• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    多酚自組裝抗菌生物材料的構(gòu)建及其應(yīng)用進(jìn)展

    2024-04-19 08:31:04徐偉俞蓉欣張相春張以穩(wěn)陳紅平田寶明鄭芹芹吳媛媛夏琛韋兵
    茶葉科學(xué) 2024年1期
    關(guān)鍵詞:多酚納米材料

    徐偉 俞蓉欣 張相春 張以穩(wěn) 陳紅平 田寶明 鄭芹芹 吳媛媛 夏琛 韋兵

    收稿日期:2023-12-11 ????????????修訂日期:2024-02-04

    基金項(xiàng)目:浙江省重點(diǎn)研發(fā)計(jì)劃(2023C02040、2022C04036)、國(guó)家自然科學(xué)基金(32372757、52003053)、中國(guó)農(nóng)業(yè)科學(xué)院創(chuàng)新工程(CAAS-ASTIP-2021-TRI)、國(guó)家茶葉產(chǎn)業(yè)技術(shù)體系(CARS-19)

    作者簡(jiǎn)介:徐偉,男,碩士研究生,主要從事茶多酚新材料構(gòu)建及生物醫(yī)用。*通信作者:zhangxc@tricaas.com;weibing90@fynu.edu.cn

    摘要:細(xì)菌感染可引起多種疾病,是全球主要死亡原因之一??股匾恢笔侵委熂?xì)菌感染類疾病的主要策略,但抗生素的過量和不合理使用已導(dǎo)致多種細(xì)菌產(chǎn)生耐藥性,嚴(yán)重威脅人類生命健康。植物多酚具有天然的抗菌特性,但酚羥基結(jié)構(gòu)的不穩(wěn)定性限制了其生物利用。為解決這個(gè)難題,研究者將多酚與其他物質(zhì)自組裝構(gòu)建新型納米生物材料,不僅提高了多酚穩(wěn)定性和生物利用率,還使其協(xié)同發(fā)揮抗菌活性,在抗菌領(lǐng)域中具有巨大的應(yīng)用潛力和優(yōu)勢(shì)。綜述了近年來不同類型的多酚自組裝生物納米材料構(gòu)建策略及抗菌性能,包括多酚-金屬、多酚-水凝膠、多酚-殼聚糖、多酚-蛋白質(zhì)和多酚-脂質(zhì)體等材料,指出了新型多酚自組裝生物材料在抗菌領(lǐng)域應(yīng)用中面臨的問題,并對(duì)其應(yīng)用前景進(jìn)行了展望。

    關(guān)鍵詞:多酚;自組裝;納米材料;抗菌應(yīng)用

    中圖分類號(hào):S571.1;R318.08? ? ? ? ? ? ? 文獻(xiàn)標(biāo)識(shí)碼:A? ? ? ? ? ? 文章編號(hào):1000-369X(2024)01-001-15

    Construction of Polyphenol Self-assembly Antibacterial Biomaterials and Progress in Their Applications

    XU Wei1,2, YU Rongxin2, ZHANG Xiangchun2*, ZHANG Yiwen2, CHEN Hongping2,

    TIAN Baoming2, ZHENG Qinqin2, WU Yuanyuan3, XIA Chen4, WEI Bing1*

    1. School of Biology and Food Engineering, Fuyang Normal University, Fuyang 236037, China; 2. Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; 3. Tea Research Institute, Zhejiang University, Hangzhou 310058, China;

    4. Hangzhou Yingshili Biotechnology Co., Ltd., Hangzhou 310000, China

    Abstract: Bacterial infection, a leading cause of global mortality, can result in various diseases. While antibiotics are the primary treatment for infections, their excessive and irrational use has led to the emergence of a variety of bacterial drug resistance, posing a serious threat to human health. Plant polyphenols have natural antibacterial properties, but the instability of the phenolic hydroxyl structure limits their bioavailability. To solve this problem, researchers have explored the self-assembly of polyphenols with other substances to construct new nano-biomaterials. These biomaterials not only enhance the stability and bioavailability of polyphenols but also exhibit synergistic antibacterial activity, showing a great promise in the field of antibacterial applications. This review examined the construction strategies and antibacterial properties of different types of polyphenol self-assembled biomaterials developed in recent years, including polyphenol-metal, polyphenol-hydrogel, polyphenol-chitosan, polyphenol-protein and polyphenol-liposome. Furthermore, the challenges and future prospects of the novel polyphenol self-assembling biomaterials in the field of antibacterial application were discussed.

    Keywords: polyphenols, self-assembly, nanomaterials, antibacterial applications

    有害細(xì)菌的感染會(huì)引發(fā)炎癥、敗血癥等多種疾病,情況嚴(yán)重時(shí)可直接導(dǎo)致患者死亡[1-2]。據(jù)世界衛(wèi)生組織報(bào)告,細(xì)菌感染是近十年全球范圍內(nèi)人口死亡的主要原因之一,給全世界帶來了巨大的健康威脅和經(jīng)濟(jì)負(fù)擔(dān)[3]。自1928年青霉素被發(fā)現(xiàn)以來,抗生素類藥物被廣泛用于治療細(xì)菌感染,極大降低了細(xì)菌感染性疾病的發(fā)病率和死亡率。然而,濫用、錯(cuò)用抗生素等現(xiàn)象引發(fā)了諸多問題,其中最突出的是部分細(xì)菌對(duì)抗生素類藥物產(chǎn)生了耐藥性,并且耐藥菌的種類和數(shù)量在不斷增加??股啬退幮裕ˋMR)已經(jīng)對(duì)世界公共衛(wèi)生安全造成了重大威脅[4-5]。報(bào)道顯示,2019年全球約有495萬人的死亡與耐藥性細(xì)菌感染有關(guān),其中127萬人直接死于耐藥性細(xì)菌感染[6-7]。據(jù)統(tǒng)計(jì),全球每年感染耐藥性細(xì)菌近300萬人,并至少導(dǎo)致70萬人死亡,如果不采取任何針對(duì)性措施,預(yù)計(jì)到2050年將造成1 000萬人死亡及100萬億美元的經(jīng)濟(jì)損失[8-10]。

    細(xì)菌的耐藥性主要有天然耐藥(Ⅰ型)和獲得性耐藥(Ⅱ型)兩種類型[11],其中,天然耐藥是由于細(xì)菌自身所攜帶的基因?qū)е缕鋵?duì)抗菌藥物不敏感,如奇異變形桿菌對(duì)四環(huán)素天然耐藥,葡萄球菌對(duì)美西林、粘菌素天然耐藥。而獲得性耐藥是細(xì)菌在受抗菌藥物的脅迫下,自身發(fā)生改變而產(chǎn)生耐藥性,例如攜帶甲氧西林耐藥基因(mec A)的耐甲氧西林金黃色葡萄球菌(MRSA),可以通過產(chǎn)生一種獨(dú)特的青霉素結(jié)合蛋白PBP2a,該蛋白對(duì)β-內(nèi)酰胺類藥物的親和力非常低,以此表現(xiàn)出耐藥性。此外,還有耐萬古霉素腸球菌(VRE)、產(chǎn)超廣譜β-內(nèi)酰胺酶(ESBLs)菌株和耐青霉素肺炎鏈球菌[12]。研究表明,細(xì)菌產(chǎn)生相應(yīng)的耐藥機(jī)制主要有:(1)獲得可以使藥物失活的酶基因,從而產(chǎn)生滅活酶使藥物失活;(2)改變細(xì)菌壁膜的結(jié)構(gòu),使表面無抗生素的結(jié)合位點(diǎn);(3)通過外排泵將進(jìn)入菌體的藥物泵出體外;(4)修飾抗生素靶點(diǎn),通過下調(diào)藥物靶向基因的表達(dá)來降低與抗生素的親和力;(5)形成生物膜,為細(xì)菌創(chuàng)造了天然防護(hù)屏障,不僅可以延緩、阻止抗生素的滲入,甚至可以使膜中的抗生素滅活[13-14]。但現(xiàn)有抗生素的抑菌機(jī)制主要是通過進(jìn)入細(xì)菌體內(nèi)后抑制細(xì)菌壁膜的合成、干擾生物大分子如蛋白質(zhì)的合成以及抑制基因的復(fù)制等。過度使用抗生素是導(dǎo)致細(xì)菌產(chǎn)生耐藥性的主要原因,所以僅依賴傳統(tǒng)抗生素和相關(guān)方法來控制細(xì)菌感染極有可能導(dǎo)致更多耐藥菌產(chǎn)生,引起更大的安全隱患。由此可見,傳統(tǒng)抗生素對(duì)耐藥性細(xì)菌的治療存在一定的局限性。因此,除傳統(tǒng)小分子抗生素外,亟需開發(fā)高效、不易引發(fā)耐藥性的新型抗菌材料。

