• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Creation and annihilation of artificial magnetic skyrmions with the electric field

    2024-03-25 09:33:04JunCheng程軍LiangSun孫亮YikeZhang張一可TongzhouJi吉同舟RongxingCao曹榮幸BingfengMiao繆冰鋒YonggangZhao趙永剛andHaifengDing丁海峰
    Chinese Physics B 2024年3期
    關鍵詞:榮幸

    Jun Cheng(程軍), Liang Sun(孫亮), Yike Zhang(張一可), Tongzhou Ji(吉同舟), Rongxing Cao(曹榮幸),Bingfeng Miao(繆冰鋒),2,?, Yonggang Zhao(趙永剛),§, and Haifeng Ding(丁海峰),2,?

    1National Laboratory of Solid State Microstructures and Department of Physics,Nanjing University,Nanjing 210093,China

    2Collaborative Innovation Center of Advanced Microstructures,Nanjing University,Nanjing 210093,China

    3Department of Physics,State Key Laboratory of Low-Dimensional Quantum Physics,Tsinghua University,Beijing 100084,China

    4Frontier Science Center for Quantum Information,Tsinghua University,Beijing 100084,China 5College of Electrical,Energy and Power Engineering,Yangzhou University,Yangzhou 225127,China

    Keywords: skyrmions,magnetic anisotropy,micromagnetic simulations

    1.Introduction

    Magnetic skyrmions are topologically protected chiral spin textures.[1,2]They possess particle-like feature with nanoscale size and can be driven with ultralow-density current,exhibiting great potential for applications in information storage and logic devices.[3-9]Magnetic skyrmions can be stabilized by the bulk Dzyaloshinskii-Moriya interaction(DMI)in inversion symmetry broken materials[10-15]as well as by the interfacial DMI in normal metal/ferromagnet (NM/FM)heterostructures.[16-18]Besides, artificial magnetic skyrmion crystals have been proposed and experimentally demonstrated in Co nano disks decorated perpendicularly magnetization Ni films,Co/Pt and Co/Pd multilayers at room temperature under zero external field.[19-23]Artificial skyrmion is stabilized by the competition between the exchange energy,dipolar energy and anisotropy energy,which does not necessarily involve any DMI.Thus,it significantly widens the scope of material selections for fundamental research and practical applications.In addition,artificial skyrmion crystal has controllable topological number and similar dynamic features as the DMI-induced skyrmion crystal.[24]

    Controllable creation and annihilation of skyrmion are the prerequisites for the skyrmion-based applications.Extensive efforts have been paid to the utilization of the spinpolarized current.[17,25-30]The required high-density current,however,will result in significant power consumption and instability of skyrmions due to the rise of device temperature.Alternatively,electric-field-controlled magnetism provides an energy-efficient approach to manipulate skyrmion without Joule heating.[31-36]The hybrid FM and ferroelectric(FE)heterostructures have been demonstrated to realize large electricfield-controlled magnetism at room temperature,[37-40]where the magneto-electric (ME) coupling is mediated by strain.The ME coupling was also theoretically proposed and experimentally demonstrated to control the DMI induced magnetic skyrmions.[41-44]As an important member of the magnetic skyrmion family,the study of the electric-field induced nucleation and annihilation of artificial skyrmion are,however,still missing.

    In this work, we study the electrical manipulation of the artificial magnetic skyrmions through micromagnetic simulations.The skyrmions are composed of nano-sized Co disk array patterned onto Pt/Co multilayers with perpendicular magnetic anisotropy (PMA).And the whole heterostructure lies on an FE substrate,wherein the PMA of the CoPt film can be modulated by the electric field through strain.Our simulations clearly demonstrate the reversible annihilation and creation of skyrmions without the DMI and magnetic field.Moreover,benefiting from the local application of the electric field,controllable manipulation of individual skyrmion in CoPt film can be realized and specific skyrmion patterns form.These results provide a new direction for developing skyrmion-based information storage and computing technology.

    2.Results and discussion

    The schematic diagram of the concept of the annihilation and creation of artificial skyrmions with the electric field is presented in Fig.1.An array of magnetic disks is patterned onto the continuous film with PMA (blue layer) [Fig.1(a)],which lies on a piezoelectric substrate(dark gray layer).The PMA film acts as the top gate, while an additional metallic film, such as a gold layer beneath the piezoelectric substrate serves as the bottom gate.With the suitable height and diameter, the ground state of the magnetic disks is the vortex state.The edge-clipped geometry is further used to break the circular symmetry of the vortex, so that both the circulation and polarity of the vortex can be aligned uniformly with suitable magnetic field operation.[19,45,46]Due to the interfacial exchange coupling,the magnetic disks would imprint the vortex structures into the underlying PMA layer.As long as the magnetization of the PMA layer surrounding the magnetic disks is opposite to the imprinted vortex polarity, a magnetic skyrmion lattice is formed[Fig.1(b)].After applying an electric field across the piezoelectric substrate, the strain of substrate in combination with the magnetoelastic effect in PMA layer results in a modulation of the PMA.For simplicity, we assume a linear relation between the PMA constant and the electric field asK⊥(E)=α|E|+K⊥(0),whereα >0 is a constant denoting the strength of the converse magneto-electric effect.Note here we only consider the common symmetric strain response with the electric field.When an asymmetric response, especially with nonzero remanence as reported in Ref.[44]is used, such a characteristic may also have the potential for non-volatile control of the magnetic skyrmion.With increasing electric field, the enhanced PMA strength would shrink the size of the imprinted vortex core.Above a critical value, the skyrmion structure in PMA layer is no longer stable and evolves into the perpendicular state.This process corresponds to the annihilation of skyrmions, as shown in Fig.1(c).Conversely, the PMA value of the PMA layer decreases when weakening the electric field.Due to the exchange coupling between PMA layer and the vortex structure in the patterned magnetic disks, chiral magnetic structure in the PMA layer would emerge again, leading to the reemergence of the skyrmion[Fig.1(d)].Therefore,the annihilation and creation of skyrmions can be achieved by changing the anisotropy constant of the film with PMA through the electric field only.Both the annihilation and creation processes are reversible, magnetic field-free, and energy-efficient since only the voltage pulses are applied.

