• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Image segmentation of exfoliated two-dimensional materials by generative adversarial network-based data augmentation

    2024-03-25 09:30:16XiaoyuCheng程曉昱ChenxueXie解晨雪YulunLiu劉宇倫RuixueBai白瑞雪NanhaiXiao肖南海YanboRen任琰博XilinZhang張喜林HuiMa馬惠andChongyunJiang蔣崇云
    Chinese Physics B 2024年3期
    關(guān)鍵詞:瑞雪南海

    Xiaoyu Cheng(程曉昱), Chenxue Xie(解晨雪), Yulun Liu(劉宇倫), Ruixue Bai(白瑞雪), Nanhai Xiao(肖南海),Yanbo Ren(任琰博), Xilin Zhang(張喜林), Hui Ma(馬惠), and Chongyun Jiang(蔣崇云),?

    1College of Electronic Information and Optical Engineering,Nankai University,Tianjin 300350,China

    2School of Physical Science and Technology,Tiangong University,Tianjin 300387,China

    Keywords: two-dimensional materials,deep learning,data augmentation,generating adversarial networks

    1.Introduction

    Atomically thin two-dimensional materials exhibit intriguing physical properties such as valley degree of freedom, single photon emission, strong excitonic effect, etc.,which open up a roadmap for the next-generation information devices.[1-4]At present,conventional methods for preparing single- and few-layer two-dimensional materials include mechanical cleavage,liquid phase exfoliation,gas phase synthesis, etc.,[5-7]with the mechanical cleavage method being widely adopted due to its simple preparation procedure and high crystal quality.However,the obtained flakes are random in size, location, shape and thickness due to the uncontrollable interactions between the adhesive tapes and the layered crystals.[8-10]With the optical microscopy,the thickness of the single-, few-layer and bulk flakes can be distinguished upon the optical contrast, which becomes a preliminary method to fabricate two-dimensional material devices.However, determining the thickness of two-dimensional materials with the naked eye is inefficient and requires repetitive work by expert operators, limiting the development of the two-dimensional devices.To save manual effort and improve efficiency, computer vision is being investigated as a substitute for recognizing flakes of different thicknesses.

    Traditional rule-based image processing methods, such as edge detection, image color contrast, and threshold segmentation can be cost-effective on condition that multiple adjustable parameters achieve their thresholds simultaneously to obtain the best contrast images,which are inefficient in recognizing thousands of images.[11-16]Meanwhile, deep learning allows computers to distinguish between thin and thick layers automatically, and insensitive to environmental changes,which is important for automation applications.Many contemporary deep learning algorithms,including as object detection,semantic segmentation and instance segmentation,can be employed to recognize two-dimensional material flakes.[17-19]However, a major challenge with deep learning-based approaches is that good performance is heavily dependent on the high quality and vast quantity of dataset used to train the model.[20,21]Meanwhile, a large number of raw images are difficult to obtain due to the low yield of flakes by mechanical cleavage.[22]Data sharing of the microscopic images may extend the training dataset, but the dataset acquired in different conditions of microscopes and cameras cannot be merged directly,making the collaborative efforts much less efficient.[23]Furthermore, the single- and few-layer targets account for a small portion of the total pixels compared with the bulk and the substrate background.This inter-category imbalance leads to a reduced accuracy in the identification of thin layers,which also calls for a large dataset.[24]

    In this work, we address the issue of data scarcity by training the StyleGAN3 network to generate synthetic images and expand the dataset.Identifying different thicknesses of two-dimensional material is achieved by training the DeepLabv3Plus network.During the training process,semi-supervised mechanism is introduced to generate pseudolabels,considerably reducing the cost of manual labeling.We enhance the model recognition accuracy to more than 90%using only 128 real images and synthetic images supplemented to the dataset,demonstrating that the addition of synthetic images reduces overfitting and improves recognition accuracy.Our work reduces the limitations imposed by a scarcity of training data for two-dimensional material recognition while improving recognition accuracy, which could help in further exploring the exotic properties of two-dimensional materials and speeding up the manufacture of layered materials devices with low cost.

    2.Methods

    2.1.Principle and process

    We undertake the work of recognizing two-dimensional materials by machine learning with database augmenting in three steps (Fig.1).With WSe2microscopic images as an empirical instance, the initial segment entails the annotation of raw data.Firstly, a total of 161 microscopic images are collected,manually labeled and divided into two groups with 128 (group A) and 33 (group B) images, respectively.Color space transformation and edge detection are employed as preprocessing for more accurate image classification.The 128 images in group A are then utilized in the training of the generative and segmentation networks to produce virtual images and pseudo-labels,whereas the remaining 33 images in group B are used to evaluate the accuracy of the trained model.Using 128 images to train the network is a comprehensive consideration of two factors,the collection difficulties and the high quality of generated images to improve segmentation accuracy.In the second step,StyleGAN3 is employed as the generative network, which is trained to learn the distributional features of the raw images in group A and generates virtual images.Under optimized generation conditions, the created virtual and real images are indistinguishable with the naked eye.In the third step, DeepLabv3Plus operates as the segmentation network(see the rationale and structure of the model in the supporting information section 1 and 2),[27,28]which is trained by the 128 manually labeled images in group A,and then serves to recognize the images generated in the second step and creates corresponding pseudo-labels.The synthetic images and pseudo-labels are sorted by edge detection, with the visually realistic synthetic images and the sharp edge pseudo-labels being used to expand the dataset.In this step,a semi-supervised mechanism[25,26]is used to reduce the labor cost of pixel-level label annotation.To improve the recognition accuracy,we iteratively train the segmentation model by adding 128 virtual synthetic images at a time.In the meantime, 33 images in group B are recognized using the network trained each time,and the intersection over union(IoU)[27]between the recognition results and the previously labeled results is calculated to estimate the recognition accuracy.