    近年來,納米技術(shù)在抗菌應(yīng)用方面表現(xiàn)出巨大的潛力,通過納米技術(shù)制備的納米材料在抑菌方面具有顯著優(yōu)勢(shì):(1)納米材料的物理性質(zhì)如尺寸可以精準(zhǔn)控制;(2)納米材料可作為抗生素載體,提高藥物穩(wěn)定性、靶向性釋放和促進(jìn)藥物進(jìn)入細(xì)菌體內(nèi);(3)具有非氧化殺菌、釋放金屬離子和產(chǎn)生活性氧等多種抑菌機(jī)制,可減緩耐藥性的發(fā)展進(jìn)程;(4)納米材料可通過修飾和功能化,發(fā)揮多種生物功能;(5)抑制和破壞難治療的細(xì)菌生物膜[15-18]。與傳統(tǒng)抗菌藥相比,具有獨(dú)特抗菌機(jī)制的納米材料更不易引起細(xì)菌耐藥性。越來越多的抗菌研究選用碳、金屬、金屬氧化物、脂質(zhì)體、聚合物以及植物提取物等制備新型抗菌納米材料。這些新型抗菌生物材料雖然具有優(yōu)異的抗菌性能,但也存在不可忽視的弊端,如合成過程復(fù)雜、合成條件苛刻、使用對(duì)人體和環(huán)境有毒有害的試劑,以及在體內(nèi)的生物安全性等。植物提取物如多酚類物質(zhì)作為抗菌材料,與其他物質(zhì)相比,具有綠色、安全及高效等優(yōu)勢(shì),因此,利用多酚類物質(zhì)制備抗菌材料是目前的研究重點(diǎn)之一。

    多酚作為一種次級(jí)代謝產(chǎn)物,是植物界中分布最廣泛的物質(zhì)之一,目前已知有約8 000種酚類物質(zhì)[19]。多酚通常具有芳香環(huán),且芳香環(huán)上有一個(gè)或多個(gè)羥基,根據(jù)其化學(xué)結(jié)構(gòu),大致可以分為酚酸、黃酮、單寧和芪等幾類[20-21](圖1)。其中,酚酸和黃酮類化合物占天然多酚類物質(zhì)總數(shù)的90%以上,包括一些常見的天然多酚,如沒食子酸(GA)、表兒茶素(EC)、表沒食子兒茶素(EGC)、表兒茶素沒食子酸酯(ECG)和表沒食子兒茶素沒食子酸酯(EGCG)。多項(xiàng)體外和臨床研究表明,多酚類物質(zhì)具有抑菌、抗氧化、抗炎、抗腫瘤、保護(hù)神經(jīng)和調(diào)節(jié)血糖血脂等特性[22-26]。多酚良好的生物安全性和天然的抗菌活性使其在食品和生物醫(yī)學(xué)等領(lǐng)域得到廣泛研究,如多酚單體EGCG對(duì)多種致病菌(銅綠假單胞菌、大腸桿菌、枯草桿菌和金黃色葡萄球菌等)的抑制作用已經(jīng)得到證實(shí)和應(yīng)用,但多酚單體的穩(wěn)定性較差,易受到溫度、濕度和光照等外界環(huán)境因素影響,使其化學(xué)結(jié)構(gòu)和物理性質(zhì)發(fā)生變化,最終導(dǎo)致其生物活性減弱[27-30]。因此,將多酚與金屬、水凝膠、殼聚糖、蛋白質(zhì)和脂質(zhì)體等物質(zhì)構(gòu)建成納米顆粒有利于提高其穩(wěn)定性和生物利用度,并通過結(jié)合光熱治療和化學(xué)治療等多級(jí)療效,協(xié)同發(fā)揮顯著的抗菌和抗氧化能力。本文綜述了近年來多酚納米材料在抗菌領(lǐng)域的應(yīng)用研究,通過納米技術(shù)有望提高多酚的生物利用率和突破細(xì)菌耐藥性困境(圖2)。

    1 多酚-金屬納米材料的制備及應(yīng)用

    Au、Ag、Cu、Fe和Zn等金屬被以各種形態(tài)用作抑菌劑長(zhǎng)達(dá)幾個(gè)世紀(jì)。Au和Ag等貴金屬不僅具有廣譜的抗菌活性,還可以發(fā)揮光熱協(xié)同作用;Cu、Fe、Zn和Ca等金屬元素既是人體所需的礦質(zhì)元素,對(duì)人體有特殊的生理作用,也是許多抑菌劑的重要組成成分。金屬-多酚網(wǎng)絡(luò)(MPN)是近年來新興的一種有機(jī)-無機(jī)雜化網(wǎng)絡(luò)系統(tǒng),通過多酚類物質(zhì)的酚羥基和金屬離子配合形成螯合物。金屬-多酚網(wǎng)絡(luò)通常兼并了多酚和金屬的雙重優(yōu)勢(shì),不僅提高納米材料的生物安全性還可以增強(qiáng)金屬納米顆粒的抗菌作用[31-34]。Huo等[35]利用二氧化鈦納米刺(TNS)、單寧酸-鐵(MPNs)和抗菌肽(AMPs)構(gòu)建了一個(gè)具有良好細(xì)胞相容性的多面納米涂層(TNS-MPN-AMP)。通過TNS實(shí)現(xiàn)物理刺穿破壞細(xì)菌結(jié)構(gòu),并在近紅外光和抗菌肽的作用下,該納米涂層可實(shí)現(xiàn)物理-光熱-化療三層面協(xié)同抗菌治療,體外和體內(nèi)的抗菌率均達(dá)到90%以上(圖3A)。

    Wang等[38]利用EGCG和茶多酚(TP)分別制備出EGCG-Zn和TP-Zn,并發(fā)現(xiàn)EGCG-Zn(80 ?g·mL-1)和TP-Zn(125 ?g·mL-1)的最低抑菌濃度明顯低于EGCG(320 ?g·mL-1)和TP(1 000 ?g·mL-1),具有更高的抑菌活性,證明多酚和金屬可以發(fā)揮協(xié)同抗菌效果。多酚-