    Fig.1.Proposed pathway for the annihilation and creation of skyrmions with the electric field.(a)Magnetic disks arranged on top of the magnetic film with perpendicular anisotropy.The electric field is applied between the film and the bottom electrode of the substrate,the arrow indicates the orientation of the local magnetic moments.(b)The perpendicularly magnetized film with vortex magnetic moments imprinted by the magnetic disks.After being applied an increasing(decreasing)electric field E,the perpendicular anisotropy constant K⊥will enhance(reduce),leading to(c)the annihilation and(d)the creation of skyrmions,respectively.

    In the following, we will demonstrate our proposal with micromagnetic simulations utilizing the OOMMF code.[47]Co and CoPt multilayer are selected as the materials of magnetic disks and PMA layer, respectively.The material parameters used in simulations are[19]the exchange constants ofACo=2.5×10-11J/m,ACoPt=1.5×10-11J/m,the saturation magnetization ofMCo=1.4×106A/m,MCoPt=5.0×105A/m,and the uniaxial perpendicular magnetic anisotropy for the CoPt films isK⊥=3.0×105J/m3in the absence of the electric field.We assume the interlayer exchange constant between the Co disk and CoPt film to beACo-CoPt=2.0×10-12J/m,which can be modulated by adding non-magnetic insertion layer.The Co disks with diameterD=120 nm and thicknesstCo=18 nm are arranged in a square lattice.The spacing between the center of the Co disksSis 180 nm.And the CoPt film thicknesstCoPtis 8 nm.In the simulations, we use a two-dimensional periodical boundary condition within the film plane,and a grid size of 2×2×1 nm3.For simplicity,we assume that the strain only acts uniformly on the CoPt films and has no apparent influence on the top Co disks.As the typical magnetic field required to switch the polarity of the magnetic vortex is~500 mT,[21]the weak magnetoelastic effect of the in-plane Co disk is expected to have little influence on the vortex structure.[48]

    We first apply a perpendicular magnetic field (800 mT,along thez-direction)to configure the polarity of the Co disks.Meanwhile, an in-plane magnetic field (300 mT) pulse along the cutting edge of the Co disks is applied to align their circulation.After releasing the magnetic field, all the disks are in the vortex configuration with the same polarity and circulation.Due to the coupling between the Co and CoPt layer, the vortices also emerge in the PMA-CoPt layer.Lastly,an opposite perpendicular magnetic field(-200 mT,a value in between the switching fields of CoPt layer and the vortex polarity) is applied to switch the magnetization of the CoPt layer surrounding the vortex structures, while leaving the polarity of vortices unaffected.After these magnetic field operations,[19,21]a uniform magnetic skyrmion lattice is stabilized as shown in Fig.2(a).And the inset presents the distribution of local magnetic moments of the above Co disks.Figures 2(b)-2(d)show the evolution of skyrmion with increasing PMA constant.FromK⊥=3.0×105J/m3toK⊥=8.0×105J/m3,the size of the skyrmion core (defined as the central area of the skyrmion within the linemz=0) shrinks.WhenK⊥>7.5×105J/m3,the skyrmion core in the CoPt layer vanishes and the skyrmion disappears.Namely, the whole CoPt layer almost enters a uniform perpendicular state with only small inplane magnetization component beneath the Co disks.We note that the vortex structures persist in the capping Co disks due to the relatively weak coupling between Co and Co/Pt.Conversely,we can also create skyrmions by decreasing the PMA of the CoPt film.As demonstrated in Figs.2(e)-2(g),more inplane magnetization component develops beneath the Co disks with decreasing PMA value and eventually transforms into the vortex state(below 2.8×105J/m3).Due to the coupling between Co and CoPt,the vortex cores in these two materials are of the same polarity.Therefore, the skyrmion structures are nucleated without applying any magnetic field.By further reducing the anisotropy constant, the diameter of the skyrmion is slightly enhanced to lower the Zeeman energy[Fig.2(h)].

