      [1]KUMAR S J, NILA?N K, RAZ?J. Carbon nanomaterials?in microbial sensing and bactericidal applications[J]. Current Opinion in Colloid & Interface Science, 2023, 66: 101719.

      [2]CHI H, LIU G. Carbon nanomaterial-based molecularly imprinted polymer sensors for detection of hazardous substances in food: Recent progress and future trends[J]. Food Chemistry,?2023,?420: 136100.

      [3]PARIHAR?A, CHOUDHARY?N K. Carbon nanomaterials-based electrochemical aptasensor?for point-of-care diagnostics of cancer biomarkers[J]. Materials Today Chemistry,?2023,?30: 101499.

      [4]KATHIRVEL?B, HAKIM A?G.?Carbon nanomaterials: Types, synthesis strategies and their application as drug delivery system for cancer therapy[J]. Biochemical Engineering Journal,?2023,?192: 108828.

      [5]HUANG D, DAI J, LI Z,?et al.?Effect of carbon-based nanomaterials?on the wave absorption properties of hollow ZnFe2O4[J]. Materials Science and EngineeringB,?2023,?193: 116462.

      [6]郭帥,韓興威,孫杰,等.三維石墨烯及其復合材料的制備與吸附性能研究進展[J].遼寧化工,?2023,?52(07): 1016-1023.

      [7]NAMDARI?P, NEGAHDARI?B, EATEMADI?A. Synthesis, properties and biomedical ?applications of carbon-based quantum dots: an updated review[J]. Biomedicine and Pharmacotherapy, 2017, 87: 209-222.

      [8]ANGELIN?A, MUHAMMED A, ALEENA?E,?et al.?WO3·0.33H2O/?carbon quantum dots hybrid nanostructures for efficient electrochemical hydrogen evolution reaction[J]. Diamond and Related Materials,?2023,?139: 110309.

      [9]HE Y, CHENG K, ZHONG Z,?et al.?Carbon quantum dot fluorescent probe for labeling and imaging of stellate cell on liver frozen section below freezing point[J]. Analytica Chimica Acta,?2023,?1260: 341210.

      [10]KIM B, OH G, SONG Y,?et al.?Acid catalyzed microwave-assisted production of full-color light emissive carbon quantum dots for CCT-tunable WLEDs[J]. Applied Surface Science,?2023,?640: 158301.

      [11]XU Y, LIU J, GAO C, WANG?E. Applications of ?carbon quantum ?dots ?in ?electrochemiluminescence: ?A ?mini review[J]. Electrochem. Commun.,?2014, 48: 151-154.

      [12]MA W, WANG J, WU?T,?et al.?Three-dimensional nitrogen-doped graphene?quantum dots/reduced graphene?oxide composite hydrogels?as binder-free electrodes for symmetric supercapacitors[J]. Materials Chemistry and Physics,?2023,?128365.

      [13]LI L, WU G, YANG G, et al.?Focusing on luminescent graphene?quantum dots: current status and future perspectives[J]. Nanoscale, 2013, 5: 4015-4039.

      [14]ELISABETE?R, LUANA?B, EDUARDO R,?et al.?Chitosan-graphene?quantum dot based active film as smart wound?dressing[J]. Journal of Drug Delivery Science and Technology,?2023,?80: 104093.

      [15]ABBAS A, RUBAB?S, REHMAN?A,?et al.?One-step green synthesis of biomass-derived graphene?quantum dots as a highly selective optical sensing probe [J].?Materials Today Chemistry, 2023,?30: 101555.

      [16]SHEN J, ZHU Y, YANG?X,?et al.?Graphene?quantum dots: emergent nanolights?for bioimaging, sensors, catalysis and photovoltaic devices[J]. Chem.?Commun., 2012, 48: 3686-3699.