    金屬不僅對(duì)浮游細(xì)菌具有殺傷作用,對(duì)細(xì)菌生物膜同樣具有抑制作用。Wang等[36]將單寧酸(TA)、Au、Cu和聚乙二醇(PEG)通過簡(jiǎn)單的沉積方法制備出Au-TA/Cu-PEG雜化膜(圖3B),該雜化膜通過近紅外照射可達(dá)到長(zhǎng)期抑制細(xì)菌生物膜形成的效果,在15 d內(nèi)均表現(xiàn)出良好的抗菌膜性能?;赥A對(duì)群體感應(yīng)(QS)的抑制活性,Liu等[39]成功制備了銀-單寧酸納米材料,該納米材料可通過抑制QS信號(hào)產(chǎn)生來調(diào)控大腸桿菌生物膜的形成過程,對(duì)生物膜的抑制率達(dá)到92.9%。此外,Zhang等[40]利用EGCG、TA、原花青素(OPC)分別與金納米棒(GNRs)、鐵離子制備了納米材料GNRs@MPNs(GNRs@Fe-EGCG3、GNRs@Fe-TA3和GNRs@Fe-OPC3),并評(píng)價(jià)了各自的抑菌活性,結(jié)果發(fā)現(xiàn)在近紅外光照條件下,與未封裝的GNRs相比,經(jīng)過不同多酚單體封裝制備而成的納米材料具有更顯著的抑菌活性,抑菌率從30.1%提升至85.4%(GNRs@Fe-EGCG3)、88.6%(GNRs@Fe-TA3)和98.6%(GNRs@Fe-OPC3),且GNRs@MPNs的光熱效應(yīng)可實(shí)現(xiàn)局部殺傷細(xì)菌以促進(jìn)小鼠皮膚傷口的愈合。多酚-金屬體系不僅可以表現(xiàn)出良好的光熱效應(yīng),還可制備成響應(yīng)型納米材料。Zhang等[41]研究表明,將單寧酸和銀離子沉積至介孔有機(jī)硅納米顆粒上,成功制備出可降解且谷胱甘肽(GSH)響應(yīng)型的Ag-MONs。在GSH存在下,Ag-MONs被降解并釋放出銀離子,發(fā)揮優(yōu)異的抗菌效果。Yu等[37]開發(fā)了一種普適性的茶多酚原位一步自組裝方法,實(shí)現(xiàn)了在水相常溫常壓條件下茶多酚穩(wěn)態(tài)納米生物材料(am-MPN NPs)的快速綠色合成,利用不同茶多酚單體(EGCG、EC、ECG和EGC),與美國(guó)食品藥品監(jiān)督管理局(FDA)批準(zhǔn)的戒酒硫代謝物二乙基二硫代氨基甲酸酯(Diethyldithiocarbamate,DEDTC)及不同金屬(Cu、Au、Ag、Pt和Mg等)自組裝成納米顆粒,并發(fā)現(xiàn)茶多酚自組裝新材料具有顯著的抗菌效應(yīng)和抗生物膜活性。除破壞細(xì)菌壁膜結(jié)構(gòu)導(dǎo)致內(nèi)含物泄露、活性氧爆發(fā)、DNA結(jié)構(gòu)破壞等抑菌機(jī)制,研究進(jìn)一步發(fā)現(xiàn)多酚納米材料的特征抗菌機(jī)制——產(chǎn)生醌蛋白(圖3C)。

    2 多酚-水凝膠納米材料的制備及應(yīng)用

    水凝膠是通過親水大分子鏈在水微環(huán)境中交聯(lián)而形成的三維聚合物網(wǎng)絡(luò)[42]。由于水凝膠的富水特性,被廣泛的應(yīng)用于生物醫(yī)學(xué)[43-44]、軟電子[45]、傳感器[46-47]和催化支架[48-49]。Shen等[50]利用氧化透明質(zhì)酸和姜黃素-Fe(Ⅲ)無限配位聚合物設(shè)計(jì)了一種高度集成且結(jié)構(gòu)簡(jiǎn)單的納米復(fù)合水凝膠,用以針對(duì)止血、抗炎、增殖和重塑等復(fù)雜愈合階段的方式程序化地促進(jìn)燒傷創(chuàng)面愈合。研究結(jié)果表明,這種納米復(fù)合水凝膠實(shí)現(xiàn)了全層燒傷創(chuàng)面的閉合期從21 d縮短到9 d,加速了皮膚結(jié)構(gòu)的重建。較差的機(jī)械性能嚴(yán)重限制了水凝膠在體內(nèi)的應(yīng)用,特別是臨床上對(duì)水凝膠進(jìn)行的縫合手術(shù)(圖4A)。Tan等[51]利用多酚作為非共價(jià)交聯(lián)劑,與聚乙二醇(PEG)及溶菌酶(LZM)通過疏水相互作用形成水凝膠,所得的PEG-LZM-多酚水凝膠與原始的PEG-LZM相比具有更強(qiáng)的韌性和高彈性。最后,PEG-LZM-多酚水凝膠被證明可以通過縫合成功修補(bǔ)兔心肌缺損,并改善傷口愈合和恢復(fù)心臟功能(圖4B)。Dong等[52]將四氯金酸(HAuCl4)與氫硼化鈉(NaBH4)放置在冷水浴中快速攪拌,并將產(chǎn)物經(jīng)過離心洗滌與EGCG水溶液在室溫下攪拌反應(yīng)10 h,冷凍干燥得到E-Au,最后將E-Au加入至水凝膠中制備成E-Au@H,對(duì)E-Au@H進(jìn)行表征和抑菌測(cè)試,結(jié)果顯示E-Au在水凝膠中分散均勻,粒徑分布在9 nm左右,表現(xiàn)出良好的抑菌活性且有助于血管生成。在近紅外光照條件下,實(shí)現(xiàn)E-Au@H對(duì)EGCG的可控釋放,增強(qiáng)抗菌作用,對(duì)大腸桿菌和金黃色葡萄球菌的抑菌率分別為92%和94%,對(duì)牙菌斑生物膜的抑制率達(dá)到87%,可促進(jìn)牙槽骨再生,為治療菌斑生物膜引起的牙周炎等口腔疾病提供了新策略(圖4C)。基于水凝膠良好的生物相容性和機(jī)械性能,Deng等[53]利用瓊脂糖(AG)、單寧(TA)和FeCl3制備了水凝膠納米材料(ATF),體外和體內(nèi)抑菌試驗(yàn)均表明ATF具有良好的光熱效應(yīng)和生物相容性。ATF在近紅外(NIR)照射下可減少99%的菌落數(shù)量,并且促進(jìn)小鼠皮膚傷口的愈合,在治療第5天傷口面積僅為18.2%,而對(duì)照組和NIR組的傷口面積沒有明顯減小。水凝膠常用作傷口敷料,在抗菌止血和促進(jìn)組織生成中發(fā)揮重要作用,但部分水凝膠的生物活性受pH動(dòng)態(tài)變化的影響[54-55]。為突破水凝膠在抗菌敷料應(yīng)用中pH范圍的限制,Jin等[56]將百里香酚(THY)和低聚單寧酸(OTA)裝載至海藻酸鈉-聚賴氨酸水凝膠膜(ASP)上,成功制備了TO-ASP水凝膠抑菌材料,該水凝膠在pH為4~9均表現(xiàn)出良好的抑菌活性,對(duì)大腸桿菌(EC)和金黃色葡萄球菌(SA)的抑制率均達(dá)到99.9%,并對(duì)兩種菌的生物膜均有破壞效果,試驗(yàn)結(jié)果顯示,EC和SA的生物膜水平在經(jīng)過TO-ASP處理后分別下降84.97%和91.01%。此外,智能響應(yīng)型水凝膠也得到了廣泛研究。由原兒茶醛(PA)、鐵和氨基糖苷類作為構(gòu)建塊,快速合成的智能水凝膠不僅具有優(yōu)良的觸變性和自愈合性能,而且對(duì)不同刺激(溫度、近紅外光、pH、電和氧化還原)均有響應(yīng),例如在酸性條件下,水凝膠不斷降解并持續(xù)釋放出鐵離子和氨基糖苷類抗生素(如妥布霉素、硫酸新霉素、慶大霉素硫酸鹽、硫酸帕羅霉素、硫酸核糖霉素和硫酸奈替米星),表現(xiàn)出良好的抗菌活性[57]。Liang等[58]進(jìn)一步將智能水凝膠應(yīng)用在皮膚傷口上,并證明了其對(duì)傷口愈合具有積極作用。試驗(yàn)中利用PA、Fe3+和季銨化殼聚糖(QCS)制備了雙動(dòng)態(tài)鍵交聯(lián)粘性水凝膠,該水凝膠不僅具有良好的機(jī)械性能和粘附性,并且在酸性溶液下可實(shí)現(xiàn)按需去除,在小鼠皮膚感染模型中,智能水凝膠可顯著抑制傷口處細(xì)菌的生長(zhǎng),刺激新生皮膚組織中血管和毛囊的生成,以促進(jìn)傷口的愈合。