    Figure 3(a) summarizes the evolution of the calculated skyrmion number per unit cell with the change of the magnetic anisotropy constantK⊥.It shows a loop changing between two discrete numbers of “1” and “0”, evidencing the sweeping between two topological states.We have herein achieved reversible annihilation and creation of skyrmions by changing the PMA constant of the CoPt film through micromagnetic simulation.And the required variation of PMA constant from annihilation to recreation is around 63%.We note that such amount of change of PMA constant has been demonstrated experimentally,[44]indicating the feasibility of the electric field modulation of artificial skyrmion at room temperature.Furthermore, the magnetoelastic coupling coefficient for (111)-textured Co/Pt is up to 2.38×10-2J/(m2·V) at room temperature in literature.[49]Therefore,we can estimate the needed electric fieldEwhich is 19.7 MV/m for our calculated CoPt system.It has been reported that high-quality single crystal PMN-PT films can be grown on silicon substrate, which is compatible with semiconductor industry.[50]If aμm-thickness piezoelectric film is used,the required voltage is about 20 V.We would like to mention that the magnetic anisotropy of the Co/Pt perpendicular film can also be regulated by the voltage controlled magnetism anisotropy(VCMA)method,the equivalent magnetic anisotropy changes are about 106-107J/m3[51-53]with applying a few Volts.The reported range is more than we need,showing the feasibility of our proposed method.It is worth noting that we have mainly considered the influence of perpendicular anisotropic changes here.In real samples,the electric field may also cause other changes such as the exchange constant, Dzyaloshinskii-Moriya interaction, etc.[44]The combined effect of multiple factors may further reduce the required changes of PMA.

    Fig.2.The annihilation and creation of skyrmions with increasing/decreasing PMA.(a) Top view of magnetic moment distribution of CoPt film with K⊥=3.0×105 J/m3, the inset represents the situation of Co disks.With the increase of K⊥, the diameter of skyrmions decreases until it disappears,shown in(b)-(d).In turn,when decreasing the magnitude of K⊥,skyrmions are created after the critical value is reached,as shown in(e)-(h).The color bar represents the projection of local moments along the z-direction,+1/-1 indicates that the magnetization is saturated along the+z/-z direction,respectively.

    To gain a deeper understanding of the skyrmion’s annihilation and creation behavior, we conduct further analysis.We perform calculations with different Co disks spacingS.The simulations show that whenSdecreases from 180 nm to 130 nm,theK⊥for skyrmion annihilation remains almost unchanged whileK⊥for the skyrmion nucleation changes from 2.8×105J/m3to 2.6×105J/m3,suggesting weak influence of the dipolar interaction between the disks.For simplicity,the exchange constantACoPtis assumed to be uniform across the CoPt films in our simulation.Besides,we also perform simulations with differentACoPtvalues for the in-plane and vertical direction, such as theACoPtvalues on vertical direction are decreased(increased)to 1.0×10-11J/m(2.25×10-11J/m)respectively while keeping the in-planeACoPtunchanged.The simulations show that,in both cases,the changes ofACoPtonly have minor influence on the critical valueK⊥for skyrmions annihilation and creation.

    Figure 3(b)presents the evolution of the total energyEtotas well as the corresponding demagnetization energyEdem,anisotropy energyEaniand exchange energy termsEexcduring the process of annihilation and creation(corresponding to the process in Fig.2).According to the evolution of the total energyEtotwith the variation ofK⊥,the stability diagram can be defined as three regions.At lowK⊥(pink area),the magnetic structure has only one stable state,namely the skyrmion state(solid symbols).At highK⊥(light blue area), the magnetic structure has only one stable state,namely,the non-skyrmion state(open symbols).In the middle region(white area), both the skyrmion and non-skyrmion states are stable but with one as the metastable state.This is further supported by the evolution ofEdem,EaniandEexc,which show hysteresis loop like behavior.With increasingK⊥, bothEdemandEexcincrease butEanidecreases.The competition between them results in an interesting evolution of theEtotin this region.AtK⊥≈5×105J/m3, both states have almost the same total energy(marked by the dashed square).Namely, the metastable and stable states swap their statuses atK⊥≈5×105J/m3.WhenK⊥deviates more from this value, the total energy difference between these two states becomes larger.And the metastable state becomes unstable,resulting in a change of magnetic configuration,either from non-skyrmion state to skyrmion state or vice versa.

    We further study the phase diagram where the skyrmion can be reversibly annihilated and created with different PMA constantK⊥of the CoPt layer and the exchange constantACo-CoPtbetween Co and Co/Pt.Figure 4(a) presents the result forD=120 nm andS=180 nm.Within the most region(solid square), the skyrmion structure can be reversibly annihilated and created.And the system can bear stronger perpendicular anisotropy when the interlayer exchange interaction is larger.This can be understood as the skyrmion structures are the results of competition among different energy terms.When the system has largeK⊥and smallACo-CoPt,skyrmion cannot be generated (cross).The CoPt layer beneath the Co disk is dominated by the perpendicular magnetization but with small in-plane curling component.Figure 4(b) presents the case forD=80 nm andS=100 nm, with all other parameters identical to Fig.4(a).Due to the decrease of the stability of the skyrmion structure with the decreased size, the region where both annihilation and creation can be achieved becomes much smaller.And for the open square,the skyrmion can only be annihilated but not be recreated.This could be due to the fact that as the diameters of the Co disks further decrease,the energy that they could provide also decreases.And at a certain level,it could not overcome the energy threshold required to induce the recreation of skyrmions.In addition, we also calculate the case with different Co disk and CoPt film thicknesses, the annihilation and recreation of skyrmion state can also be achieved under suitable conditions.The above results show that the manipulations of patterned artificial skyrmions are feasible under various situations.