      [17]LOPEZ-PICAZO P, SANCHEZ-TIZAPA?M, TOSTADO-?PLASCENCIA?M,?et al.?Characterization of sensitized solar cells based on nanocomposites?of protoporphyrin IX and microwave reduced graphene?oxide quantum dots[J].?Diamond and Related Materials, 2023, 139:110337.

      [18]SHUVAM?S, SOMYAJIT?P, ARITRA?P,?et al.?A review on synthesis, toxicity profile and biomedical applications of graphene?quantum dots (GQDs) [J].?Inorganica?Chimica Acta,?2023,?557: 121677.

      [19]SHI L, WANG B, LU?S. Efficient bottom-up synthesis of graphene?quantum dots at an atomically precise level [J]. Matter,?2023,?6(3): 728-760.

      [20]PAN D, ZHANG J,?LI Z, et al.?Hydrothermal route for cutting graphene?sheets into blue‐luminescent graphene?quantum dots[J]. Advanced materials, 2010, 22: 734-738.

      [21]FACURE?M, SCHNEIDER R, MERCANTE?L,?et al.?Rational hydrothermal synthesis of graphene?quantum dots with optimized luminescent properties for sensing applications[J].?Materials Today Chemistry,?2022, 23: 100755.

      [22]SHEN J,?ZHU Y,?CHEN?C,?et al.?Facile preparation and upconversion luminescence of graphene?quantum dots[J].?Chemical communications, 2011, 47: 2580-2582.

      [23]ZHU S,?ZHANG J,?QIAO C,?et al.?Strongly green- photoluminescent?graphene?quantum dots for bioimaging?applications[J].?Chem. Commun., 2011,?47: 6858-6860.

      [24]LI Y, HU Y, ZHAO?Y,?et al.?An electrochemical avenue to green-luminescent graphene?quantum dots as potential electron-acceptors for photovoltaics[J]. Advanced Materials,?2011,?23: 776-780.

      [25]ZHANG M, BAI L, SHANG W,?et al.?Facile synthesis of water-soluble, highly fluorescent graphene?quantum dots as a robust biological label for stem cells[J]. Journal of materials chemistry,?2012,?22: 7461-7467.

      [26]LI L, JI?J, FEI R, WANG?C,?et al.?A facile microwave avenue to electrochemiluminescent two-color graphene?quantum dots[J]. Adv. Funct. Mater., 2012,?22: 2971-2979.

      [27]YAN X, CUI X, LI?L. Synthesis of large, stable colloidal graphene?quantum dots with tunable size[J]. Journal of the American Chemical Society,2010,?132: 5944-5945.

      [28]YAN X,?CUI X,?LI B,?et al.?Large, solution-processable graphene?quantum dots as light absorbers for photovoltaics[J]. Nano letters,?2010,?10: 1869-1873.

      [29]TANG L, JI R.?Deep ultraviolet photoluminescence of water-soluble self-passivated graphene?quantum dots[J]. ACS nano,?2012,?6: 5102-5110.

      [30]DONG Y, SHAO J,?CHEN?C, et al.?Blue luminescent graphene?quantum dots and graphene?oxide prepared by tuning the carbonization degree of citric acid[J]. Carbon,?2012,?50: 4738-4743.

      [31]ZHENG M, XIE Z, QU?D,?et al.?On-off-on fluorescent carbon dot nanosensor?for recognition of chromium (VI) and ascorbic acid based on the inner filter effect[J]. ACS applied materials & interfaces,?2013,?5: 13242-13247.

      [32]PENG J, GAO W, GUPTA?B K,?et al.?Graphene?quantum dots derived from carbon fibers[J].?Nano letters, 2012,?12: 844-849.

      [33]DING Z, QUINN?B M.?Electrochemistry and electrogenerated?chemiluminescence from silicon nanocrystal?quantum dots[J]. Science, 2002, 296: 1293-1297.

      [34]MYUNG?N, DING Z, BARD?A. Electrogenerated?chemiluminescence of CdSe?nanocrystals[J]. Nano Letters,?2002,?2: 1315-1319.