    3 多酚-殼聚糖納米材料的制備及應(yīng)用

    殼聚糖(CS)是一種通過去除天然多糖甲殼素中乙?;@得的生物衍生材料,具有可生物降解、低過敏性和生物相容性等特性[59]。研究表明,殼聚糖的功能基團(tuán)使其易與其他生物活性分子結(jié)合,可以提高合成產(chǎn)物的穩(wěn)定性、溶解度、緩釋性和生物利用度等[60]。為實(shí)現(xiàn)長(zhǎng)期緩慢釋放多酚,提高材料抑菌活性,Li等[61]通過離子凝膠法合成了一種同時(shí)裝載兒茶素和槲皮素的新型殼聚糖基納米顆粒(G-C-Q NPs),結(jié)果表明,兒茶素和槲皮素的裝載率達(dá)到76.35%和52.23%,可實(shí)現(xiàn)緩慢釋放。G-C-QNPs對(duì)金黃色葡萄球菌、枯草芽孢桿菌和大腸桿菌的抑菌效果均優(yōu)于其合成底物單體,對(duì)于G-C-QNPs良好的抑菌活性,一方面是由于其緩釋特性,在一定時(shí)間內(nèi)通過持續(xù)釋放兒茶素和槲皮素來抑制細(xì)菌的生長(zhǎng)和繁殖;另一方面是由于G-C-QNPs表面帶正電荷,促進(jìn)其與表面帶負(fù)電荷的細(xì)菌相結(jié)合。Rezazadeh等[62]通過綠色合成法將殼聚糖、海藻多酚和銀制備成生物納米銀(AgNPs)材料,該納米材料在存放180 d內(nèi)的紫外吸收和溶液顏色均沒有明顯變化,且AgNPs持續(xù)釋放的銀顆??捎行У陌邢蚣?xì)菌表面,破壞細(xì)菌結(jié)構(gòu)和功能,最終導(dǎo)致細(xì)菌死亡。多酚的存在和釋放不僅可以提高多酚-殼聚糖體系的抗菌活性,在清除自由基和抗氧化方面同樣有所提高。Riccucci等[63]利用交聯(lián)殼聚糖在羥基磷灰石表面形成穩(wěn)定的涂層,并在涂層上負(fù)載多酚類物質(zhì),結(jié)果表明,相比于正常生理環(huán)境下,該涂層在模擬炎癥環(huán)境中可以更快地釋放多酚,而結(jié)合在表面的多酚可以維持較長(zhǎng)時(shí)間的

    抗氧化能力。多酚-殼聚糖優(yōu)異的抗菌和抗氧化性能使得其在食品保鮮膜上得到廣泛的研究和應(yīng)用,Chen等[64]制備了含茶多酚-殼聚糖納米顆粒(CNTP)的綠色復(fù)合淀粉膜,其透光率和抗拉伸強(qiáng)度分別達(dá)到了83.9%和33.4 MPa,不僅機(jī)械性能有所提升,復(fù)合膜同樣具有緩釋茶多酚、抗菌、抗氧化等性能(圖5C),試驗(yàn)結(jié)果表明,復(fù)合膜在6 h后的茶多酚釋放率僅為45.9%,對(duì)1,1-二苯基-2-三硝基苯肼(DPPH)的清除率為42%。另一項(xiàng)研究表明,薄膜中茶多酚的含量不同,會(huì)導(dǎo)致薄膜的機(jī)械性能和抑菌活性等發(fā)生變化,在一系列含不同濃度沒食子酸(GA)的殼聚糖薄膜中,當(dāng)沒食子酸和殼聚糖的比例(W/W)為1.5∶100時(shí),對(duì)大腸桿菌、鼠傷寒沙門氏菌、枯草芽孢桿菌和李斯特菌的抑菌活性最高;當(dāng)二者比例降低至0.5∶100時(shí),薄膜的拉伸強(qiáng)度和阻隔率顯著提高,而水汽透過率和透氧率降低[65]。此外,Yu等[66]將多酚-殼聚糖納米顆粒負(fù)載到水凝膠上作為光熱療法的刺激反應(yīng)劑用作傷口敷料,這種新型生物可再生冷凍凝膠表現(xiàn)出優(yōu)異的吸濕止血性能、光熱抗菌活性,并加速皮膚再生,能夠在臨床上作為一種有前景的傷口敷料材料(圖5A)。Yu等[67]將茶多酚摻入到殼聚糖復(fù)合薄膜中,以增強(qiáng)其機(jī)械性能、抗菌和抗氧化性能。這種復(fù)合薄膜可以延長(zhǎng)魚肉的新鮮度,顯示出未來作為活性食品包裝的潛力(圖5B)。茶多酚的低吸收率阻礙了其在體內(nèi)的生物活性,主要原因是它們?cè)谖改c道中的穩(wěn)定性差,已有研究報(bào)道通過應(yīng)用殼聚糖納米顆??稍鰪?qiáng)茶多酚的吸收和生物利用度[68](圖5C)。

    4 多酚-蛋白質(zhì)納米材料的制備及應(yīng)用

    蛋白質(zhì)具有優(yōu)異的生物相容性、非免疫原性和耐藥性等優(yōu)勢(shì),常用于納米載體的制備,在食品加工、保鮮和藥物載體等方面得到廣泛研究。研究表明,多酚可以通過共價(jià)鍵和非共價(jià)鍵與蛋白質(zhì)相互作用,促進(jìn)蛋白質(zhì)之間的交聯(lián),從而改善材料的抗菌、抗氧化以及機(jī)械阻隔等性能。Ashwar等[69]利用酪蛋白(C)和乳清蛋白(W)分別和沙棘多酚提取物制備成蛋白-多酚復(fù)合物(CP、WP),并研究了這兩種蛋白對(duì)沙棘多酚穩(wěn)定性和生物利用度的影響,結(jié)果表明,沙棘多酚與酪蛋白和乳清蛋白的主要結(jié)合力為疏水作用,且在合成過程中增加超聲處理可以促進(jìn)多酚進(jìn)入蛋白內(nèi)部,結(jié)合更加緊密,表現(xiàn)出更好的抗氧化性和防降解能力。沙棘多酚在模擬腸道環(huán)境中降解60%,而沙棘多酚在酪蛋白和乳清蛋白的保護(hù)下,可以保留65%,隨著酪蛋白和乳清蛋白的酶水解,多酚被緩慢釋放,具有更高的生物利用度。受到蛋白載體的保護(hù),多酚類物質(zhì)可以在消化分解前遞送至腸道[70-72],維持較高的活性濃度。多酚-蛋白體系在食品領(lǐng)域也表現(xiàn)出巨大潛能。不僅可以提高隔水性,多酚-蛋白薄膜通常表現(xiàn)出更優(yōu)異的抗氧化和抗菌性能[73]。Maroufi等[74]利用百里香酚、玉米醇溶蛋白和雙醛卡拉膠制備了明膠膜,該膜的拉伸強(qiáng)度(約72 MPa)比純明膠膜高20倍,同時(shí)百里香酚(0.25 mg·mL-1和0.50 mg·mL-1)表現(xiàn)出一定的抗氧化和抗菌活性,當(dāng)百里香酚的質(zhì)量濃度為0.50 mg·mL-1時(shí),抗氧化活性提高46.5%,對(duì)金黃色葡萄球菌和大腸桿菌的抑菌圈直徑分別為10.3 mm和6.2 mm。另外有研究表明,多酚-蛋白抗菌膜的抗菌活性與多酚含量和釋放量密切相關(guān)[75]。Kavoosi等[76]制備了含百里香酚的明膠膜,發(fā)現(xiàn)不含百里香酚的明膠對(duì)枯草芽孢桿菌、金黃色葡萄球菌、大腸桿菌和銅綠假單胞菌均沒有抑菌活性,而含有百里香酚的明膠對(duì)革蘭氏陽性菌的抑制活性高于陰性菌,且隨著百里香酚濃度升高,抑菌效果增強(qiáng),當(dāng)明膠膜中百里香酚的含量達(dá)到8%(W/W)時(shí),對(duì)枯草芽孢桿菌、大腸桿菌和金黃色葡萄球菌的抑制率達(dá)到100%。不同植物來源的單寧酸與蛋白質(zhì)制備成明膠膜同樣具有抗菌活性,Cano等[77]利用白皮葡萄、紅皮葡萄和橡樹皮中的單寧酸分別制備活性膜(GWb,GRb和GOb),并評(píng)價(jià)了不同活性膜對(duì)大腸桿菌和李斯特菌的抑菌活性,結(jié)果顯示3種活性膜的最低抑菌濃度(MIC)在6~25 mg·mL-1,其中GWb的抑菌活性最佳。通過蛋白質(zhì)和多酚在各種基材上的界面組裝,建立了一種簡(jiǎn)單而通用的功能材料組裝策略[78](圖6A)。多酚-蛋白質(zhì)膠囊用于闡明不同蛋白質(zhì)和多酚之間的主要相互作用。組裝的蛋白質(zhì)保留了它們的結(jié)構(gòu)和功能,從而使其能夠應(yīng)用各種領(lǐng)域。Du等[79]展示了一種新型的防腐劑涂層,該涂層由單寧酸和明膠之間的分子間氫鍵自組裝驅(qū)動(dòng)。該涂層具有理想的抗菌、抗氧化效果以及良好的粘附能力,表現(xiàn)出理想的防腐性能(圖6B)。