    For applications such as the magnetic storage, not only the collective and reversible control of the annihilation and creation of the skyrmion lattice but also the independent manipulation of the individual skyrmion is important.We further demonstrate the local control of individual skyrmion with the electric field.Figure 5(a)presents the studied system with 36 skyrmions in the CoPt layer,whereK⊥=2.6×105J/m3and other parameters the same as those used in Fig.2.For each unit, Co/Pt film is in a square shape and the Co disk locates in the center of the square.The PMA of the CoPt film in the square can be changed by the local strain.Besides,the starting condition of the system is a random distribution of magnetic moments, then the field sequence described in the text above is performed to formulate a uniform magnetic skyrmion lattice [shown in Fig.5(a)].Figures 5(b)-5(d) are sequentially obtained by individually changingK⊥of the underlayer CoPt films of the selected unit cells with Fig.5(a) as the starting state and without applying any magnetic field.After applying local electric field upon specific 24 unit cells, the PMA constantK⊥therein increases to 8.0×105J/m3, while the other 12 unit cells remain unchanged.Our calculations show that the spin configuration transforms from full skyrmions state to“S”,“K”and“X”shaped skyrmions patterns[Figs.5(b)-5(d)],depending on the positions of the local electric field.Therefore,we achieve the encoding of information with a single skyrmion as the unit cell.We note that although the control of number of skyrmions in the skyrmion clusters in a one-by-one manner through an electric field has been reported previously,the authors therein still need assisting magnetic field.[54]In contrast,we herein report the annihilation and creation of individual skyrmions by modulating the PMA constant with the electric field only, which is more energy-efficient.For simplicity, the control of a single unit is performed with a voltage controlled local strain modification only.The strain may have lateral spread.The lateral spread is expected to have a decay away from the unit being controlled.From our simulation shown in Fig.3(a), the skyrmion annihilation and creation show a square loop with a relatively wide region.This indicates that it requires a large change of strain to modify the configuration.The attenuated strain at the adjacent units thus has no strong influence on their magnetic configurations.

    3.Conclusion

    In summary, we provide a new pathway to realize the reversible annihilation and creation of artificial magnetic skyrmions in patterned Co disk-Co/Pt multilayer heterostructures through changing the perpendicular anisotropy constant of the CoPt film deposited on piezoelectric substrate with the electric field.In particular, this can be achieved without the need of DMI and magnetic field.A phase diagram is provided which shows that the reversible annihilation-creation behavior can exist over a wide parameters space.Further we also demonstrate the controllable manipulation of individual skyrmion,providing a new platform for encoding information in skyrmion based media.

    Data availability statement

    The data that support the findings of this study are openly available in Science Data Bank at https://doi.org/10.57760/sciencedb.j00113.00195.

    Acknowledgements

    Project supported by the National Key R&D Program of China(Grant Nos.2021YFB3502400 and 2022YFA1403601),the National Natural Science Foundation of China (Grant Nos.12274204, 12274203, 51831005, 52172270, 11974165,92165103,51971110,12004329,and 12241402).