    Fig.1.Methodology and procedure.Three steps are included in the whole work, which are depicted by the enclosed blue dashed frames.Step 1: a total of 161 microscopic images of the mechanically cleaved WSe2 flakes are collected and manually annotated, which are divided into groups A and B.Step 2: the 128 images in group A are randomly selected as input into StyleGAN3 and used to produce synthetic images.Step 3: the 128 original images together with their corresponding labels in group A are used to train a preliminary segmentation network of DeepLabv3Plus.Subsequently,the segmentation network is employed to predict the synthetic images and obtain pseudo-labels.The pseudolabels and synthetic images are then filtered out and used to supplement the dataset for retraining the segmentation network.Finally, the 33 images in group B are recognized and the IoU is calculated to evaluate the recognition accuracy.

    As the capacity of the dataset gradually increases from 128 to 640 images,the IoU increases from 88.59%to 90.38%.This increment can be observed from the segmentation results,which display sharp edges and the misclassification for contamination decreases.Our work demonstrates that training StyleGAN3 models can effectively generate visually realistic virtual images of two-dimensional materials and that using virtual images for data augmentation can improve recognition accuracy in segmentation.Furthermore, unambiguous boundaries and improved recognition accuracy will minimize misclassification and allow for precise edge alignment during material stacking at scale, both of which are crucial for device performance.[28-31]The next sections will go through each stage in further detail.

    2.2.Acquisition and annotation of datasets

    In order to label the dataset initially used for training with more accurate labels, we use color space transformation and edge detection techniques.Figure 2 shows the process and results of acquisition,preprocessing and labeling of the dataset.We collect 161 microscopic images of WSe2thin-layer flakes in different lighting conditions to improve the generalization ability of the model.The magnification of the microscope is 50×.Figure 2(a)illustrates the process of manually annotating the 161 images assisted by traditional image processing,which improves the accuracy of the thin-layer edge labeling and reduces the manual cost of random shape labeling at pixel level.However,thin layers in the images are not easily identified by the naked eye for manually labeling the positions and edges (e.g., Fig.2(c)).Therefore, we preprocess the images by using color space transformation and edge detection before annotation.Figures 2(b)-2(d)show the collected WSe2microscopic images.When the images are transformed from RGB into HSV space, the single-and few-layers become more obvious(Figs.2(e)-2(g)).We denote 1-10 layers as thin layers or few layers,and more than 10 layers as thick layers.In order to label accurately,we grayscale the original images,perform edge detection using the Canny operator,and subsequently apply median filtering(Figs.2(h)-2(j)).[32,33]Labeling with traditional image processing is efficient for the entire work,since it helps to recognize images more accurately.

    Fig.2.Data acquisition and preprocessing.(a) Schematic diagram of the image preprocessing algorithm channel.(b)-(d)Original microscopic images of WSe2 flakes.(e)-(g)Images after the RGB to HSV color space conversion.(h)-(j)Images after the grayscale processing,edge detection and median filtering using Canny operator.Few layers are outlined with red color manually.(k)-(m)Labels for few layers(red),bulk(green)and background(black).

    3.Results and discussion

    3.1.Generating synthetic images by StyleGAN3 training

    Sufficient data is crucial for improving model generalization and reducing the risk of overfitting in machine learning.We choose the StyleGAN3 model to generate virtual images given that it is able to effectively control the features of the synthetic images and produce high-quality images.To evaluate the quality of synthetic images,Fr′echet inception distance(FID) is adopted to quantitatively evaluate the similarity between the real and synthetic images

    whereμA(μB) represents the mean of the feature vectors extracted from the real(generated)images set using the inception network.ΣA(ΣB)represents the eigenvalue and eigenvector of the covariance matrix of the real (generated) images.Equation(2)indicates that the smaller the FID value,the more similar the distribution between the generated and real images.[34]We compute the FID every 40 iterations.Figure 3(a)illustrates that FID gradually decreases with the progression of training and stabilizes at 46.17 after 1720 iterations.Additionally,synthetic images at iterations 160, 400, and 840 are shown with FID scores of 140.25,94.25,and 70.49,respectively.In these four positions, we can visually observe that the synthetic images become more similar to the real images as the FID decreases.Further examples of synthetic images that demonstrate the gradual approximation of the synthetic images to the real ones are presented in Fig.S3.This finding suggests that StyleGAN3 training can be used as an effective approach to generate high-quality images of 2D materials from limited original images.The FID score almost stops declining after 1720 iterations,implying a potential overfitting of the model.The FID is not particularly low due to the limited raw data.However, the synthetic images are sufficient to train the segmentation model.Even though not all synthetic images are realistic enough,we can obtain enough sample data by utilizing simply edge detection and a little manual sorting.