    5 多酚-脂質(zhì)體納米材料的制備及應(yīng)用

    多酚類物質(zhì)在脂質(zhì)雙層中的定位及其對(duì)卵磷脂膜的影響可歸因于多酚類物質(zhì)的結(jié)構(gòu)特征。這些都是設(shè)計(jì)脂質(zhì)體遞送系統(tǒng)時(shí)應(yīng)考慮的重要因素[80](圖6C)。由茶多酚和脂質(zhì)體形成的復(fù)合涂層具有緩釋的性能,使其能夠成為長(zhǎng)效的保鮮材料[81](圖6D)。脂質(zhì)體是一種具有兩親性的自組裝球形雙層傳遞系統(tǒng),由彎曲的脂質(zhì)雙層組成[82]。由于其良好的生物相容性、可降解和可控釋放等優(yōu)勢(shì)被廣泛的用于醫(yī)學(xué)、食品科學(xué)以及化妝品等領(lǐng)域,被認(rèn)為是十分強(qiáng)大的藥物遞送系統(tǒng)[83]。為構(gòu)建穩(wěn)態(tài)的多酚納米遞送系統(tǒng),Das等[84]將阿霉素、槲皮素和EGCG包封在脂質(zhì)體中,形成了穩(wěn)定的納米顆粒,其中槲皮素和EGCG的包封率分別達(dá)到96.8%和98.0%,并且包封在脂質(zhì)體中的槲皮素和EGCG的生物利用度得到提高,可持續(xù)釋放10 d。

    Rao等[85]將香芹酚(Car)包埋在β-環(huán)糊精(β-CD)中,形成β-環(huán)糊精-香芹酚包合物(β-CD-Car),并制備了β-環(huán)糊精-香芹酚脂質(zhì)體(β-CD-Car-Lip)和ε-聚賴氨酸包被的β-CD-Car脂質(zhì)體(ε-PL/β-CD-Car-Lip)。結(jié)果表明,ε-PL/β-CD-Car-Lip在25 ℃和4 ℃下均可以有效延緩香芹酚的釋放,192 h內(nèi)累積釋放分別為69%和60.4%,且抑菌效果最佳,對(duì)大腸桿菌和金黃色葡萄球菌的最低抑制濃度分別為0.025 mg·mL-1和0.05 mg·mL-1,顯著低于香芹酚的最低抑菌濃度(兩種菌均為0.32 mg·mL-1),證明ε-聚賴氨酸包被的β-CD-Car脂質(zhì)體可以降低香芹酚的體外釋放速率,并提高其抗菌活性。Sepahvand等[86]證明了百里香酚及其納米脂質(zhì)載體對(duì)大腸桿菌和金黃色葡萄球菌的抑菌效果優(yōu)于亞硝酸鹽。此外,脂質(zhì)體還可以和殼聚糖、水凝膠聯(lián)用以提高多酚類物質(zhì)的生物利用度。Ezzat等[87]通過乙醇注射法制備了兒茶素-殼聚糖-脂質(zhì)體復(fù)合材料(CHS),與未經(jīng)脂質(zhì)體包埋的相比具有更高的穩(wěn)定性,顯著提高了大鼠口服生物利用度,其中最高血藥濃度提高1.53倍,血藥濃度達(dá)峰時(shí)間延長(zhǎng)1.99倍,藥效可持續(xù)更長(zhǎng)時(shí)間。Joraholmen等[88]制備了白藜蘆醇(RES)水凝膠脂質(zhì)體并將其用于治療沙眼衣原體感染,結(jié)果發(fā)現(xiàn)與游離的RES相比,脂質(zhì)體和水凝膠的組合進(jìn)一步延緩了RES的釋放,增強(qiáng)RES的抗菌和抗炎癥活性。在低質(zhì)量濃度(1.5 ?g·mL-1和3 ?g·mL-1)下,脂質(zhì)體RES對(duì)沙眼衣原體的抑制效果(78%和94%)高于由游離RES(43%和72%)。

    6 總結(jié)與展望

    針對(duì)細(xì)菌感染性疾病的問題,抗生素在實(shí)際應(yīng)用中仍發(fā)揮至關(guān)重要的作用,但長(zhǎng)期使用引發(fā)的耐藥性問題不容忽視,僅依靠傳統(tǒng)抗生素不能對(duì)耐藥菌高效殺傷,并且可能會(huì)加速超級(jí)細(xì)菌的爆發(fā),因此迫切需要研發(fā)新型抗菌劑。近年來,利用納米生物技術(shù)以植物天然產(chǎn)物為對(duì)象構(gòu)建新型抗菌生物材料,為解決耐藥菌這一困境提供了新的途徑并取得了重大進(jìn)展。本文綜述了植物天然多酚與不同物質(zhì)共同組裝構(gòu)建的納米體系及其在抗菌領(lǐng)域中應(yīng)用潛力,如多酚-水凝膠可應(yīng)用于傷口敷料、抗菌涂層;多酚和蛋白質(zhì)所制備的薄膜同時(shí)具有良好的機(jī)械性能、抗菌和抗氧化活性;多酚-脂質(zhì)體應(yīng)用于藥物遞送系統(tǒng),可有效延緩藥物釋放。這些研究結(jié)果表明,將多酚與金屬、水凝膠、蛋白質(zhì)和脂質(zhì)體等物質(zhì)制備而成的納米材料在前期試驗(yàn)中均展現(xiàn)出良好的抑菌效果。然而,多酚自組裝抗菌生物材料的臨床轉(zhuǎn)化仍處于初步階段,從實(shí)驗(yàn)室研究到臨床轉(zhuǎn)化面臨著諸多阻礙和挑戰(zhàn)。

    首先,天然多酚的不穩(wěn)定性導(dǎo)致其在體內(nèi)的生物利用度十分有限,活潑的羥基作為多酚活性功能的結(jié)構(gòu)基礎(chǔ),對(duì)pH、光照、溫度和金屬離子等極其敏感,在體內(nèi)外易發(fā)生氧化、聚合,導(dǎo)致多酚結(jié)構(gòu)改變、快速降解以及生物利用率降低,所以為了在抵達(dá)病灶部位時(shí)仍表現(xiàn)出理想生物活性往往需要較高的濃度,而高濃度的多酚可能會(huì)引起肝毒性等毒副作用;其次,納米抗菌材料的良好安全性是應(yīng)用的前提。構(gòu)建協(xié)同抗菌材料往往涉及復(fù)雜的工藝和修飾,所使用的試劑對(duì)環(huán)境和人體存在潛在的威脅,且多酚納米材料進(jìn)入人體后的代謝降解、在不同器官間的轉(zhuǎn)移和累積還未得到全面解析,體內(nèi)安全評(píng)估體系仍有待完善;最后,雖然新型多酚材料在動(dòng)物感染試驗(yàn)中取得滿意的結(jié)果,但其發(fā)揮生物活性的工作機(jī)制尚未明晰,能否滿足臨床抗菌劑的要求仍需進(jìn)一步深入研究。生物體代謝復(fù)雜,多酚納米材料在體內(nèi)的生理穩(wěn)定性、刺激響應(yīng)性和靶向富集能力有待提高,從試驗(yàn)研發(fā)到實(shí)際應(yīng)用仍需要廣泛的臨床證據(jù)。為促進(jìn)多酚抗菌材料的研發(fā)和臨床轉(zhuǎn)化,需開發(fā)簡(jiǎn)單、綠色和經(jīng)濟(jì)的合成方法,通過對(duì)多酚的合理設(shè)計(jì),構(gòu)建可針對(duì)感染部位的靶向遞送體系,獲得高穩(wěn)定性、高活性和高生物安全性的新型多酚材料,提高多酚的生物利用率,實(shí)現(xiàn)協(xié)同高效,以應(yīng)對(duì)多發(fā)耐藥菌的嚴(yán)峻形勢(shì)。

    參考文獻(xiàn)

    [1]Luo G, Gao S J. Global health concerns stirred by emerging viral infections [J]. Journal of Medical Virology, 2020, 92(4): 399-400.