    猜你喜歡
    榮幸
    如何用英語“邀請”
    Origins of World Book Day
    創(chuàng)作手記:一段榮幸的在場
    散文詩(2021年24期)2021-12-05 09:11:50
    榮幸
    飛天(2020年9期)2020-09-06 14:04:35
    趣生活創(chuàng)由我
    攝影之友(2020年8期)2020-08-14 10:08:52
    祝福
    飛天(2020年4期)2020-04-17 14:48:24
    新發(fā)明
    三月三(2017年2期)2017-03-01 17:07:40
    新發(fā)明
    三月三(2017年2期)2017-03-01 09:36:10
    談圣誕 品文化 學英語
    受寵若驚
    又粗又爽又猛毛片免费看| 国产精品野战在线观看| 久久久色成人| 国产精品免费一区二区三区在线| 亚洲av中文字字幕乱码综合| 嫩草影视91久久| 一级毛片高清免费大全| 99久久国产精品久久久| 亚洲国产欧美人成| 小说图片视频综合网站| 色尼玛亚洲综合影院| 亚洲五月婷婷丁香| 日本 av在线| 女同久久另类99精品国产91| 两个人看的免费小视频| 中亚洲国语对白在线视频| 1024香蕉在线观看| 国产极品精品免费视频能看的| 看黄色毛片网站| 午夜福利成人在线免费观看| 午夜福利在线观看吧| 国产精品久久久久久精品电影| 精品国产亚洲在线| 久久久精品大字幕| 国产成人aa在线观看| 欧美黑人欧美精品刺激| 人妻夜夜爽99麻豆av| 99久久精品一区二区三区| 97超级碰碰碰精品色视频在线观看| 香蕉丝袜av| avwww免费| 黑人巨大精品欧美一区二区mp4| 一本精品99久久精品77| 午夜免费激情av| 久久久久久久午夜电影| 18禁国产床啪视频网站| 老熟妇仑乱视频hdxx| 欧美绝顶高潮抽搐喷水| 天堂影院成人在线观看| x7x7x7水蜜桃| 老鸭窝网址在线观看| 国产午夜精品久久久久久| 国产野战对白在线观看| 999久久久精品免费观看国产| 两个人看的免费小视频| 三级毛片av免费| 久久亚洲真实| 国产成人福利小说| 国产高清激情床上av| 在线a可以看的网站| 日韩欧美 国产精品| 两性午夜刺激爽爽歪歪视频在线观看| 成人18禁在线播放| 18禁黄网站禁片午夜丰满| 亚洲av第一区精品v没综合| 一区福利在线观看| 2021天堂中文幕一二区在线观| 九九在线视频观看精品| 黄色日韩在线| 噜噜噜噜噜久久久久久91| avwww免费| 亚洲精品一卡2卡三卡4卡5卡| 亚洲在线观看片| 18禁黄网站禁片午夜丰满| 男女视频在线观看网站免费| 午夜免费观看网址| 国产极品精品免费视频能看的| 欧美乱色亚洲激情| 日本一本二区三区精品| 18禁黄网站禁片午夜丰满| 狠狠狠狠99中文字幕| 日本 av在线| 人妻夜夜爽99麻豆av| 国产伦一二天堂av在线观看| 亚洲第一电影网av| 99久久国产精品久久久| 一个人观看的视频www高清免费观看 | 在线免费观看的www视频| 三级男女做爰猛烈吃奶摸视频| 窝窝影院91人妻| 成熟少妇高潮喷水视频| 青草久久国产| 欧美日韩中文字幕国产精品一区二区三区| 波多野结衣高清作品| 久久亚洲精品不卡| 亚洲欧美日韩无卡精品| 1000部很黄的大片| 亚洲成人免费电影在线观看| 日本熟妇午夜| 国产亚洲精品av在线| 淫妇啪啪啪对白视频| 在线观看午夜福利视频| 淫秽高清视频在线观看| 久久中文看片网| 成人永久免费在线观看视频| 日本黄色片子视频| 性色av乱码一区二区三区2| 国产精品九九99| 岛国视频午夜一区免费看| 久久精品夜夜夜夜夜久久蜜豆| 日韩欧美 国产精品| 精品国产超薄肉色丝袜足j| 精品福利观看| 欧美乱码精品一区二区三区| 成人欧美大片| 久久国产精品人妻蜜桃| 国产人伦9x9x在线观看| 一卡2卡三卡四卡精品乱码亚洲| 国产97色在线日韩免费| 少妇的丰满在线观看| 99久久国产精品久久久| 色精品久久人妻99蜜桃| 制服丝袜大香蕉在线| 亚洲av日韩精品久久久久久密| 亚洲美女视频黄频| 精华霜和精华液先用哪个| 国产亚洲av高清不卡| 国产精品99久久99久久久不卡| 看片在线看免费视频| 日韩欧美国产在线观看| 成熟少妇高潮喷水视频| 日本黄色片子视频| 国产97色在线日韩免费| 非洲黑人性xxxx精品又粗又长| 后天国语完整版免费观看| 俺也久久电影网| 精品久久久久久久末码| 国模一区二区三区四区视频 | 精品国产乱子伦一区二区三区| 97超级碰碰碰精品色视频在线观看| 亚洲人与动物交配视频| 亚洲一区二区三区色噜噜| 