    To demonstrate the advantages of StyleGAN3 in generating high-quality images, we compare it with traditional data augmentation.Figures 3(b)-3(d)show that when the input is rotated, the output of StyleGAN3 rotates as well, and the elements that do not appear in the figure are drawn when rotating.The resulting images resemble rotating the sample under a microscope.In contrast, traditional data augmentation can only reduce the size (Fig.3(e)) or crop the image (Fig.3(f))in order to keep the image size when rotating it.This leads to information loss (see supporting information section 5 for details).In comparison,StyleGAN3 results can provide more information for training recognition models, and to some extent improve recognition accuracy.Subsequent experiments provide unambiguous evidence for this.

    Fig.3.Training process and results of StyleGAN3.(a) Evaluation of synthetic images on StyleGAN3.The red dots denote the FID with the iterations of 160,400,840,and 1720,indicating the effect of the current synthetic images.(b)-(d) Changes in the output images of StyleGAN3 when the input is rotated.(e) Traditional data augmentation of rotated graphs, using rotation followed by size reduction.(f) Traditional data augmentation of rotated graphs,rotation followed by cropping.

    3.2.Recognzing images by DeepLabv3Plus training

    In addition to images, the training of segmentation network also requires corresponding labels.Due to the huge amount of synthetic image data, semi-supervised approach will take an important role in reducing the labor cost in labeling production.Therefore,we first train the segmentation network to recognize the images to generate pseudo-labels.Then,the synthetic images and pseudo-labels with poor quality are filtered out by sorting,and the remaining high-quality images and pseudo-labels are added to the dataset.The network is trained with images in group A, and then its recognition accuracy is evaluated with images in group B.The recognition accuracy is estimated by the IoU,which is expressed by

    whereAandBrepresent the annotated target region and the predicted target region of the segmentation model, respectively.It is seen in Fig.4(a) that the recognition accuracy of the background and thick layers is always higher than that of the thin layers.We extract the IoU for each category independently and use the IoU of the thin layers as the model assessment indicator rather than using the average IoU for all categories because thin layers are widely used in optoelectronic devices.The best recognition accuracy of thin layers trained by 128 images in group A reaches only 88.59%(Fig.4(a)).The generated images and pseudo-labels are shown in Fig.4(b).The left column shows the synthetic images generated by a model with a FID of 46.17,while the middle column marked with pseudo-labels presents the predicted segmentation of the synthetic images using the initial training of the segmentation model.Given that the synthetic images are random and the accuracy of the segmentation model is not high, we perform edge detection processing on the synthetic images and illustrate the results in the right column.It can be observed that the three columns of images coincide well,and thus synthetic images and pseudo-labels will be added to the dataset for further training.Since the input is a set of noise,we can theoretically generate an infinite amount of images,dramatically reducing the cost of real images acquisition.Together with the edge detection and sorting for labeling,which is much more efficient than the manual pixel-level labeling,this method can easily exclude images with poor generation or segmentation results.

    In order to boost its performance,we repeatedly train the DeepLabv3Plus network by expanding the dataset in 128 increments.Since the Adam optimizer is employed, the training process is somewhat random.As a result, we train the dataset three times starting from scratch,using the same training parameters, and use the optimal IoU values from each time.As shown in Fig.4(c),the optimal IoU reaches 90.38%by dataset expansion, which is around 1.79%higher than the model trained only with the real data.When the dataset capacity is increased from 256 to 640,the IoU has increased,of which recognition results are presented in Fig.4(d).A good overlap between the segmented mask and the real images of 2D flakes can be seen from the correctly colored thin layers as red and thick layers as green.The detection process effectively removes pollutants like bubbles and tape residues,classifying them as background with minimal misjudgment (red arrows in Fig.4(d)).As the dataset is gradually expanded by the adversarial synthetic images, the recognition of complex layered structures becomes more precise, and the segmentation of thin layer boundaries becomes clearer,while the frequency of misjudgments gradually decreases(white box in Fig.4(d)).This finding demonstrates the effectiveness of the adversarial network for the dataset expansion and recognition accuracy improvement with limited real data.The improvement in recognition is mainly on the edges of the sample of few layers, which have a low percentage of pixels and thus are not remarkable in numerical terms.However,the recognition results in Fig.4(d),previously misclassified,are assigned to the correct classification with this improvement.This improvement of recognition accuracy in the detail of few layers is more valuable than that in thick layers.In the automatic production of two-dimensional material devices on large scale,this reduction of misclassification will be significant in stacking high quality devices and reducing production waste.