    [2]Fisher R A, Gollan B, Helaine S. Persistent bacterial infections and persister cells [J]. Nature Reviews Microbiology, 2017, 15(8): 453-464.

    [3]Zhang X C, Zhang Z C, Shu Q M, et al. Copper clusters: an effective antibacterial for eradicating multidrug-resistant bacterial infection in vitro and in vivo [J]. Advanced Functional Materials, 2021, 31(14): 2008720. doi: 10.1002/adfm.20200872.

    [4]Afrasiabi S, Pourhajibagher M, Raoofian R, et al. Therapeutic applications of nucleic acid aptamers in microbial infections [J]. Journal of Biomedical Science, 2020, 27(1): 6. doi: 10.1186/s12929-019-0611-0.

    [5]Komerik N, Macrobert A J. Photodynamic therapy as an alternative antimicrobial modality for oral infections [J]. Journal of Environmental Pathology and Toxicology, 2006, 25(1/2): 487-504.

    [6]Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis [J]. Lancet, 2022, 399(10325): 629-655.

    [7]Zapletal K, Machnik G, Okopień B. Polyphenols of antibacterial potential: may they help in resolving some present hurdles in medicine? [J]. Folia Biologica, 2022, 68(3): 87-96.

    [8]Anon. Jim O'Neill [J]. Nature Reviews Drug Discovery, 2016, 15(8): 526. doi: 10.1038/nrd.2016.160.

    [9]Zhen X M, Lundborg C S, Sun X S, et al. Economic burden of antibiotic resistance in ESKAPE organisms: a systematic review [J]. Antimicrobial Resistance &Infection Control, 2019, 8: 137. doi: 10.1186/s13756-019-0590-7.

    [10]Willyard C. The drug-resistant bacteria that pose the greatest health threats [J]. Nature, 2017, 543(7643): 15. doi: 10.1038/nature.2017.21550.

    [11]Wang Y, Yang Y N, Shi Y R, et al. Antibiotic-free antibacterial strategies enabled by nanomaterials: progress and perspectives [J]. Advanced Materials, 2020, 32(18): e1904106. doi: 10.1002/adma.201904106.

    [12]Paterson D L, Harris P N. Colistin resistance: a major breach in our last line of defence [J]. The Lancet Infectious Diseases, 2016, 16(2): 132-133.

    [13]Yu M, Chua S L. Demolishing the great wall of biofilms in gram-negative bacteria: to disrupt or disperse? [J]. Medicinal Research Reviews, 2020, 40(3): 1103-1116.

    [14]Li Y, Miao Y, Yang L N, et al. Recent advances in the development and antimicrobial applications of metal-phenolic networks [J]. Advanced Science, 2022, 9(27): e2202684. doi: 10.1002/advs.202202684.

    [15]Jelinkova P, Mazumdar A, Sur V P, et al. Nanoparticle-drug conjugates treating bacterial infections [J]. Journal of Controlled Release, 2019, 307: 166-185.

    [16]Gupta A, Mumtaz S, Li C H, et al. Combatting antibiotic-resistant bacteria using nanomaterials [J]. Chemical Society Reviews, 2019, 48(2): 415-427.

    [17]Li H, Zou Y, Jiang J. Synthesis of Ag@CuO nanohybrids and their photo-enhanced bactericidal effect through concerted Ag ion release and reactive oxygen species generation [J]. Dalton Transactions, 2020, 49(27): 9274-9281.

    [18]Saadi N, Alotaibi K, Hassan L, et al. Enhancing the antibacterial efficacy of aluminum foil by nanostructuring its surface using hot water treatment [J]. Nanotechnology, 2021, 32(32): 325103. doi: 10.1088/1361-6528/abfd59.

    [19]Cueva C, Silva M, Pinillos I, et al. Interplay between dietary polyphenols and oral and gut microbiota in the development of colorectal cancer [J]. Nutrients, 2020, 12(3): 625. doi: 10.3390/nu12030625.

    [20]Kumar H, Bhardwaj K, Cruz-martins N, et al. Applications of fruit polyphenols and their functionalized nanoparticles against foodborne bacteria: a mini review [J]. Molecules, 2021, 26(11): 3447. doi: 10.3390/molecules26113447.

    [21]Bae J Y, Seo Y H, Oh S W. Antibacterial activities of polyphenols against foodborne pathogens and their application as antibacterial agents [J]. Food Science and Biotechnology, 2022, 31(8): 985-997.

    [22]姚敏, 李大祥, 謝忠穩(wěn). 茶葉主要特征性化合物抗心血管炎癥研究進(jìn)展[J]. 茶葉科學(xué), 2020, 40(1): 1-14.

    Yao M, Li D X, Xie Z W. Recent advance on anti-cardiovascular inflammation of major characteristic compounds in tea [J]. Journal of Tea Science, 2020, 40(1): 1-14.

    [23]余春燕, 朱坤, 黃建安, 等. 茶多酚對(duì)心肌保護(hù)作用的研究進(jìn)展[J]. 食品科學(xué), 2022, 43(3): 296-305.

    Yu C Y, Zhu K, Huang J A, et al. Advances in the study of cardioprotective effects of tea polyphenols on myocardium [J]. Food Science, 2022, 43(3): 296-305.

    [24]林勇, 謝思玲, 柯菀萍, 等. 安化黑茶的降血糖作用及其機(jī)理[J]. 中國(guó)茶葉, 2023, 45(2): 1-7.

    Lin Y, Xie S L, Ke W P, et al. Study on the hypoglycemic effect and mechanism of Anhua dark tea [J]. China Tea, 2023, 45(2): 1-7.

    [25]雷麗萍, 朱躍驊, 張劍, 等. 茶多酚對(duì)冰藏大黃魚品質(zhì)及微生物的影響[J]. 茶葉科學(xué), 2017, 37(5): 523-531.

    Lei L P, Zhu Y H, Zhang J, et al. Effects of tea polyphenols on quality and microorganisms of Pseudosciaena crocea during iced storage [J]. Journal of Tea Science, 2017, 37(5): 523-531.

    [26]張楊波, 饒?zhí)鹛穑?劉仲華. 茶多酚的抗癌作用機(jī)制及EGCG納米載體技術(shù)研究進(jìn)展[J]. 食品工業(yè)科技, 2019, 40(16): 343-348.

    Zhang Y B, Rao T T, Liu Z H. Research progress on the anticancer mechanism of tea polyphenol and EGCG nanocarrier technology [J]. Science and Technology of Food Industry, 2019, 40(16): 343-348.

    [27]Olmedo-Juárez A, Briones-Robles T I, Zaragoza-Bastida A, et al. Antibacterial activity of compounds isolated from Caesalpinia coriaria (Jacq) Willd against important bacteria in public health [J]. Microbial Pathogenesis, 2019, 136: 103660. doi: 10.1016/j.micpath.2019.103660.

    [28]Ignasimuthu K, Prakash R, Murthy P S, et al. Enhanced bioaccessibility of green tea polyphenols and lipophilic activity of EGCG octaacetate on gram-negative bacteria [J]. LWT, 2019, 105: 103-109.

    [29]俞蓉欣, 鄭芹芹, 陳紅平, 等. 兒茶素生物醫(yī)用納米材料研究進(jìn)展[J]. 茶葉科學(xué), 2022, 42(4): 447-462.

    Yu R X, Zheng Q Q, Chen H P, et al. Recent advances in catechin biomedical nanomaterials [J]. Journal of Tea Science, 2022, 42(4): 447-462.

    [30]Davidson P M, Taylor T M, Schmidt S E. Chemical preservatives and natural antimicrobial compounds [M]//Doyle M P, Buchanan R L. Food microbiology: fundamentals and frontiers. Washington: ASM Press, 2012: 765-801.