啦啦啦韩国在线观看视频| 久久人妻av系列| 欧美日韩亚洲国产一区二区在线观看| 制服丝袜大香蕉在线| 亚洲午夜精品一区,二区,三区| 又爽又黄无遮挡网站| 美女扒开内裤让男人捅视频| 精品一区二区三区视频在线 | 国产伦精品一区二区三区视频9 | 99久久99久久久精品蜜桃| 国产高清videossex| 法律面前人人平等表现在哪些方面| 国产v大片淫在线免费观看| 成人av在线播放网站| 这个男人来自地球电影免费观看| 天天躁日日操中文字幕| 老鸭窝网址在线观看| 男女视频在线观看网站免费| 国产精品 国内视频| 麻豆av在线久日| 一个人观看的视频www高清免费观看 | 亚洲自拍偷在线| 国产极品精品免费视频能看的| 亚洲电影在线观看av| 在线观看免费视频日本深夜| 超碰成人久久| 在线国产一区二区在线| 韩国av一区二区三区四区| 看黄色毛片网站| 日日夜夜操网爽| 久久人妻av系列| 一级毛片女人18水好多| 久久久久久久久免费视频了| 一本精品99久久精品77| 亚洲欧洲精品一区二区精品久久久| 亚洲国产精品久久男人天堂| 亚洲国产中文字幕在线视频| 欧美日韩亚洲国产一区二区在线观看| 亚洲欧美精品综合久久99| 女警被强在线播放| 真人一进一出gif抽搐免费| 久9热在线精品视频| 国产麻豆成人av免费视频| 久久久久性生活片| aaaaa片日本免费| 国产精品亚洲av一区麻豆| 两人在一起打扑克的视频| 精品无人区乱码1区二区| 国产成人一区二区三区免费视频网站| 精品熟女少妇八av免费久了| 国产成人av教育| 午夜激情福利司机影院| 可以在线观看的亚洲视频| 很黄的视频免费| 欧美国产日韩亚洲一区| 国产aⅴ精品一区二区三区波| 国内精品久久久久精免费| 久久香蕉精品热| 999久久久精品免费观看国产| 国产精华一区二区三区| 国产精品女同一区二区软件 | 亚洲av美国av| 精品乱码久久久久久99久播| 亚洲精品国产精品久久久不卡| 午夜福利免费观看在线| 99国产精品一区二区蜜桃av| 又大又爽又粗| 国内精品久久久久久久电影| 欧美国产日韩亚洲一区| 免费一级毛片在线播放高清视频| 日本熟妇午夜| 一二三四在线观看免费中文在| 一区二区三区激情视频| 亚洲 国产 在线| 性色av乱码一区二区三区2| 国产精品av久久久久免费| 搡老妇女老女人老熟妇| 狠狠狠狠99中文字幕| 亚洲精品中文字幕一二三四区| 欧美黑人巨大hd| 亚洲欧美日韩高清专用| 在线看三级毛片| 国产精品久久电影中文字幕| 美女高潮的动态| 免费在线观看亚洲国产| 国产69精品久久久久777片 | 国产精品久久久久久久电影 | 一个人看视频在线观看www免费 | 亚洲av电影不卡..在线观看| 欧美极品一区二区三区四区| 久久精品国产99精品国产亚洲性色| 蜜桃久久精品国产亚洲av| 在线播放国产精品三级| 精品国内亚洲2022精品成人| 波多野结衣巨乳人妻| 熟妇人妻久久中文字幕3abv| 国产乱人伦免费视频| 我的老师免费观看完整版| 久久人人精品亚洲av| 亚洲国产看品久久| 国产三级黄色录像| 成人午夜高清在线视频| 欧美乱妇无乱码| 性欧美人与动物交配| 最近最新中文字幕大全电影3| 看片在线看免费视频| 成人国产综合亚洲| 午夜视频精品福利| 国产真人三级小视频在线观看| 国产精品,欧美在线| 欧美日韩中文字幕国产精品一区二区三区| 一夜夜www| 国产亚洲精品久久久com| 久久午夜亚洲精品久久| 欧美色欧美亚洲另类二区| 性欧美人与动物交配| 欧美一级毛片孕妇| 国产高清三级在线| 亚洲av片天天在线观看| 欧美乱码精品一区二区三区| 国产精品99久久99久久久不卡| 老熟妇仑乱视频hdxx| 美女午夜性视频免费| 国产三级黄色录像| 嫩草影院入口| 老司机午夜十八禁免费视频| 级片在线观看| 看黄色毛片网站| 757午夜福利合集在线观看| 婷婷精品国产亚洲av| 国产伦在线观看视频一区| www日本在线高清视频| 国产伦在线观看视频一区| 国产高潮美女av| 久久亚洲精品不卡| 亚洲av日韩精品久久久久久密| 国产精品 国内视频| 亚洲一区高清亚洲精品| 精品一区二区三区av网在线观看| 韩国av一区二区三区四区| 久久香蕉精品热| 国产av在哪里看| 久久久久久久久久黄片| 亚洲精品中文字幕一二三四区| 久久久国产成人免费| 亚洲avbb在线观看| 看片在线看免费视频| 日本黄色视频三级网站网址| 亚洲乱码一区二区免费版| 美女高潮喷水抽搐中文字幕| 国产精品自产拍在线观看55亚洲| 久久精品91无色码中文字幕| 亚洲一区高清亚洲精品| 脱女人内裤的视频| 一级黄色大片毛片| 搡老岳熟女国产| 国产精品日韩av在线免费观看| 观看美女的网站| 