    It is demonstrated by Fig.4(c) that our method consistently improves recognition accuracy during the initial stages of data augmentation.The training results under the same conditions using the traditional method of data augmentation are given in Fig.S7.In contrast, the traditional method initially shows some improvement but lacks stability and eventually drops below the previous level as the dataset expands.We attribute this observation to the fact that traditional method loses image information during the augmentation process,while our approach generates new images by mimicking the existing distribution,providing more information and effectively enhancing the model performance.It should be noted that even with image generation-based augmentation,segmentation accuracy may decrease after 640 images.Synthetic images can reflect most of the information in real images,but not all of it.Therefore,as the proportion of synthetic images becomes too high,there is a decrease in the recognition accuracy of real images.Consequently, it is not possible to keep improving accuracy using this method indefinitely.Nevertheless,this approach allows for a stable increase in recognition accuracy during the early stages without incurring physical costs associated with material preparation and collection.It is highly practical for researchers aiming to develop machine learning algorithms tailored to their experimental environments and to improve device fabrication efficiency.We demonstrate that the trained network weights can be used directly for the recognition of other two-dimensional materials, and the recognition results can be viewed in the supplementary materials (Fig.S9).We suggest using a few pending data to fine-tune the model before applying the pre-trained weights, since this might result in higher recognition results.

    Fig.4.DeepLavV3Plus training results.(a)IoU changes with training epoch in the first training session for different thickness of two-dimensional materials and backgroud.(b)Generated images,pseudo-labels,and edge detection results.(c)IoU depends on the expanded dataset.The dashed line shows the optimal changing trend after three rounds of training(blue,orange and green histograms)with the same data volume.(d)From left to right:1st column,images to be recognized in group B.2nd-4th columns,recognition results with different accuracies for GAN augmented dataset sizes of 256, 384, 512, and 640, respectively.5th column, masking of 640 training model recognition results on the original images.Bubbles and contaminants indicated by the red arrows are classified as background in the predicted outcomes.White boxes present improvements in recognition details.

    4.Conclusion

    In conclusion, we demonstrate the feasibility of Style-GAN3 in generating synthetic images of two-dimensional materials and expanding dataset.We confirm that employing synthetic images for data augmentation aids in the recognition of two-dimensional materials and improves the recognition accuracy of segmentation network DeepLabv3Plus.The proposed data augmentation approach that we demonstrated is applicable to a wide range of two-dimensional materials.Our feasible and reliable method,prompted by the demand of scalable production of atomically thin materials, could helpfully explore the intriguing properties of layered materials and enable the rapid manufacturing of layered information devices.

    Acknowledgments

    Project supported by the National Key Research and Development Program of China(Grant No.2022YFB2803900),the National Natural Science Foundation of China (Grant Nos.61974075 and 61704121), the Natural Science Foundation of Tianjin Municipality(Grant Nos.22JCZDJC00460 and 19JCQNJC00700),Tianjin Municipal Education Commission(Grant No.2019KJ028),and Fundamental Research Funds for the Central Universities(Grant No.22JCZDJC00460).C.Y.J.acknowledges the Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin and the Engineering Research Center of Thin Film Optoelectronics Technology,Ministry of Education of China.