    [31]Moulton M C, Braydich-Stolle L K, Nadagouda M N, et al. Synthesis, characterization and biocompatibility of "green" synthesized silver nanoparticles using tea polyphenols [J]. Nanoscale, 2010, 2(5): 763-770.

    [32]Nadagouda M N, Varma R S. Green synthesis of silver and palladium nanoparticles at room temperature using coffee and tea extract [J]. Green Chemistry, 2008, 10(8): 859-862.

    [33]Pelle F D, Scroccarello A, Sergi M, et al. Simple and rapid silver nanoparticles based antioxidant capacity assays: reactivity study for phenolic compounds [J]. Food Chemistry, 2018, 256: 342-349.

    [34]Farrokhnia M, Karimi S, AskariaN S. Strong hydrogen bonding of gallic acid during synthesis of an efficient AgNPs colorimetric sensor for melamine detection via dis-synthesis strategy [J]. ACS Sustainable Chemistry & Engineering, 2019, 7(7): 6672-6684.

    [35]Huo J J, Jia Q Y, Wang K, et al. Metal-phenolic networks assembled on TiO2 nanospikes for antimicrobial peptide deposition and osteoconductivity enhancement in orthopedic applications [J]. Langmuir, 2023, 39(3): 1238-1249.

    [36]Wang Y R, Zou Y, Wu Y, et al. Universal antifouling and photothermal antibacterial surfaces based on multifunctional metal-phenolic networks for prevention of biofilm formation [J]. ACS Applied Materials & Interfaces, 2021, 13(41): 48403-48413.

    [37]Yu R X, Chen H P, He J, et al. Engineering antimicrobial metal-phenolic network nanoparticles with high biocompatibility for wound healing [J]. Advanced Materials, 2024, 36: 2307680. doi: 10.1002/adma.202307680.

    [38]Wang X J, Feng Y, Chen C F, et al. Preparation, characterization and activity of tea polyphenols-zinc complex [J]. LWT-Food Science and Technology, 2020, 131: 109810. doi: 10.1016/j.lwt.2020.109810.

    [39]Liu L L, Ge C, Zhang Y, et al. Tannic acid-modified silver nanoparticles for enhancing anti-biofilm activities and modulating biofilm formation [J]. Biomaterials Science, 2020, 8(17): 4852-4860.

    [40]Zhang C Y, Huang L J, Sun D W, et al. Interfacing metal-polyphenolic networks upon photothermal gold nanorods for triplex-evolved biocompatible bactericidal activity [J]. Journal of Hazardous Materials, 2022, 426: 127824. doi: 10.1016/j.jhazmat.2021.127824.

    [41]Zhang Y, He Y, Shi C X, et al. Tannic acid-assisted synthesis of biodegradable and antibacterial mesoporous organosilica nanoparticles decorated with nanosilver [J]. ACS Sustainable Chemistry & Engineering, 2020, 8(3): 1695-1702.

    [42]Hu B, Shen Y, Adamcik J, et al. Polyphenol-binding amyloid fibrils self-assemble into reversible hydrogels with antibacterial activity [J]. ACS Nano, 2018, 12(4): 3385-3396.

    [43]Seliktar D. Designing cell-compatible hydrogels for biomedical applications [J]. Science, 2012, 336(6085): 1124-1128.

    [44]Hoffman A S. Hydrogels for biomedical applications [J]. Advanced Drug Delivery Reviews, 2002, 54(1): 3-12.

    [45]Keplinger C, Sun J Y, Foo C C, et al. Stretchable, transparent, ionic conductors [J]. Science, 2013, 341(6149): 984-987.

    [46]Chan K W Y, Liu G S, Song X L, et al. MRI-detectable pH nanosensors incorporated into hydrogels for in vivo sensing of transplanted-cell viability [J]. Nature Materials, 2013, 12(3): 268-275.

    [47]Larson C, Peele B, Li S, et al. Highly stretchable electroluminescent skin for optical signaling and tactile sensing [J]. Science, 2016, 351(6277): 1071-1074.

    [48]Saha A, Adamcik J, Bolisetty S, et al. Fibrillar networks of glycyrrhizic acid for hybrid nanomaterials with catalytic features [J]. Angewandte Chemie-International Edition, 2015, 54(18): 5408-5412.

    [49]Nystr?m G, Fernández-Ronco M P, Bolisetty S, et al. Amyloid templated gold aerogels [J]. Advanced Materials, 2016, 28(3): 472-478.

    [50]Shen S H, Fan D D, Yuan Y, et al. An ultrasmall infinite coordination polymer nanomedicine-composited biomimetic hydrogel for programmed dressing-chemo-low level laser combination therapy of burn wounds [J]. Chemical Engineering Journal, 2021, 426: 130610. doi: 10.1016/j.cej.2021.130610.

    [51]Tan H Q, Sun J J, Jin D W, et al. Coupling PEG-LZM polymer networks with polyphenols yields suturable biohydrogels for tissue patching [J]. Biomaterials Science, 2020, 8(12): 3334-3347.

    [52]Dong Z Q, Lin Y Y, Xu S B, et al. NIR-triggered tea polyphenol-modified gold nanoparticles-loaded hydrogel treats periodontitis by inhibiting bacteria and inducing bone regeneration [J]. Materials & Design, 2023, 225: 111487. doi: 10.1016/j.matdes.2022.111487.

    [53]Deng H L, Yu Z P, Chen S G, et al. Facile and eco-friendly fabrication of polysaccharides-based nanocomposite hydrogel for photothermal treatment of wound infection [J]. Carbohydrate Polymers, 2020, 230: 115565. doi: 10.1016/j.carbpol.2019.115565.

    [54]Zhu Y N, Zhang J M, Song J Y, et al. A multifunctional pro-healing zwitterionic hydrogel for simultaneous optical monitoring of pH and glucose in diabetic wound treatment [J]. Advanced Functional Materials, 2020, 30(6): 1905493. doi: 10.1002/adfm.201905493.

    [55]Ahmadian Z, Correia A, Hasany M, et al. A hydrogen-bonded extracellular matrix-mimicking bactericidal hydrogel with radical scavenging and hemostatic function for pH-responsive wound healing acceleration [J]. Advanced Healthcare Materials, 2021, 10(3): 2001122. doi: 10.1002/adhm.202001122.

    [56]Jin F Y, Liao S Q, Li W, et al. Amphiphilic sodium alginate-polylysine hydrogel with high antibacterial efficiency in a wide pH range [J]. Carbohydrate Polymers, 2023, 299: 120195. doi: 10.1016/j.carbpol.2022.120195.

    [57]Li M Y, Wang H, Hu J F, et al. Smart hydrogels with antibacterial properties built from all natural building blocks [J]. Chemistry of Materials, 2019, 31(18): 7678-7685.

    [58]Liang Y Q, Li Z L, Huang Y, et al. Dual-dynamic-bond cross-linkedantibacterial adhesive hydrogel sealants with on-demand removability for post-wound-closure and infected wound healing [J]. ACS Nano, 2021, 15(4): 7078-7093.

    [59]Madni A, Kousar R, Naeem N, et al. Recent advancements in applications of chitosan-based biomaterials for skin tissue engineering [J]. Journal of Bioresources and Bioproducts, 2021, 6(1): 11-25.

    [60]Toragall V, Jayapala N, Muthukumar S P, et al. Biodegradable chitosan-sodium alginate-oleic acid nanocarrier promotes bioavailability and target delivery of lutein in rat model with no toxicity [J]. Food Chemistry, 2020, 330: 127195. doi: 10.1016/j.foodchem.2020.127195.

    [61]Li F, Jin H M, Xiao J, et al. The simultaneous loading of catechin and quercetin on chitosan-based nanoparticles as effective antioxidant and antibacterial agent [J]. Food Research International, 2018, 111: 351-360.

    [62]Rezazadeh N H, Buazar F, Matroodi S. Synergistic effects of combinatorial chitosan and polyphenol biomolecules on enhanced antibacterial activity of biofunctionalaized silver nanoparticles [J]. Scientific Reports, 2020, 10(1): 19615. doi: 10.1038/s41598-020-76726-7.

    [63]Riccucci G, Ferraris S, Reggio C, et al. Polyphenols from grape pomace: functionalization of chitosan-coated hydroxyapatite for modulated swelling and release of polyphenols [J]. Langmuir, 2021, 37(51): 14793-14804.