麻豆国产av国片精品| 精品日产1卡2卡| 亚洲成av人片在线播放无| 不卡一级毛片| 久久精品aⅴ一区二区三区四区| 国产精品精品国产色婷婷| 成年人黄色毛片网站| 色av中文字幕| 精品久久久久久久人妻蜜臀av| 波多野结衣高清无吗| 97超视频在线观看视频| 国产成人精品无人区| 成人鲁丝片一二三区免费| 精品国产乱子伦一区二区三区| 曰老女人黄片| 亚洲自拍偷在线| 成人特级av手机在线观看| 亚洲成av人片免费观看| 欧美国产日韩亚洲一区| 国产午夜精品论理片| 大型黄色视频在线免费观看| 日本a在线网址| a在线观看视频网站| 男人舔女人的私密视频| 长腿黑丝高跟| 亚洲精华国产精华精| 两人在一起打扑克的视频| 亚洲 欧美一区二区三区| 激情在线观看视频在线高清| 婷婷精品国产亚洲av在线| 国产欧美日韩一区二区三| 岛国在线免费视频观看| 两性夫妻黄色片| 亚洲avbb在线观看| 免费在线观看视频国产中文字幕亚洲| 精品电影一区二区在线| 他把我摸到了高潮在线观看| 精品免费久久久久久久清纯| 99热6这里只有精品| 国产综合懂色| 日韩国内少妇激情av| 女人高潮潮喷娇喘18禁视频| 九九热线精品视视频播放| av女优亚洲男人天堂 | 老熟妇仑乱视频hdxx| 久久久水蜜桃国产精品网| 色精品久久人妻99蜜桃| 精品日产1卡2卡| 91在线观看av| www.自偷自拍.com| 91麻豆精品激情在线观看国产| 18禁美女被吸乳视频| 中文字幕精品亚洲无线码一区| 99热这里只有是精品50| 亚洲av五月六月丁香网| www日本黄色视频网| 免费观看人在逋| 亚洲成a人片在线一区二区| 小蜜桃在线观看免费完整版高清| 亚洲中文字幕日韩| 国产精品久久久人人做人人爽| 免费搜索国产男女视频| 老司机午夜福利在线观看视频| 韩国av一区二区三区四区| 午夜福利高清视频| 床上黄色一级片| 久久久国产成人免费| 九色国产91popny在线| 免费av不卡在线播放| 美女大奶头视频| 欧美日韩乱码在线| 成人鲁丝片一二三区免费| 国产午夜精品论理片| 日本五十路高清| 亚洲av成人av| 1024手机看黄色片| 91老司机精品| 免费av不卡在线播放| 啦啦啦免费观看视频1| 在线观看美女被高潮喷水网站 | 日本撒尿小便嘘嘘汇集6| 在线观看美女被高潮喷水网站 | 国语自产精品视频在线第100页| 男人舔奶头视频| 亚洲av电影在线进入| 欧美3d第一页| 亚洲自偷自拍图片 自拍| 午夜影院日韩av| 狠狠狠狠99中文字幕| 99热这里只有精品一区 | 神马国产精品三级电影在线观看| 久久久久久国产a免费观看| 国内精品久久久久久久电影| 国产精品一及| 俄罗斯特黄特色一大片| 免费看日本二区| 国产毛片a区久久久久| 一a级毛片在线观看| 男女视频在线观看网站免费| 一本精品99久久精品77| av福利片在线观看| 88av欧美| 国产美女午夜福利| 国产成+人综合+亚洲专区| 精品久久久久久,| 偷拍熟女少妇极品色| 亚洲人成伊人成综合网2020| 欧美乱色亚洲激情| 在线观看一区二区三区| 欧美成人一区二区免费高清观看 | 99国产极品粉嫩在线观看| 久久中文字幕人妻熟女| 成熟少妇高潮喷水视频| 女同久久另类99精品国产91| 88av欧美| 欧美色视频一区免费| 看黄色毛片网站| 亚洲乱码一区二区免费版| 99国产精品一区二区蜜桃av| 精品久久久久久久久久久久久| 夜夜看夜夜爽夜夜摸| 19禁男女啪啪无遮挡网站| 免费在线观看亚洲国产| 亚洲最大成人中文| 九九久久精品国产亚洲av麻豆 | 欧美成人免费av一区二区三区| 精品福利观看| 久久精品国产清高在天天线| 久久久色成人| 精品国产乱子伦一区二区三区| 神马国产精品三级电影在线观看| 亚洲欧美一区二区三区黑人| 国产av一区在线观看免费| 亚洲成人久久性| av在线天堂中文字幕| 法律面前人人平等表现在哪些方面| 成年女人看的毛片在线观看| 国产午夜精品久久久久久| 国产成人啪精品午夜网站| 黄色日韩在线| 免费高清视频大片| 国内精品久久久久久久电影| 成人国产综合亚洲| 国产成年人精品一区二区| 亚洲人成伊人成综合网2020| 欧美精品啪啪一区二区三区| 丰满人妻一区二区三区视频av | 国内揄拍国产精品人妻在线| 国产v大片淫在线免费观看| 人妻丰满熟妇av一区二区三区| www.