    猜你喜歡
    瑞雪南海
    吳瑞雪作品
    大眾文藝(2022年21期)2022-11-16 14:21:20
    南海明珠
    北海北、南海南
    黃河之聲(2021年10期)2021-09-18 03:07:18
    一片瑞雪喜時(shí)光 歲月不匆忘
    瑞雪迎春
    金橋(2021年2期)2021-03-19 08:34:26
    美軍瀕海戰(zhàn)斗艦又來(lái)南海
    軍事文摘(2020年14期)2020-12-17 06:27:26
    插畫
    青年生活(2020年5期)2020-03-27 14:29:00
    新年瑞雪
    南海的虎斑貝
    「南?!埂?dú)s史、國(guó)際法尊重を
    中国美女看黄片| 不卡一级毛片| 一级毛片高清免费大全| 久久久久性生活片| 欧美在线一区亚洲| 男女床上黄色一级片免费看| 97碰自拍视频| 老熟妇乱子伦视频在线观看| 人妻久久中文字幕网| 一边摸一边抽搐一进一小说| 精品久久久久久久毛片微露脸| 丰满人妻一区二区三区视频av | 国产精品乱码一区二三区的特点| 亚洲第一欧美日韩一区二区三区| 亚洲精品久久国产高清桃花| 在线免费观看的www视频| 精品国产超薄肉色丝袜足j| 国产探花在线观看一区二区| 精品久久蜜臀av无| av超薄肉色丝袜交足视频| 久久天堂一区二区三区四区| 午夜两性在线视频| 欧美高清成人免费视频www| 亚洲人成电影免费在线| 一个人免费在线观看电影 | 熟妇人妻久久中文字幕3abv| 午夜成年电影在线免费观看| 久久久久久久精品吃奶| 精品久久久久久,| 国产精品久久久久久久电影 | 欧美日韩瑟瑟在线播放| 亚洲欧洲精品一区二区精品久久久| 又爽又黄无遮挡网站| 久久久国产成人免费| 叶爱在线成人免费视频播放| 国产精品,欧美在线| 日韩 欧美 亚洲 中文字幕| 国产不卡一卡二| 亚洲国产精品sss在线观看| 麻豆成人av在线观看| 91在线观看av| 啦啦啦韩国在线观看视频| 成人亚洲精品av一区二区| 在线观看免费午夜福利视频| 丝袜人妻中文字幕| 久久中文字幕一级| 日本精品一区二区三区蜜桃| 啦啦啦免费观看视频1| 亚洲精品在线观看二区| 人妻夜夜爽99麻豆av| 一本大道久久a久久精品| 一级毛片精品| 久久热在线av| 色av中文字幕| 久久久国产成人精品二区| 午夜老司机福利片| 一本一本综合久久| 免费看十八禁软件| 欧美在线一区亚洲| 男女之事视频高清在线观看| 亚洲人成77777在线视频| 亚洲18禁久久av| 亚洲国产看品久久| 午夜福利18| 99国产极品粉嫩在线观看| 在线观看www视频免费| 精品国产亚洲在线| 一级黄色大片毛片| 精品福利观看| 可以在线观看的亚洲视频| 在线观看午夜福利视频| 免费在线观看黄色视频的| 精品久久蜜臀av无| 亚洲av成人精品一区久久| 久久久久久久久中文| 亚洲国产高清在线一区二区三| 成人三级黄色视频| 一区福利在线观看| 亚洲精品美女久久久久99蜜臀| 琪琪午夜伦伦电影理论片6080| 日本免费a在线| 99国产精品一区二区蜜桃av| 亚洲aⅴ乱码一区二区在线播放 | 久久精品国产综合久久久| av福利片在线观看| 国产午夜福利久久久久久| 日韩免费av在线播放| 中文字幕人成人乱码亚洲影| 国产精品爽爽va在线观看网站| 午夜精品久久久久久毛片777| 免费在线观看日本一区| 久久久久久九九精品二区国产 | 欧美精品啪啪一区二区三区| 久久精品国产清高在天天线| 热99re8久久精品国产| 亚洲中文日韩欧美视频| avwww免费| 国产精品久久视频播放| 国内精品久久久久精免费| 悠悠久久av| 久久久久久大精品| 婷婷丁香在线五月| 999久久久精品免费观看国产| 亚洲精品美女久久久久99蜜臀| 亚洲成人久久爱视频| 在线观看舔阴道视频| www日本黄色视频网| 久久亚洲真实| 成人18禁高潮啪啪吃奶动态图| 精品一区二区三区视频在线观看免费| 变态另类丝袜制服| 精品午夜福利视频在线观看一区| 日本成人三级电影网站| 亚洲无线在线观看| 婷婷丁香在线五月| 少妇粗大呻吟视频| 听说在线观看完整版免费高清| 久久精品国产99精品国产亚洲性色| 国内精品一区二区在线观看| 天堂动漫精品| 免费看日本二区| 搞女人的毛片| 男女床上黄色一级片免费看| 非洲黑人性xxxx精品又粗又长| 国产午夜精品论理片| 五月伊人婷婷丁香| 后天国语完整版免费观看| 99国产精品99久久久久| 男女下面进入的视频免费午夜| 午夜福利在线观看吧| 国产精品一区二区免费欧美| 少妇人妻一区二区三区视频| 一本一本综合久久| 日本熟妇午夜| 亚洲av成人av| 