    [64]Chen Q F, Wei L T, Lai Y P, et al. Preparation and characterization of tea polyphenols-chitosan-based nanoparticles and their application in starch films [J]. Bioresources, 2022, 17(3): 4306-4322.

    [65]Sun X X, Wang Z, Kadouh H, et al. The antimicrobial, mechanical, physical and structural properties of chitosan-gallic acid films [J]. LWT-Food Science and Technology, 2014, 57(1): 83-89.

    [66]Yu Y L, Li P F, Zhu C L, et al. Multifunctional and recyclable photothermally responsive cryogels as efficient platforms for wound healing [J]. Advanced Functional Materials, 2019, 29(35): 1904402. doi: 10.1002/adfm.201904402.

    [67]Yu H P, Zhou Q, He D, et al. Enhanced mechanical and functional properties of chitosan/polyvinyl alcohol/hydroxypropyl methylcellulose/alizarin composite film by incorporating cinnamon essential oil and tea polyphenols [J]. International Journal of Biological Macromolecules, 2023, 253: 126859. doi: 10.1016/j.ijbiomac.

    2023.126859.

    [68]Liang J, Yan H, Puligundla P, et al. Applications of chitosan nanoparticles to enhance absorption and bioavailability of tea polyphenols: a review [J]. Food Hydrocolloids, 2017, 69: 286-292.

    [69]Ashwar B A, Gani A. Noncovalent interactions of sea buckthorn polyphenols with casein and whey proteins: effect on the stability, antioxidant potential, and bioaccessibility of polyphenols [J]. ACS Food Science & Technology, 2021, 1(7): 1206-1214.

    [70]Grace M H, Yousef G G, Esposito D, et al. Bioactive capacity, sensory properties, and nutritional analysis of a shelf stable protein-rich functional ingredient with concentrated fruit and vegetable phytoactives [J]. Plant Foods for Human Nutrition, 2014, 69(4): 372-378.

    [71]Grace M H, Truong A N, Truong V D, et al. Novel value-added uses for sweet potato juice and flour in polyphenol- and protein-enriched functional food ingredients [J]. Food Science & Nutrition, 2015, 3(5): 415-424.

    [72]Ribnicky D M, Roopchand D E, Oren A, et al. Effects of a high fat meal matrix and protein complexation on the bioaccessibility of blueberry anthocyanins using the TNO gastrointestinal model (TIM-1) [J]. Food Chemistry, 2014, 142: 349-357.

    [73]Mushtaq M, Gani A, Gani A, et al. Use of pomegranate peel extract incorporated zein film with improved properties for prolonged shelf life of fresh Himalayan cheese (Kalari/kradi) [J]. Innovative Food Science & Emerging Technologies, 2018, 48: 25-32.

    [74]Maroufi L Y, Ghorbani M, Tabibiazar M, et al. Advanced properties of gelatin film by incorporating modified kappa-carrageenan and zein nanoparticles for active food packaging [J]. International Journal of Biological Macromolecules, 2021, 183: 753-759.

    [75]Giteru S G, Coorey R, Bertolatti D, et al. Physicochemical and antimicrobial properties of citral and quercetin incorporated kafirin-based bioactive films [J]. Food Chemistry, 2015, 168: 341-347.

    [76]Kavoosi G, Dadfar S M M, Purfard A M. Mechanical, physical, antioxidant, and antimicrobial properties of gelatin films incorporated with thymol for potential use as nano wound dressing [J]. Journal of Food Science, 2013, 78(2): E244-E250. doi: 10.1111/1750-3841.12015.

    [77]Cano A, Andres M, Chiralt A, et al. Use of tannins to enhance the functional properties of protein based films [J]. Food Hydrocolloids, 2020, 100: 105443. doi: 10.1016/j.foodhyd.2019.105443.

    [78]Han Y Y, Lin Z X, Zhou J J, et al. Polyphenol-mediated assembly of proteins for engineering functional materials [J]. Angewandte Chemie-International Edition, 2020, 59(36): 15618-15625.

    [79]Du T, Wang S C, Li X, et al. Hydrogen-bonded self-assembly coating as GRAS sprayable preservatives for fresh food safety [J]. Food Hydrocolloids, 2023, 145: 109089. doi: 10.1016/j.foodhyd.2023.109089.

    [80]Zhang Y T, Pu C F, Tang W T, et al. Effects of four polyphenols loading on the attributes of lipid bilayers [J]. Journal of Food Engineering, 2020, 282: 110008. doi: 10.1016/j.jfoodeng.2020.110008.

    [81]Zhang R, Li Q Y, Yang L L, et al. The antibacterial activity and antibacterial mechanism of the tea polyphenol liposomes/lysozyme-chitosan gradual sustained release composite coating [J]. International Journal of Food Science and Technology, 2022, 57(6): 3691-3701.

    [82]Maherani B, Arab-Tehrany E, Mozafari M R, et al. Liposomes: a review of manufacturing techniques and targeting strategies [J]. Current Nanoscience, 2011, 7(3): 436-452.

    [83]Huang L, Teng W D, Cao J X, et al. Liposomes as delivery system for applications in meat products [J]. Foods, 2022, 11(19): 3017. doi: 10.3390/foods11193017.

    [84]Das A, Konyak P M, Das A, et al. Physicochemical characterization of dual action liposomal formulations: anticancer and antimicrobial [J]. Heliyon, 2019, 5(8): e02372. doi: 10.1016/j.heliyon.2019.e02372.

    [85]Rao S Q, Sun M L, Hu Y, et al. ?-Polylysine-coated liposomes loaded with a β-CD inclusion complex loaded with carvacrol: preparation, characterization, and antibacterial activities [J]. LWT-Food Science and Technology, 2021, 146: 111422. doi: 10.1016/j.lwt.2021.111422.

    [86]Sepahvand S, Amiri S, Radi M, et al. Effect of thymol and nanostructured lipid carriers (NLCs) incorporated with thymol as antimicrobial agents in sausage [J]. Sustainability, 2022, 14(4): 1973. doi: 10.3390/su14041973.

    [87]Ezzat H M, Elnaggar Y S R, Abdallah O Y. Improved oral bioavailability of the anticancer drug catechin using chitosomes: design, in-vitro appraisal and in-vivo studies [J]. International Journal of Pharmaceutics, 2019, 565: 488-498.

    [88]Joraholmen M W, Johannessen M, Gravningen K, et al. Liposomes-in-hydrogel delivery system enhances the potential of resveratrol in combating vaginal chlamydia infection [J]. Pharmaceutics, 2020, 12(12): 1203. doi: 10.3390/pharmaceutics12121203.

    猜你喜歡
    多酚納米材料
    武器中的納米材料
    學(xué)與玩(2022年8期)2022-10-31 02:41:56
    納米材料在電化學(xué)免疫傳感器中的應(yīng)用
    化工管理(2021年7期)2021-05-13 00:45:28
    二維納米材料在腐蝕防護(hù)中的應(yīng)用研究進(jìn)展
    可研可用 納米材料綻放光彩——納米材料分論壇側(cè)記
    生姜中多酚提取方法研究現(xiàn)狀
    油茶中產(chǎn)多酚內(nèi)生真菌的篩選
    澳洲堅(jiān)果果皮不同溶劑提取物的含量和抗氧化活性
    香蕉果實(shí)發(fā)育成熟過程中多酚物質(zhì)的變化規(guī)律
    MoS2納米材料的制備及其催化性能
    大葉白麻總多酚提取工藝研究
    大新县| 萍乡市| 樟树市| 山西省| 郑州市| 上高县| 周至县| 武邑县| 云安县| 昌黎县| 石家庄市| 永德县| 察哈| 镇宁| 宁国市| 新兴县| 响水县| 高唐县| 桃江县| 鹤庆县| 武山县| 固安县| 依安县| 松溪县| 芦溪县| 犍为县| 清远市| 宁陵县| 云和县| 嘉兴市| 丰顺县| 襄樊市| 宁德市| 将乐县| 喀喇沁旗| 南开区| 拉孜县| 台前县| 兴安盟| 林周县| 临朐县|