自偷自拍.com| 搡老妇女老女人老熟妇| 亚洲天堂国产精品一区在线| 神马国产精品三级电影在线观看| av视频在线观看入口| 国产综合懂色| 午夜福利在线在线| 色精品久久人妻99蜜桃| 丁香六月欧美| 男女下面进入的视频免费午夜| 后天国语完整版免费观看| 青草久久国产| 99国产精品99久久久久| 亚洲国产精品sss在线观看| 久久精品91无色码中文字幕| 国产欧美日韩精品一区二区| 啦啦啦免费观看视频1| 午夜精品在线福利| 亚洲无线观看免费| 丰满的人妻完整版| 99久久国产精品久久久| 白带黄色成豆腐渣| 久久久久久久午夜电影| 亚洲国产中文字幕在线视频| 999精品在线视频| 精品免费久久久久久久清纯| 亚洲欧美日韩高清在线视频| 日韩欧美精品v在线| 久久久久九九精品影院| 中文资源天堂在线| 久久精品国产清高在天天线| 免费看日本二区| 不卡一级毛片| 最近最新中文字幕大全免费视频| 亚洲在线自拍视频| www日本黄色视频网| 1024手机看黄色片| 天天一区二区日本电影三级| 久久久水蜜桃国产精品网| 熟女少妇亚洲综合色aaa.| 欧美+亚洲+日韩+国产| 这个男人来自地球电影免费观看| 美女被艹到高潮喷水动态| 国产精品av视频在线免费观看| 国产麻豆成人av免费视频| 网址你懂的国产日韩在线| 国产av不卡久久| 欧美另类亚洲清纯唯美| 日本免费一区二区三区高清不卡| 色播亚洲综合网| 高潮久久久久久久久久久不卡| 欧美三级亚洲精品| 最近视频中文字幕2019在线8| 国产人伦9x9x在线观看| 成人国产一区最新在线观看| 日韩高清综合在线| 一本精品99久久精品77| av在线蜜桃| 亚洲精华国产精华精| 男女那种视频在线观看| 人妻夜夜爽99麻豆av| 夜夜爽天天搞| 亚洲国产日韩欧美精品在线观看 | 少妇丰满av| 三级毛片av免费| 久久精品91蜜桃| 亚洲国产精品成人综合色| 99久久99久久久精品蜜桃| 男女床上黄色一级片免费看| 国产精品久久电影中文字幕| 最好的美女福利视频网| 亚洲人成电影免费在线| 国产男靠女视频免费网站| 午夜福利在线观看吧| 亚洲国产日韩欧美精品在线观看 | 99re在线观看精品视频| 在线观看免费午夜福利视频| 网址你懂的国产日韩在线| 90打野战视频偷拍视频| 丰满人妻熟妇乱又伦精品不卡| 国产av在哪里看| 青草久久国产| 少妇熟女aⅴ在线视频| 国产一区二区在线av高清观看| 成人亚洲精品av一区二区| 午夜福利在线在线| 国产亚洲av嫩草精品影院| 特级一级黄色大片| АⅤ资源中文在线天堂| 精品久久久久久久久久久久久| 亚洲精品在线观看二区| 亚洲五月婷婷丁香| 亚洲专区国产一区二区| 国产精品自产拍在线观看55亚洲| 怎么达到女性高潮| 国产私拍福利视频在线观看| 老司机福利观看| 国产精品影院久久| 亚洲成人久久爱视频| 国产一级毛片七仙女欲春2| 国产精品 国内视频| 亚洲av片天天在线观看| 久久天堂一区二区三区四区| 精品午夜福利视频在线观看一区| 国产野战对白在线观看| 好男人在线观看高清免费视频| 久久国产精品影院| 日本 欧美在线| 亚洲欧美日韩东京热| 国产精品九九99| 国产探花在线观看一区二区| 在线免费观看的www视频| 成人三级做爰电影| 成人国产一区最新在线观看| 18禁裸乳无遮挡免费网站照片| 一二三四在线观看免费中文在| 91av网站免费观看| 亚洲国产欧美网| 国产亚洲欧美在线一区二区| 两个人看的免费小视频| 婷婷六月久久综合丁香| 99久久成人亚洲精品观看| av欧美777| 色综合欧美亚洲国产小说| 韩国av一区二区三区四区| 一个人免费在线观看的高清视频| 可以在线观看毛片的网站| 日本精品一区二区三区蜜桃| 国产人伦9x9x在线观看| av国产免费在线观看| xxxwww97欧美| 亚洲精品在线观看二区| 黄色片一级片一级黄色片| 悠悠久久av| 一本一本综合久久| 国产精品亚洲一级av第二区| 亚洲五月天丁香| 日韩国内少妇激情av| 黄频高清免费视频| 国产成+人综合+亚洲专区| 九九热线精品视视频播放| 丁香六月欧美| 在线免费观看的www视频| 久久国产精品人妻蜜桃| 18禁国产床啪视频网站| 欧美国产日韩亚洲一区| 国产精品久久久久久精品电影| 亚洲av电影不卡..在线观看| 啦啦啦免费观看视频1| 精品日产1卡2卡| av欧美777| 99热这里只有精品一区 | 露出奶头的视频| 亚洲成av人片在线播放无| 欧美性猛交╳xxx乱大交人| 国产伦一二天堂av在线观看| 91av网站免费观看| 天天一区二区日本电影三级| 国产成人精品久久二区二区91| 亚洲色图av天堂| 18美女黄网站色大片免费观看| 久久国产精品影院| 又大又爽又粗| 精品国产超薄肉色丝袜足j| 午夜福利视频1000在线观看| 精品一区二区三区视频在线观看免费| 两性夫妻黄色片| 国产精品综合久久久久久久免费| 国产真实乱freesex| 亚洲专区中文字幕在线| 久久久久久大精品| 国产熟女xx| 精品免费久久久久久久清纯| 欧美激情久久久久久爽电影| 夜夜爽天天搞|