女警被强在线播放| 一本综合久久免费| 88av欧美| 亚洲欧美精品综合久久99| 又紧又爽又黄一区二区| 一个人免费在线观看的高清视频| 一本精品99久久精品77| 久久久国产欧美日韩av| 午夜福利视频1000在线观看| 黄色毛片三级朝国网站| 99久久精品热视频| xxxwww97欧美| 日本黄色视频三级网站网址| 日韩欧美免费精品| 50天的宝宝边吃奶边哭怎么回事| 男人舔奶头视频| 日本a在线网址| 天堂影院成人在线观看| 男女午夜视频在线观看| 午夜福利在线观看吧| 日日爽夜夜爽网站| 色综合亚洲欧美另类图片| 久久香蕉激情| 久热爱精品视频在线9| 国产欧美日韩精品亚洲av| 亚洲人成伊人成综合网2020| 亚洲专区国产一区二区| 日韩三级视频一区二区三区| 亚洲国产中文字幕在线视频| 欧美+亚洲+日韩+国产| 国产成人精品久久二区二区91| 国产又黄又爽又无遮挡在线| 久久国产乱子伦精品免费另类| av超薄肉色丝袜交足视频| 欧美最黄视频在线播放免费| 国产一区二区在线观看日韩 | 亚洲男人天堂网一区| 国产精品美女特级片免费视频播放器 | 国模一区二区三区四区视频 | 97碰自拍视频| 桃红色精品国产亚洲av| 韩国av一区二区三区四区| 国产一区二区在线观看日韩 | 麻豆国产97在线/欧美 | 男人舔奶头视频| 免费搜索国产男女视频| 亚洲中文日韩欧美视频| 久久99热这里只有精品18| 国产熟女午夜一区二区三区| 亚洲最大成人中文| 亚洲av日韩精品久久久久久密| 精品午夜福利视频在线观看一区| 男人舔女人的私密视频| 99久久无色码亚洲精品果冻| 欧美乱码精品一区二区三区| 深夜精品福利| 欧美日韩亚洲国产一区二区在线观看| 三级国产精品欧美在线观看 | 国产69精品久久久久777片 | 国产精品99久久99久久久不卡| 午夜免费观看网址| 日韩大码丰满熟妇| 中文字幕最新亚洲高清| 精品一区二区三区视频在线观看免费| 一二三四社区在线视频社区8| 国产真实乱freesex| 亚洲中文字幕日韩| 一a级毛片在线观看| 中亚洲国语对白在线视频| 精品久久久久久久久久久久久| 亚洲国产高清在线一区二区三| 国产精品免费一区二区三区在线| 中亚洲国语对白在线视频| svipshipincom国产片| 国产黄片美女视频| av天堂在线播放| 搡老岳熟女国产| 久久久久久大精品| 桃红色精品国产亚洲av| 又爽又黄无遮挡网站| 一级毛片女人18水好多| 亚洲精品一卡2卡三卡4卡5卡| 亚洲国产精品sss在线观看| 九九热线精品视视频播放| tocl精华| 狂野欧美激情性xxxx| 国产成人精品久久二区二区免费| 成人av一区二区三区在线看| 在线免费观看的www视频| 日本撒尿小便嘘嘘汇集6| 麻豆成人av在线观看| 欧美性猛交╳xxx乱大交人| 91麻豆av在线| 女人高潮潮喷娇喘18禁视频| 欧美日韩一级在线毛片| 全区人妻精品视频| 亚洲五月天丁香| 国产亚洲精品av在线| 99热只有精品国产| 高清在线国产一区| 国产不卡一卡二| 热99re8久久精品国产| 在线观看免费视频日本深夜| av视频在线观看入口| 日日爽夜夜爽网站| 午夜免费观看网址| √禁漫天堂资源中文www| 成人一区二区视频在线观看| 香蕉av资源在线| 国产成人一区二区三区免费视频网站| 老汉色∧v一级毛片| 亚洲一码二码三码区别大吗| 无限看片的www在线观看| 老汉色av国产亚洲站长工具| 久久热在线av| 香蕉av资源在线| 久久精品国产99精品国产亚洲性色| 麻豆久久精品国产亚洲av| 免费人成视频x8x8入口观看| 日韩欧美在线乱码| 国产精品九九99| 蜜桃久久精品国产亚洲av| 99国产极品粉嫩在线观看| 久久九九热精品免费| 欧美精品啪啪一区二区三区| 亚洲av日韩精品久久久久久密| 制服人妻中文乱码| 国产精品av视频在线免费观看| 在线看三级毛片| 妹子高潮喷水视频| 免费看十八禁软件| 亚洲欧美精品综合一区二区三区| 亚洲精品中文字幕一二三四区| 精品久久久久久久人妻蜜臀av| 欧美午夜高清在线| 国内久久婷婷六月综合欲色啪| 亚洲欧美日韩无卡精品| 国产亚洲欧美98| 人妻夜夜爽99麻豆av| 亚洲精华国产精华精| 成人永久免费在线观看视频| 久久久精品欧美日韩精品| 精品一区二区三区av网在线观看| 男女做爰动态图高潮gif福利片| 国产69精品久久久久777片 | 国产av不卡久久| 国产高清videossex| 欧美日本亚洲视频在线播放| 欧美色欧美亚洲另类二区| 老汉色∧v一级毛片| 午夜福利在线观看吧| 在线十欧美十亚洲十日本专区| 午夜福利免费观看在线| 麻豆一二三区av精品| 宅男免费午夜| 色综合欧美亚洲国产小说| 日本五十路高清| 成人av在线播放网站| 