      [35]BAE?Y, MYUNG?N.?Electrochemistry and electrogenerated?chemiluminescence of CdTe nanoparticles?[J].?Nano Letters,?2004, 4: 1153-1161.

      [36]HSIEH C, SUNG P, GANDOMI?Y,?et al.?Microwave synthesis of boron- and nitrogen-codoped?graphene?quantum dots and their detection to pesticides and metal ions[J]. Chemosphere,?2023,?318: 137926.

      [37]PRATIK?K, AKANKSHA?R, SONU?G. Fabrication of an ultrasensitive electrochemical immunosensor coupled with biofunctionalized?zero-dimensional graphene?quantum dots for rapid detection of cephalexin[J].?Food Chemistry, 2023,?398: 133846.

      [38]LUO K, LUO X, WU?Y,?et al.?Synthesis of graphene?quantum dots with temperature-sensitive properties from sea rice for rapid and highly selective detection of 4-nitrophenol[J]. Diamond and Related, Materials,?2023,?135: 109849.

      [39]WAN H, MUNDZIR?A, MOHAMAD A,?et al.?The valorisation of grass waste for the green synthesis of graphene?quantum dots for nonlinear optical applications[J]. Optical Materials,?2022, 132:?112853.

      Research on Preparation and Optical

      Properties of Graphene?Quantum Dots

      CHEN Shufan, ZHAO Huiyan?, WANG LuZHAO Shuren

      (Zhengzhou Product Quality Inspection and Testing Center, Zhengzhou Henan 450000,?China)

      Abstract:?Carbon nanomaterials?has received intensive attention due to unique electrical and optical properties. Among them, graphene?quantum dots has been extensively synthesized and studied by a large number of scholars because of their good excellent stability, rich surface modification, low toxicity and high biocompatibility. In this paper, the basic synthesis method of graphene?quantum dots was firstly introduced, and the optical property research status of graphene?quantum dots was summarized.

      Key words:?Graphene?quantum dots; Synthesis; Optical properties

      收稿日期: 2023-09-04

      作者簡介: 陳樹帆(1991-),女,河南省駐馬店人,助理工程師,碩士研究生,2017年畢業(yè)于吉林大學分析化學專業(yè),研究方向:產(chǎn)品檢驗檢測。

      通信作者: 趙樹人(1965-),男,副處級,碩士研究生,研究方向:產(chǎn)品檢驗檢測、計量檢定。

      猜你喜歡
      光致發(fā)光水熱法光學
      滑輪組的裝配
      水熱法原位合成β-AgVO3/BiVO4復合光催化劑及其催化性能
      陶瓷學報(2021年5期)2021-11-22 06:35:00
      光學常見考題逐個擊破
      光致發(fā)光與變色纖維發(fā)展趨勢
      雙摻雜核殼結(jié)構(gòu)ZnS:Mn@ZnS:Cu量子點的水熱法合成及其光致發(fā)光性能
      水熱法制備NaSm(MoO4)2-x(WO4)x固溶體微晶及其發(fā)光性能
      One-pot facile synthesis of highly photoluminescent graphene quantum dots with oxygen-rich groups
      水熱法制備BiVO4及其光催化性能研究
      應用化工(2014年4期)2014-08-16 13:23:09
      光學遙感壓縮成像技術(shù)
      Endress+Hauser 光學分析儀WA系列
      浦江县| 万州区| 五台县| 博爱县| 松潘县| 武安市| 芜湖县| 资中县| 和政县| 且末县| 东光县| 安徽省| 河南省| 江永县| 江油市| 英吉沙县| 读书| 斗六市| 湾仔区| 右玉县| 保德县| 韩城市| 剑川县| 威信县| 丹棱县| 从化市| 鱼台县| 茶陵县| 遂川县| 长宁区| 关岭| 宜州市| 德清县| 嘉峪关市| 夏邑县| 靖江市| 兴隆县| 舟曲县| 健康| 郧西县| 吴忠市|