亚洲中文字幕日韩| 黄片大片在线免费观看| 国产亚洲精品久久久久久毛片| 两个人视频免费观看高清| 91九色精品人成在线观看| 国产av不卡久久| 成人18禁高潮啪啪吃奶动态图| avwww免费| 久久精品国产99精品国产亚洲性色| 嫩草影视91久久| 毛片女人毛片| 动漫黄色视频在线观看| 国产成人影院久久av| www日本在线高清视频| av在线天堂中文字幕| 亚洲av中文字字幕乱码综合| 国产一区二区激情短视频| 精品第一国产精品| 亚洲精品色激情综合| 伦理电影免费视频| 国产一区二区在线观看日韩 | 欧美成人性av电影在线观看| 99国产精品一区二区三区| 露出奶头的视频| 国产探花在线观看一区二区| 变态另类丝袜制服| 久久 成人 亚洲| 一二三四社区在线视频社区8| 国产又黄又爽又无遮挡在线| 亚洲,欧美精品.| 伦理电影免费视频| 宅男免费午夜| 国产在线精品亚洲第一网站| 99精品欧美一区二区三区四区| 久久久久精品国产欧美久久久| avwww免费| 亚洲欧美精品综合久久99| 午夜影院日韩av| 亚洲欧美激情综合另类| 亚洲精品一区av在线观看| 狂野欧美白嫩少妇大欣赏| 一区二区三区高清视频在线| 精品熟女少妇八av免费久了| 国产精品综合久久久久久久免费| 国产精品美女特级片免费视频播放器 | 又粗又爽又猛毛片免费看| 一级作爱视频免费观看| 91字幕亚洲| 在线观看免费午夜福利视频| www.自偷自拍.com| 久久这里只有精品19| ponron亚洲| 午夜精品久久久久久毛片777| 日本黄大片高清| 亚洲成av人片免费观看| 老司机靠b影院| 一本一本综合久久| ponron亚洲| 亚洲人成电影免费在线| 嫩草影视91久久| 狂野欧美白嫩少妇大欣赏| 亚洲全国av大片| 在线观看免费午夜福利视频| www.自偷自拍.com| 成年免费大片在线观看| 丁香欧美五月| 熟女少妇亚洲综合色aaa.| 精华霜和精华液先用哪个| 成人国语在线视频| 午夜福利欧美成人| 蜜桃久久精品国产亚洲av| 男女下面进入的视频免费午夜| 中出人妻视频一区二区| 久久国产乱子伦精品免费另类| 亚洲免费av在线视频| 此物有八面人人有两片| 欧美丝袜亚洲另类 | 欧美性猛交╳xxx乱大交人| 国产亚洲精品av在线| 欧美性猛交╳xxx乱大交人| 91九色精品人成在线观看| 听说在线观看完整版免费高清| 欧美日本视频| 51午夜福利影视在线观看| 国产精品乱码一区二三区的特点| 夜夜爽天天搞| 小说图片视频综合网站| 欧美成狂野欧美在线观看| 日本黄色视频三级网站网址| 亚洲一卡2卡3卡4卡5卡精品中文| 999久久久国产精品视频| av福利片在线| 日韩欧美国产一区二区入口| 又爽又黄无遮挡网站| 一级a爱片免费观看的视频| 久久草成人影院| 中文字幕人成人乱码亚洲影| www.熟女人妻精品国产| 五月玫瑰六月丁香| 波多野结衣巨乳人妻| 一个人免费在线观看的高清视频| 亚洲自偷自拍图片 自拍| 久久精品国产亚洲av高清一级| 成人国产综合亚洲| 免费人成视频x8x8入口观看| 午夜两性在线视频| 在线观看日韩欧美| 欧美又色又爽又黄视频| 又爽又黄无遮挡网站| 美女午夜性视频免费| 欧洲精品卡2卡3卡4卡5卡区| 亚洲av美国av| 亚洲中文日韩欧美视频| 国产伦人伦偷精品视频| 亚洲精品一卡2卡三卡4卡5卡| 又大又爽又粗| 一进一出抽搐gif免费好疼| 18禁黄网站禁片午夜丰满| 亚洲精品在线观看二区| 特大巨黑吊av在线直播| 少妇被粗大的猛进出69影院| 50天的宝宝边吃奶边哭怎么回事| a级毛片a级免费在线| 国产成+人综合+亚洲专区| av视频在线观看入口| av福利片在线观看| 后天国语完整版免费观看| 亚洲 国产 在线| 亚洲成a人片在线一区二区| 美女免费视频网站| www.熟女人妻精品国产| 国产av不卡久久| 午夜日韩欧美国产| 国产成人精品无人区| 在线a可以看的网站| 91国产中文字幕| 午夜福利高清视频| 女人被狂操c到高潮| 国产一区在线观看成人免费| 亚洲第一电影网av| 变态另类丝袜制服| 特级一级黄色大片| 一边摸一边抽搐一进一小说| 国产高清视频在线播放一区| 欧美黄色淫秽网站| 日韩欧美一区二区三区在线观看| 怎么达到女性高潮| 欧美日韩亚洲综合一区二区三区_| 岛国在线观看网站| 嫁个100分男人电影在线观看| 少妇粗大呻吟视频| 性欧美人与动物交配| 色噜噜av男人的天堂激情| 欧美国产日韩亚洲一区| 亚洲国产欧洲综合997久久,| 国产熟女xx| 两个人视频免费观看高清| 黑人巨大精品欧美一区二区mp4| 97人妻精品一区二区三区麻豆| 欧美一级毛片孕妇| 18禁国产床啪视频网站| 国产av麻豆久久久久久久| 成在线人永久免费视频| 国语自产精品视频在线第100页| 毛片女人毛片| 最好的美女福利视频网| 丰满人妻熟妇乱又伦精品不卡| 日韩欧美三级三区| netflix在线观看网站| а√天堂www在线а√下载| 亚洲精品一卡2卡三卡4卡5卡| 久久午夜亚洲精品久久| 国产亚洲精品第一综合不卡| 人妻久久中文字幕网| 精品乱码久久久久久99久播| 国产亚洲精品综合一区在线观看 | 日本黄大片高清| aaaaa片日本免费| avwww免费| 欧美一级a爱片免费观看看 | 一级黄色大片毛片| 国产成人aa在线观看| 国产在线观看jvid| 久久人妻av系列| 欧美一区二区国产精品久久精品 | 亚洲人成77777在线视频| 日韩精品中文字幕看吧| 日本一二三区视频观看| 女人高潮潮喷娇喘18禁视频| 亚洲第一电影网av| 视频区欧美日本亚洲| 岛国在线观看网站| 亚洲欧美日韩高清专用| 无遮挡黄片免费观看| 伦理电影免费视频| 久久久久久大精品| 国产精品98久久久久久宅男小说| 欧美日韩一级在线毛片| www日本黄色视频网| 男女那种视频在线观看| 成在线人永久免费视频| 小说图片视频综合网站| 99热6这里只有精品| 色噜噜av男人的天堂激情| 黄色a级毛片大全视频| 久久中文字幕人妻熟女| 在线观看66精品国产| 可以在线观看的亚洲视频| 欧美在线黄色| 国产成人av激情在线播放| 国产精品av久久久久免费| 亚洲专区国产一区二区| 国产成人一区二区三区免费视频网站| 国产高清激情床上av| 窝窝影院91人妻| 最近最新中文字幕大全免费视频| 精品一区二区三区视频在线观看免费| 久久久久久亚洲精品国产蜜桃av| 国产精品免费一区二区三区在线| 搡老熟女国产l中国老女人| 一边摸一边抽搐一进一小说| 午夜福利在线在线| 久久伊人香网站| 视频区欧美日本亚洲| 欧美日韩精品网址| 国产麻豆成人av免费视频| 男人舔女人下体高潮全视频| 国产av麻豆久久久久久久| 久久久久久久精品吃奶| 一进一出抽搐gif免费好疼| 色综合欧美亚洲国产小说| 一二三四社区在线视频社区8| 老司机深夜福利视频在线观看| 国产亚洲av嫩草精品影院| 免费看a级黄色片| 正在播放国产对白刺激| 成在线人永久免费视频| 全区人妻精品视频| 女人被狂操c到高潮| 美女高潮喷水抽搐中文字幕| 搞女人的毛片| 麻豆国产av国片精品| 99re在线观看精品视频| 国产av麻豆久久久久久久| 人成视频在线观看免费观看| 久久久久久九九精品二区国产 | 久久精品影院6| 亚洲国产精品合色在线| 久99久视频精品免费| 国产又色又爽无遮挡免费看| 国产激情偷乱视频一区二区| 老鸭窝网址在线观看| 男人舔女人的私密视频| 国产精品永久免费网站| 久久久国产精品麻豆| 三级男女做爰猛烈吃奶摸视频| 美女 人体艺术 gogo| 国产精品久久久人人做人人爽| 看片在线看免费视频| 精品久久久久久久末码| 神马国产精品三级电影在线观看 | 老汉色av国产亚洲站长工具| 亚洲一区中文字幕在线| 精品熟女少妇八av免费久了| 男女做爰动态图高潮gif福利片| 日韩欧美在线乱码| 亚洲五月婷婷丁香| 搡老岳熟女国产| 国产激情欧美一区二区| 亚洲精华国产精华精| av天堂在线播放| 黑人欧美特级aaaaaa片| 18禁美女被吸乳视频| 国产精品综合久久久久久久免费| svipshipincom国产片| 最近视频中文字幕2019在线8| 欧美成人午夜精品| 非洲黑人性xxxx精品又粗又长| 宅男免费午夜| 两性午夜刺激爽爽歪歪视频在线观看 | 曰老女人黄片| 亚洲人成伊人成综合网2020| 日韩欧美三级三区| 欧美日韩瑟瑟在线播放| 一级黄色大片毛片| 1024手机看黄色片| 女人高潮潮喷娇喘18禁视频| 欧美日韩亚洲国产一区二区在线观看| 丰满的人妻完整版| 免费观看精品视频网站| 久久久精品欧美日韩精品| 曰老女人黄片| 欧美成狂野欧美在线观看| 99国产极品粉嫩在线观看| 欧美极品一区二区三区四区| 岛国视频午夜一区免费看| 亚洲成av人片在线播放无| 国产高清有码在线观看视频 | 99在线人妻在线中文字幕| 香蕉久久夜色| a级毛片在线看网站| 老司机靠b影院| 免费看日本二区| 黄片小视频在线播放| 中文字幕高清在线视频| 国产精品久久久久久人妻精品电影| 国产69精品久久久久777片 | 国产精品自产拍在线观看55亚洲| 国产精品一区二区三区四区免费观看 | 99热这里只有精品一区 | 亚洲精品久久成人aⅴ小说| 免费观看精品视频网站| 日本免费a在线| 国产视频一区二区在线看| 国产欧美日韩一区二区精品| 99国产极品粉嫩在线观看| 欧美另类亚洲清纯唯美| 88av欧美| 中文资源天堂在线| 久久精品91无色码中文字幕| 老汉色∧v一级毛片| 成人国语在线视频|